Langenscheidt’s Pocket Japanese Dictionary and the Onsager’s solution

Anindya Kumar Biswas

Department of Physics;
North-Eastern Hill University,
Mawkynroh-Umshing, Shillong-793022.
(Dated: February 10, 2024)

Abstract

We study the entries of Langenscheidt’s Pocket Japanese Dictionary written in a Romanized pronunciation system. We draw the natural logarithm of the number of entries, normalised, starting with a letter vs the natural logarithm of the rank of the letter, normalised. We find that the entries underlie a magnetisation curve. The magnetisation curve i.e. the graph of the reduced magnetisation vs the reduced temperature is the exact Onsager solution of the two dimensional Ising model in the absence of external magnetic field.
I.

INTRODUCTION

"Mera juta hai Japani,
shor pe lal topi,
phir bhi dil Hindusthani.."...Raj Kapoor...

So we take a Japanese dictionary. This is Langenscheidt’s Pocket Japanese Dictionary, [1]. This is written both in Japanese characters and in a Romanized pronunciation system—a modified version of the standard Hepburn. We follow the Romanized pronunciation system to go through the Japanese words. To introduce we note few Japanese words with their English meanings, from the Dictionary, [1]. Asameshi means breakfast, ayu means sweetfish, bachi means drumstick, biru means beer, bōkaru means vocalist, bui means buoy, buki means weapon, bubun means component, butō means pagoda, chawan means bowl, chi means blood, chiku means district, dorama means drama, dōshi means comrade, dokan suru means agree, fuchi means frame, fukai means deep, garō means art gallery, hamaguri means calm, jōshi means superior, kake means bet, karada means body, kao means face, kawaii means cute, kazan means volcano, kazu means count, kigō means symbol, kita means north, kona means powder, kono means this, kondo means this time, kusari means chain, matsu means pine, me means eye, mimi means ear, mondai means problem, moru means leak, muki means direction, naka means inside, nana means seven, nani means what, nishi means west, otto means husband, ranchi means lunch, renga means brick, renzu means lens, rōmaji means Roman script, sagan means sandstone, satō means sugar, shindai means berth(bunk), sora means sky, söchi means device, sugata means image, suji means action, suki means plow, tanka means unit cost, tanpa means high-frequency; tera means temple, tōron means debate(discussion), tsuchi means earth, wan means bay, yagi means goat, yama means hill, yoko means side, so on and so forth.

We count all the entries one by one, beginning with each letter. The result is the table, table I. To visualise we plot the number of entries against the respective letters in the dictionary sequence, [1], in the adjoining figure, fig. I.

Looking for the Graphical Law in this dictionary, we proceed narrating the precedence. We have started considering magnetic field pattern in [2], in the languages we converse with. We have studied there, a set of natural languages, [2] and have found existence of a magnetisation
TABLE I. Entries of Langenscheidt’s Pocket Japanese Dictionary

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| 509| 614| 454| 583| 179| 464| 562| 1386| 562| 512| 3031| 0| 1109| 725| 595| 223| 0| 505| 2828| 1498| 155| 0| 160| 0| 691| 147|

FIG. 1. The vertical axis is number of entries in the Langenscheidt’s Pocket Japanese Dictionary. The horizontal axis is the letters of the English alphabet. Letters are represented by the sequence number in the alphabet.

curve under each language. We have termed this phenomenon as the Graphical Law.

Then, we moved on to investigate into, [2], dictionaries of five disciplines of knowledge and found existence of a curve magnetisation under each discipline. This was followed by finding of the graphical law behind the Bengali language, [3] and the Basque language [4]. This was pursued by finding of the graphical law behind the Romanian language, [5], five more disciplines of knowledge, [6], Onsager core of Abor-Miri, Mising languages, [7], Onsager Core of Romanised Bengali language, [8], the graphical law behind the Little Oxford English Dictionary, [9], the Oxford Dictionary of Social Work and Social Care, [10], the Visayan-English Dictionary, [11], Garo to English School Dictionary, [12], Mursi-English-Amharic Dictionary, [13] and Names of Minor Planets, [14], A Dictionary of Tibetan and English, [15], Khasi English Dictionary, [16], Turkmen-English Dictionary, [17], Websters Universal Spanish-English Dictionary, [18], A Dictionary of Modern Italian, [19], Langenscheidt’s German-English Dictionary, [20], Essential Dutch dictionary by G. Quist and D. Strik, [21], Swahili-English dictionary by C. W. Rechenbach, [22], Larousse Dictionnaire De Poche for
nyson and the Graphical Law, [12], Khasi-Jaintia Jaids(Surnames) and the Graphical law, [13], Age, Amplitude of accommodation and the Graphical law, [14], Dictionary of Ayurveda by Dr. Ravindra Sharma and the Graphical law, [15], The Practical Sanskrit-English Dictionary by Vaman Shivram Apte and The Graphical Law, [16], The Langenscheidt’s Pocket Russian Dictionary and The Graphical Law, [17], The Scholar Dictionary Portuguese and The Graphical Law, [18], respectively.

The planning of the paper is as follows. In the next section, we describe the Graphical Law analysis of entries of the Langenscheidt’s Pocket Japanese Dictionary, [1]. The section III, we give an introduction to the standard curves of magnetisation of Ising model. The section IV is Acknowledgment. The last section is Bibliography.

