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Abstract 

We discuss the hypothesis that the special theory of relativity (STR) and 

quantum mechanics (QM) are descriptions of physical reality from the 

perspective of an observer who is part of a finite deterministic system. 

 

1. Introduction 

H. Everett's idea to place the observer within the observed world represents 

a kind of «Copernican revolution» that has long been brewing in physics. Before H. 

Everett, nobody considered the observer as part of the system, let alone as a 

quantum object. The Copenhagen interpretation excludes the observer from 

consideration, replacing the measurement process with Born's empirical rule, the 

meaning of which is unclear. In contrast, in the many-worlds (MW) formulation of 

quantum mechanics [1], the observer is part of the system. Such an observer can 

be called "internal" or "subjective" because they are a subject of the quantum 

system. When such an observer interacts with an object, which can be the rest of 

the universe, an inseparable quantum state arises, representing a superposition of 

classical realities, each of which contains a copy of the observer and the object in 

correlated states. 

 A vivid example can be tossing a die, where the world splits into six worlds 

according to the number of die faces. Everett created his theory with the intention 

of removing from quantum mechanics an element foreign to it - the collapse of 

the quantum state. He succeeded only partially, as the assertion of the 

simultaneous existence of all measurement outcomes does not solve the main 

question - why, when I threw the die, did I end up in this branch of the 

superposition and not in another? We still do not know what lies behind the 

mechanism of reduction and how the Born rule, which gives the probability 

distribution, arises. These questions, related to the so-called measurement 

problem, can only be answered based on a deeper theory, the possibility of which 

Einstein believed in.  

"God does not play dice!" - said Einstein. "Einstein, quit telling God what to 

do"- objected Bohr, confident in the fundamental indeterminism of nature. In this 

article, we will show that despite the polarity of concepts, both geniuses were right. 

Indeed, quantum mechanics demonstrates a strange hybrid of deterministic and 

random behavior. We will show that such behavior can be explained based on 

superdeterminism. Currently, there are many attempts [2,3,4] to reproduce 

quantum behavior in models based on non-local hidden variables or 

superdeterminism. It should be noted that superdeterminism is characterized by 

the non-fulfillment of the condition of statistical independence [5]. This means that 



in models with hidden variables, there must be a correlation of environment with 

the observer's state. 

  In this article, we propose an original approach based on superdeterminism 

and the so-called physical incompleteness. Physical incompleteness should not be 

confused with the incompleteness of quantum mechanics that Einstein spoke of. 

By physical incompleteness, we mean a situation that arises for an observer who is 

part of the system he observes. This situation is analogous to the limiting theorems 

of mathematical logic applied to physics.  

Formally, the reason for incompleteness is the impossibility of a bijective mapping 

of the set of world states onto the set of observer states, since the latter is a subset 

of the former. This leads to the impossibility for an internal observer to have 

exhaustive knowledge of the world, of which they are a part [6]. This justifies the 

existence of hidden parameters. 

Discussion of hidden parameters is usually encountered only in the narrative of the 

foundations of quantum mechanics. Our approach reveals hidden parameters in 

STR and demonstrates a common principle underlying quantum mechanics and 

special theory of relativity. 

 

2. Projective Interpretation of Quantum Mechanics 

  G. 't Hooft, while developing an original approach to the foundations of 

quantum mechanics, considers abstract deterministic models of the world like 

'cogwheel' [7]. This is a physical-mathematical metaphor in which the teeth of the 

'gear' play the role of ontological states of the world. From a mathematical point 

of view, such a model is described by a looped space of ontological states.  

We will show how to build the simplest superdeterministic model based on 

this. Let's introduce an observer into 't Hooft's world model, and call it the '2-

cogwheel' model. In the simplest case, such a world, denoted as World, is a 

mechanism consisting of 2 interlocking gears, one of which models the observer 

Subj, and the other - the object Obj. Let the states of the subject and the object be 

denoted by ξ and η, respectively. The finiteness of the number of world states is an 

important condition. By definition, the states of the observer (subject) can be 

measured and realized by him. In a sense, they are states of consciousness of the 

observer. The states of the object play the role of hidden parameters.  

