AN ATTEMPT TO PROVE THE RIEMANN HYPOTHESIS SIMPLY

DMITRI MARTILA
INDEPENDENT RESEARCHER
J. V. JANNESENI 6–7, PÄRNU 80032, ESTONIA

Abstract. This work says that Riemann Hypothesis is true.
MSC Class: 11M26, 11M06.

There is a vivid interest in the Riemann Hypothesis, and there are no reasons to doubt Riemann Hypothesis. [1] Still, despite many attempts to prove the long-standing Millennium Prize problem, those have yet to be published in a reputable journal.

It is known [2] that the zeroes \(x = x_0, \ y = y_0 \) of the zeta function, \(\zeta(x_0 + i y_0) = 0 \), satisfy \(\zeta(x_0 + i y_0) = \zeta(1 - x_0 + i y_0) \) and \(\xi(x_0 + i y_0) = \xi(1 - x_0 + i y_0) \) because zeroes of the Landau’s xi function and zeroes of the zeta function are the same in the critical strip. [3]

For a general values of \(x, y \), the differences are \(\Delta = \zeta(x + i y) - \zeta(1 - x + i y) \) and \(\delta = \xi(x + i y) - \xi(1 - x + i y) \). Hereby, it is necessary for \(\zeta \) function to be zero if both \(\Delta \) and \(\delta \) vanish. I can write then \(\zeta = \zeta(x, y, \Delta, \delta) \). And equation \(\zeta(1/2, y_0, 0, 0) = 0 \) produces all the zeroes on the critical line because the differences surely vanish if \(x = 1/2 \). So, \(\zeta(1/2 + i y_0) = \xi(1/2 + i y_0) = 0 \).

References
[1] David W. Farmer, “Currently there are no reasons to doubt the Riemann Hypothesis,” arXiv:2211.11671 [math.NT], 2022AD.

cestidima@gmail.com.