The state of the system as a whole is uniquely described by the pair ψ={ξ,η}, 

composed of the observer's state ξ∈Subj (the first gear) and the object's state 

η∈Obj (the second gear), taken at the point of engagement. Here ξ and η are simply 

the numbers of the teeth of the respective gears. Formally, this structure is 

described by the direct product of cyclic groups  ℤ𝑛  × ℤ𝑚. Let's assume that the 

orders of the groups are coprime, then the group of ontological states is also cyclic. 



The cyclicity of the system's evolution is an inevitable consequence of the 

underlying finiteness and determinism. 

  The limitations of incompleteness require distinguishing between physical 

and ontological time. The time associated with the change of states of the system 

as a whole (World) is called ontological time. At each moment of ontological time, 

the system can be in only one ontological state. The time associated with the 

change of states of the observer Subj is called physical time. Physical time is 

determined by the change of the observer's state ξ. The system can undergo the 

evolution of the hidden parameter η without changing the physical time. We will 

say that such evolution occurs in hidden time. 

 Examples of evolution in hidden time include stationary quantum processes or a 

particle passing through two slits simultaneously in the Young's experiment. Let's 

consider the vector space W over the field of ontological states. Let's call it the 

ontological space. In order to construct a closed self-consistent model, the 

foundation must be a closed algebraic system. The requirement of finiteness limits 

the choice of such systems to the Galois field ψ ∈ ℤ𝑛∙𝑚  or to a field of roots of 1, 

isomorphic to it: 

𝜓(τ) = [Û]
τ
𝜓(0) (2.1) 

Here, Û is a matrix that implements a permutation of the ontological basis. This 

N×N matrix is from the group of permutations, where N is the number of 

ontological states. For example, the matrix (2.2) cyclically shifts the components of 

the vector ψ: 

Û =

(

 
 

0 1
0 1

0 ⋱
⋱ 1

1 0)

 
 

 (2.2) 

Such matrices are unitary, ÛÛ∗ = I. Unitarity Û, in accordance with Stone's theorem, 

allows us to express (2.1) in exponential form: 

𝜓(τ) = 𝑒−𝑖�̂�τ𝜓(0) (2.3) 

Here, 𝜓 is the vector of evolution (a column of ontological states) describing the 

trajectory of the system in the ontological space 𝒲. For the internal observer, 

ontological dynamics are not accessible because they do not differentiate between 

ontological states with the same 𝜉𝑖 but different values of the hidden parameter 

η
𝑗
≠ η

𝑘
. These states are equivalent from the point of view of observer: 

{𝜉𝑖, 𝜂𝑗}~{ξ𝑖, η𝑘};  (2.4) 

As a result, the set of ontological states ψ = {ξ𝑖, η𝑗} ∈ 𝒲 is divided into equivalence 

classes based on the relation of subjective indistinguishability (2.4). Consequently, 

the ontological space is factorized: 



𝑃(𝒲) ≔𝒲 ~⁄ .  (2.5) 

It is worth noting that the obtained structure is very close to the basic structure of 

quantum formalism - the projective Hilbert space, which is a space of classes of 

indistinguishable phase states 𝜓~𝜓 ∙ 𝑒𝑖𝜑: 

Ρ(ℋ) ≔ ℋ ~⁄   (2.6) 

Comparison of formulas (2.5) and (2.6) suggests that the phase could be the hidden 

parameter of quantum mechanics. It is known that the statistical properties of 

quantum observables do not depend on the absolute phase. However, this does 

not mean that the outcome of a particular quantum measurement does not 

depend on it. 

 

In the considered model, the orbit of the system in the ontological space 𝒲 

'sweeps' through subspaces (equivalence classes) corresponding to different 

quantum states 𝜓𝑖. This leads to a quantum superposition: 

𝜓 = ∑𝜓𝑖 (2.7) 

The result of a measurement is determined by which subspace the system is in at 

the current moment of ontological time. However, since the internal observer only 

distinguishes intervals of physical time and does not have access to the hidden 

ontological dynamics occurring within these intervals, the result turns out to be 

random for them. 

Let's show how to obtain Born's rule. We will consider the set of ontological states 

{𝜓} as a sample space, then the set of all its subsets £ = 𝒫({𝜓}) forms a σ-algebra 

of events [8]. Here, 𝒫 denotes the power set. 

In our model, we define the probability of measuring a quantum state as a non-

negative additive normalized measure over the σ-algebra. Quantum probabilities 

in this scheme are elements of the probability space ({𝜓}, £, P), where P is the 

probability measure. 

In this model, the probability of a quantum state 𝜓𝑖 ∈ £ is determined by the 

number of intersections of the orbit 𝜓(τ) with the class {𝜓𝑖}: 

𝑝𝑖 =
‖〈𝜓𝑖|𝜓〉‖

2

‖〈𝜓|𝜓〉‖2
=
|{𝜓𝑖}∩{𝜓}|

|{𝜓}|
  (2.8) 

Here, curly brackets denote sets, and single straight brackets denote their 

cardinalities. The normalization condition can be written as |⋃{𝜓𝑖}| = |{𝜓}|. 

Since the phase is fundamentally hidden from the internal observer, the results of 

quantum measurements appear random to them. We see that incompleteness 

leads to the fact that despite the deterministic evolution of the 'World' as a whole, 

the world of the internal observer 'Subj' becomes random. In the considered toy 



world, a toy 'Copenhagen interpretation' arises, asserting randomness as a 

fundamental property of the model's nature. Here, we have only outlined the 

model. A detailed analysis will require separate consideration 

 

3. The Projective Interpretation of Special Theory of Relativity 

We have seen that the subject-object model generates a projective 

structure, where each observable physical state is an equivalence class of 

corresponding ontological states. In the latter, we see a hint of the common 

foundation of quantum and relativistic physics. Indeed, following this logic, we can 

assume that Minkowski space {𝑋, 𝑌, 𝑍, 𝑇} is also a space of equivalence classes: 

{x: y: z: 𝑠: 𝑡}, where - x, y, z, 𝑠, 𝑡 are homogeneous coordinates: 

Ρ4(ℝ) ≔ ℝ5 ~⁄   (3.1) 

Here, s is an additional coordinate playing the role of a hidden parameter. It can 

be interpreted as proper time or action. However, the action is precisely the 

quantum phase, given by s=ℏφ. 

Our approach allows us to derive STR (Special Theory of Relativity) from first 

principles without resorting to postulates. Attempts to axiomatize STR without the 

second postulate (the principle of the invariance of the speed of light) began 

immediately after A. Einstein's creation of the STR in 1905. Five years later, 

Ignatovsky [9] showed that Lorentz transformations could be derived from the 

most general considerations of symmetry, independent of the second postulate. 

Later, Frank and Rothe [10], building on Ignatovsky's work, showed that the most 

general transformations between inertial reference frames are described by 

fractional-linear functions. In connection with these works, Wolfgang Pauli [11] 

wrote: "From the theoretical-group considerations, only the external form of the 

transformation equations can be obtained, but not their physical content." Let's try 

to determine this missing physical content. 

For this, we need a constructive definition of time, which Aristotle proposed 

over 2000 years ago. He understood that there is no time, - "time is the number of 

motion" [12], said Aristotle. The idea is that - things do not change in time, as we 

are used to thinking, but the change of things is time itself. Applied to our task, this 

means that the measure of time is the change of coordinates. Let us formalize 

Aristotle’s idea by identifying the metric of the 4-space {x,y,z,s} with time:  

x2 + y2 + z2 + 𝑠2 = t2  (3.2) 

Unlike the pseudo-Euclidean "Minkowski world," we will call such a model the 

"Aristotelian world." Formally, expression (3.2) describes a 4-dimensional cone in 

the space of 5 dimensions {x, y, z, 𝑠, 𝑡}. The coordinate s is unobservable because 

the internal observer "lives" in the projective space of Minkowski {𝑋, 𝑌, 𝑍, 𝑇}, where 

𝑋 =
x

s
 ; 𝑌 =

x

s
 ; 𝑍 =

x

s
;  𝑇 =

t

s
;  𝑠 ≠ 0. 



We will show how to logically transition from Aristotle's representation to 

Minkowski-Einstein's representation. We will follow F. Klein, who in his Erlangen 

program showed that any geometry, being a theory of invariants of some group of 

transformations, can be obtained from the most general group of all fractional-

linear transformations by selecting the corresponding subgroups from it [13]. In 

particular, Klein also pointed out that Minkowski geometry, used in Special Theory 

of Relativity, is defined by a subgroup of the group of affine transformations that 

preserves the light cone. In Appendix "A," it is shown that the requirement of 

preserving the light cone x2 + y2 + z2 = t2  from the group of all linear 

transformations of homogeneous coordinates {x, y, z, 𝑠, 𝑡} → {x′, y′, z′, 𝑠′, 𝑡 ′} singles 

out the Poincaré group, which, in turn, under the condition of cylindricity, narrows 

down to the Lorentz group. 

 

Fig. 1 

 

Without reducing the generality of the conclusions, let's consider the subspace 

{x, 𝑠, 𝑡}. Unlike the 5-dimensional space, this is something we can easily visualize. 

The fig.1 shows the projective plane 𝑠 = 𝑐𝑜𝑛𝑠𝑡 ≠ 0, which consists of an affine part 

representing the physical space-time {𝑋, 𝑇}, where 𝑋 =
x

s
; 𝑇 =

t

s
 и 𝑠 ≠ 0, and the line 

at infinity, which is formed by all straight lines in the plane 𝑠 = 0. The projective 

plane is formed by proportional triples - rays {x: t: s} passing through the origin. 

The Lorentz group transforms the affine part of the projective space into itself 

inside the light cone but leaves the boundary, which is the light cone, unchanged. 

It is precisely this part of the projective space inside the cone that constitutes the 

pseudo-Euclidean Minkowski metric space. Outside the light cone, the space 

remains non-metricized. 

Currently, it is believed that the basis of SRT is the postulate of the 

constancy of the speed of light. We have shown that another approach is possible, 

according to which the primary ontological structure is the Euclidean space 

{𝑥, 𝑦, 𝑧, 𝑠}, and time is its metric. It should be noted that the pseudo-Euclidean 

nature of space-time {𝑋, 𝑌, 𝑍, 𝑇} follows solely from the convenience of 

representing time as a coordinate quantity. 

s 

S=0 

S= 𝑐𝑜𝑛𝑠𝑡 

x 

t 



In the Lorentz-covariant formulation, the principle of least action is the primary tool 

for obtaining equations of motion for both fields and particles. In our formulation, 

where time is the invariant, the principle of least time becomes such a tool. Its 

particular case is known from optics and is called Fermat's principle. In the 

"Aristotelian World," nature "economizes" not action but time. In the most general 

case, time is a path in space with a metric 𝐺𝑖𝑘 determined by the acting fields. And 

this path must be straight because a straight line is the only alternative trajectory 

that preserves symmetry. Any deviation from the geodesic (from a straight line in 

curved space) would violate the most important regulative principle - the principle 

of sufficient reason. In Appendix "B," following the approach outlined by Yu. B. 

Rumer [14], we provide a scheme for obtaining the Hamilton-Jacobi equation from 

the generalized Fermat's principle of least time. This example demonstrates the 

adequacy of the Aristotelian world view. 

 

4. Discussion 

• Implications for physics:  

The approach based on the idea that physical reality is formed as a 

configuration in the relationships between the subject and the rest of the world is 

gaining more and more followers. This understanding first appeared in Everett's 

concept of "relative states" [1]. The same idea in one form or another is found in 

the works of other researchers. It is worth mentioning the works of C. Rovelli [15] 

on the relational interpretation of quantum mechanics, as well as the works of D. 

Page and W. Wootters [16], who, based on the formalism of entangled states, 

constructed the concept of time for an internal observer.  

In the present work, we have raised the question of what physical laws the 

subject of the finite world will be able to discover by observing it from within. It 

turns out that the world for such an observer will necessarily be quantum and 

necessarily relativistic. This conclusion is based on the idea of physical 

incompleteness, generated by the subject-object structure of the world. By 

incompleteness, we mean the impossibility (in the case of a finite world) of a 

bijective mapping of the set of states of the world to the set of states of the 

observer, since the latter is a subset of the former. Our hypothesis is that this is 

precisely what underlies the projective structure of the space of quantum states. 

Recall that quantum states are classes of indistinguishable phase states. In our 

model, the phase is a hidden parameter that determines the outcome of a quantum 

measurement, and the cardinality of the class is its probability. This justifies the 

Born rule.  

We have shown that Minkowski space can also be considered as a factor of the 

ontological 5-space. Thus, physical incompleteness is the common principle that, 

in our opinion, underlies both quantum mechanics and general relativity.  It should 



be noted that we do not introduce hidden parameters ad hoc here; we discover, 

unnoticed previously, their presence in the formalism of QM and STR. 

In addition to incompleteness, to justify STR, we use the idea of defining 

time (in the spirit of constructivism) dating back to Aristotle. Let us ask the question 

- how do we measure time? Obviously, we judge the passage of time solely by 

motion (for example, the hands of a clock). We have no other way to measure time. 

Aristotle defined time as the measure of change in "things". We define time as the 

measure of change in ontological coordinates in space {x, y, z, s}. 

dr2 + ds2 = dt2   

Where 𝑑𝑟2 = 𝑑x2 + dy2 + dz2, s - here is the hidden coordinate that 

corresponds to the spacetime interval. It is easy to see that if ds>0, then the velocity 

υ=∂r/∂t ≤1. In the case if ds=0, the velocity υ=c=1. That is, such a special definition 

of the measure of time leads to the existence of a fundamental speed limit.  

We have also shown that the parabolic geometry of space-time is a 

consequence of "squeezing" physical reality into our anthropomorphic picture of 

the world. In this picture of the world, time is traditionally assigned the role of an 

independent coordinate quantity, whereas in essence, it is a metric. Indeed, 

including time as the 5th coordinate and then transitioning to the projective space: 

P:{x, y, z, s, t}→{X, Y, Z, T} leads to Lorentz invariance. The cost of such "violence" 

against physical meaning is counterintuitive pseudo-Euclideanness, with all its 

resulting consequences. The Minkowski and Aristotelian world pictures are 

isomorphic, so there is no need to abandon the convenience of the Lorentz-

covariant approach. It is enough to simply understand its origin. We hope that our 

analysis will contribute to a deeper understanding of the foundations of quantum 

mechanics and special theory of relativity. 

• Implications for Philosophy: 

Typically, superdeterminism deprives the observer of freedom in choosing their 

actions. In this paradigm, Alice and Bob, conducting an EPR experiment, are not 

free to choose the settings of their filters. Schopenhauer wrote: "we can do what 

we want, but we cannot want what we want." Does this mean that freedom of 

choice is an illusion? 

In our model, freedom of choice is not an illusion. The point is that the subject 

whose behavior is supervenient on deterministic world dynamics does not know 

the reasons for their actions not because they are unavailable or hidden from them, 

but because in the physical reality of the internal observer they simply do not exist. 

Being beyond the horizon of incompleteness, they (the reasons) are transcendent 

to the physical observer. But action in the absence of a cause is precisely what we 

call free will. In our model, unlike other deterministic models, Buridan's donkey will 

not die of hunger because it is capable of making unmotivated choices. 



Our model can be classified as relativistic compatibilism. It combines determinism 

with freedom of choice, making these concepts relative.  

Now we understand that the question of determinism, which concerned Einstein 

and Bohr, is a question of choosing the "ontological" coordinate system of the 

observer (internal or external). Einstein reasoned from the perspective of an 

external objective observer, while Bohr - from the perspective of an internal one. 

Thus, if we are free in our physical world, from the perspective of an external 

hypothetical observer, we would be puppets. However, since the existence of an 

external observer is logically contradictory (the very fact of observation inevitably 

makes it part of the system), the free will of the internal observer must be 

ontologized. 
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Appendix A. Derivation of Lorentz transformations by the Cayley–Klein 

method 

According to Möbius' theorem, projective transformations are defined by linear 

transformations in the 4+1-dimensional hyper-space. Let's consider linear 

transformations:  

(𝑥𝜇)′ = 𝑎𝜈
𝜇
𝑥𝜈 ,   (A.1) 

where:  

𝑥𝜇 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} = {𝑥, 𝑦, 𝑧, 𝑡, 𝑠};   𝑎𝜈
𝜇
=
𝜕(𝑥𝜇)′

𝜕𝑥𝜈
; 

In accordance with the condition of cylindricity: 

𝑎5
𝑖 =

𝜕(𝑥𝑖)
′

𝜕𝑥5
= 0;    (A.2) 

Let's assume that the additional coordinate 𝑥5 does not depend on the observed 

coordinates: 

𝑎𝑖
5 =

𝜕(𝑥5)
′

𝜕𝑥𝑖
= 0.  (A.3) 

 The latter, in the context of Kaluza-Klein theory, implies the absence of 

electromagnetic fields, since fields are described by components 𝐴𝑖 =
𝜕𝑥5

𝜕𝑥𝑖
; Also, 

let's assume that 𝑎5
5 = 1. By setting the coefficients 𝑎𝑖

5 to zero, we have narrowed 

down the group of projective transformations (A.1) to a subgroup of affine 

transformations:  

(𝑥𝑖)
′
= 𝑎𝑗

𝑖𝑥𝑗,   (A.4) 

(𝑥5)′ = 𝑥5.   (A.5) 

Next, we demand the invariance of the following quantity when 𝑥5=0 

(𝑥1)2 + (𝑥2)2 + (𝑥3)2 − (𝑥4)2 = (𝑥1
′
)
2
+ (𝑥2

′
)
2
+ (𝑥3

′
)
2
− (𝑥4

′
)
2
.  (A.6) 



For the special case where 𝑥2 = (𝑥2)′and 𝑥3 = (𝑥3)′it can be easily shown that 

equality (A.6) is satisfied by the following coefficients 𝑎𝑖
𝑗
:  

𝑎𝑖
𝑗
= [

𝑐ℎ(𝜃) −𝑠ℎ(𝜃) 0 0
−𝑠ℎ(𝜃) 𝑐ℎ(𝜃) 0 0
0 0 1 0
0 0 0 1

].  (A.7) 

This choice of coefficients restricts the group of affine transformations (A.4), (A.5) 

to a subgroup of Lorentz transformations. By dividing (A.4) by (A.5) and switching 

to affine coordinates {X,T}, where 𝑋𝑖 =
𝑥𝑖

𝑥5
,  𝑠 ≠ 0,, we obtain the Lorentz 

transformation: (𝑋𝑖)
′
= 𝑎𝑗

𝑖𝑋𝑗 . In the upper left corner of (A.7), we recognize a 

Lorentz boost. The Lorentz group performs a transformation of the affine part of 

the projective space (in this case, the plane) into itself (inside the light cone), but 

leaves the boundary, which is the light cone, unchanged. It is precisely this part of 

the projective space inside the cone that constitutes the Minkowski pseudo-

Euclidean metric space. 

Appendix B. Generalized Fermat's principle of least time 

We will consider a 4-dimensional space {x, y, z, s}. Taking the path in this space as 

the measure of time, we have: 

𝑑𝑡2 = 𝐺𝑖𝑘𝑑𝑥
𝑖𝑑𝑥𝑘,  (B.1) 

where: 𝑥𝑖 = {𝑥, 𝑦, 𝑧, 𝑠} To derive the equations of motion, as usual, we will use the 

variational method:  

𝛿𝑡 = 𝛿 ∫ 𝐺𝑖𝑘𝑑𝑥
𝑖𝑑𝑥𝑘 = 0

2

1
. (B.2) 

By varying the time 𝛿𝑡 between events 1 and 2 in the space {x, y, z, s} for the 

Euclidean metric (+1, +1, +1, +1), we obtain the equation: 

 𝐺11 (
𝜕𝑡

𝜕𝑥
)
2
+ 𝐺22 (

𝜕𝑡

𝜕𝑦
)
2
+ 𝐺33 (

𝜕𝑡

𝜕𝑧
)
2
+ 𝐺55 (

𝜕𝑡

𝜕𝑠
)
2
= 𝐺44. (B.3) 

This is the equation of the 4-eikonal in the "Aristotelian world" picture. Here, the 

eikonal is time, since the measure of time is the path traveled by light in the space 

{x, y, z, s}. Time here is an invariant under orthogonal transformations. 

Let's move on to the Minkowski–Einstein picture by considering the function t as 

the 5th independent variable. That is, we will look for a solution that depends on a 

single parameter Σ(𝑥, 𝑦, 𝑧, 𝑡, 𝑠) = 𝑐𝑜𝑛𝑠𝑡. Differentiating the composite function 

(here, t is an implicit function of 𝑡(𝑥, 𝑦, 𝑧, 𝑠)), we get: 

 
𝜕Σ

𝜕𝑥𝑖
+
𝜕Σ

𝜕𝑡

𝜕𝑡

𝜕𝑥𝑖
= 0;   

𝜕𝑡

𝜕𝑥𝑖
= −

𝜕Σ

𝜕𝑥𝑖

𝜕Σ

𝜕𝑡

 . (B.4) 

Substituting into (A.3), we obtain the relativistic 5-eikonal equation [6]:  



𝐺11 (
𝜕Σ

𝜕𝑥
)
2
+ 𝐺22 (

𝜕Σ

𝜕𝑦
)
2
+ 𝐺33 (

𝜕Σ

𝜕𝑧
)
2
+ 𝐺55 (

𝜕Σ

𝜕𝑠
)
2
− 𝐺44 (

𝜕Σ

𝜕𝑡
)
2
= 0.  (B.5) 

Note that introducing time as a coordinate automatically led to a relativistically 

covariant equation: a minus sign appeared before the temporal term. In the case 

of an arbitrary metric 𝐺𝜇𝜈, the 5-eikonal equation takes the form:  

𝐺𝜇𝜈
𝜕Σ

𝜕𝑥𝜇
∙
𝜕Σ

𝜕𝑥𝜈
= 0. (B.6) 

In 1926, O. Klein and V.A. Fock showed that the problem of ray propagation in the 

space {x, y, z, t, s} is equivalent to the problem of the motion of a charged particle 

in an electro-gravitational field. To transition to the Minkowski spacetime {X, Y, Z, 

T}, we perform dimensional reduction. We represent the 5-eikonal as the 4-eikonal 

s plus an addition due to the motion of photons in the extra dimension 𝑥5:  

Σ(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝜂𝑥5 + 𝑆(𝑥1, 𝑥2, 𝑥3, 𝑥4). (B.7) 

Here, the capital letter S denotes the 4-action. Substituting (A.7) into (A.6) and 

taking into account that 𝑔55 = 1, the derivatives of 𝑥5 with respect to the 

coordinates 𝑥𝑖 yield the 𝑔𝑖
5 = 𝑔𝑖 =

𝑒

𝑚𝑐2
𝐴𝑖 , and the derivatives of s with respect to 

𝑥5 are zero, we obtain: 

  

𝐺𝜇𝜈
𝜕Σ

𝜕𝑥𝜇
∙
𝜕Σ

𝜕𝑥𝜈
= 𝑔𝑖𝑘

𝜕Σ

𝜕𝑥𝑖
∙
𝜕Σ

𝜕𝑥𝑘
+ 𝑔55

𝜕Σ

𝜕𝑥5
∙
𝜕Σ

𝜕𝑥5
= 𝑔𝑖𝑘 (

𝜕𝑆

𝜕𝑥𝑖
− 𝜂𝑔𝑖) (

𝜕𝑆

𝜕𝑥𝑘
− 𝜂𝑔𝑘) + 𝜂

2

= 0. 

Identifying 𝜂 = 𝑍𝑚𝑐, we obtain: 

 𝑔𝑖𝑘 (
𝜕𝑠

𝜕𝑥𝑖
±
𝑍𝑒

𝑐
𝐴𝑖) (

𝜕𝑠

𝜕𝑥𝑘
±
𝑍𝑒

𝑐
𝐴𝑘) + (𝑍𝑚𝑐)

2 = 0.     (B.8) 

This is the relativistic Hamilton-Jacobi equation for a particle with mass |𝑍|𝑚 and 

charge ±𝑍𝑒. 
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This article addresses several fundamental ideas in theoretical physics and the philosophy 

of science. It presents a concept that unifies the realms of quantum mechanics and special 

relativity through the ideas of superdeterminism and incompleteness. It is demonstrated, 

that on this basis, special relativity can be derived without resorting to postulates. However, 

the main idea proposed for discussion by the authors is the hypothesis that the laws of 

physics, including those described by quantum mechanics and special relativity, are 



induced by the ontological status of the observer, who is invariably an integral part of the 

system they are observing. 

 