II. THE GRAPHICAL LAW ANALYSIS

For the purpose of exploring graphical law, we sort the letters according to the number of words, in the descending order, denoted by f and the respective rank, k. k is a positive integer starting from one. Moreover, the minimum non-zero number of entries is one hundred sixty. Hence, we attach a limiting entry number one. The limiting rank is maximum rank plus one, here it is twenty two. As a result both $\frac{\ln f}{\ln f_{\text{max}}}$ and $\frac{\ln k}{\ln k_{\text{lim}}}$ varies from zero to one. Then we tabulate in the adjoining table II, and plot $\frac{\ln f}{\ln f_{\text{max}}}$ against $\frac{\ln k}{\ln k_{\text{lim}}}$ in the figure fig 4. We then ignore the letter with the highest number of entries, tabulate in the adjoining table II, and redo the plot, normalising the $\ln f$s with $\ln f_{n_{\text{max}}}$, and starting from $k = 2$ in the figure fig 5. Normalising the $\ln f$s with $\ln f_{2n_{\text{max}}}$, we tabulate in the adjoining table II, and starting from $k = 3$ we draw in the figure fig 6. Normalising the $\ln f$s with $\ln f_{3n_{\text{max}}}$ we record in the adjoining table II, and plot starting from $k = 4$ in the figure fig 7. In this way we obtain up to the figure fig 7.
TABLE II. Entries of the Langenscheidt’s Pocket Japanese dictionary: ranking, natural logarithms, normalisations

<table>
<thead>
<tr>
<th>k</th>
<th>lnk</th>
<th>lnk/lnk_{lim}</th>
<th>inf</th>
<th>inf/lninf_{fmax}</th>
<th>inf/lninf_{fmax}</th>
<th>inf/lninf_{fmax}</th>
<th>inf/lninf_{fmax}</th>
<th>inf/lninf_{fmax}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>1</td>
<td>1</td>
<td>Blank</td>
<td>Blank</td>
<td>Blank</td>
<td>Blank</td>
<td>Blank</td>
</tr>
<tr>
<td>2</td>
<td>0.69</td>
<td>0.223</td>
<td>2828</td>
<td>7.947</td>
<td>0.991</td>
<td>1</td>
<td>Blank</td>
<td>Blank</td>
</tr>
<tr>
<td>3</td>
<td>1.10</td>
<td>0.356</td>
<td>1498</td>
<td>7.312</td>
<td>0.920</td>
<td>1</td>
<td>Blank</td>
<td>Blank</td>
</tr>
<tr>
<td>4</td>
<td>1.39</td>
<td>0.450</td>
<td>1386</td>
<td>7.234</td>
<td>0.910</td>
<td>0.989</td>
<td>1</td>
<td>Blank</td>
</tr>
<tr>
<td>5</td>
<td>1.61</td>
<td>0.521</td>
<td>1106</td>
<td>7.011</td>
<td>0.882</td>
<td>0.959</td>
<td>0.969</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1.79</td>
<td>0.579</td>
<td>725</td>
<td>6.586</td>
<td>0.829</td>
<td>0.901</td>
<td>0.910</td>
<td>0.939</td>
</tr>
<tr>
<td>7</td>
<td>1.95</td>
<td>0.631</td>
<td>691</td>
<td>6.538</td>
<td>0.823</td>
<td>0.894</td>
<td>0.904</td>
<td>0.933</td>
</tr>
<tr>
<td>8</td>
<td>2.08</td>
<td>0.673</td>
<td>614</td>
<td>6.420</td>
<td>0.808</td>
<td>0.878</td>
<td>0.887</td>
<td>0.916</td>
</tr>
<tr>
<td>9</td>
<td>2.20</td>
<td>0.712</td>
<td>595</td>
<td>6.389</td>
<td>0.804</td>
<td>0.874</td>
<td>0.883</td>
<td>0.911</td>
</tr>
<tr>
<td>10</td>
<td>2.30</td>
<td>0.744</td>
<td>583</td>
<td>6.368</td>
<td>0.801</td>
<td>0.871</td>
<td>0.880</td>
<td>0.908</td>
</tr>
<tr>
<td>11</td>
<td>2.40</td>
<td>0.777</td>
<td>562</td>
<td>6.342</td>
<td>0.797</td>
<td>0.866</td>
<td>0.875</td>
<td>0.903</td>
</tr>
<tr>
<td>12</td>
<td>2.48</td>
<td>0.803</td>
<td>542</td>
<td>6.388</td>
<td>0.785</td>
<td>0.853</td>
<td>0.862</td>
<td>0.890</td>
</tr>
<tr>
<td>13</td>
<td>2.56</td>
<td>0.828</td>
<td>509</td>
<td>6.232</td>
<td>0.784</td>
<td>0.852</td>
<td>0.861</td>
<td>0.889</td>
</tr>
<tr>
<td>14</td>
<td>2.64</td>
<td>0.854</td>
<td>505</td>
<td>6.225</td>
<td>0.783</td>
<td>0.851</td>
<td>0.861</td>
<td>0.888</td>
</tr>
<tr>
<td>15</td>
<td>2.71</td>
<td>0.877</td>
<td>464</td>
<td>6.140</td>
<td>0.773</td>
<td>0.840</td>
<td>0.849</td>
<td>0.876</td>
</tr>
<tr>
<td>16</td>
<td>2.77</td>
<td>0.896</td>
<td>454</td>
<td>6.118</td>
<td>0.770</td>
<td>0.837</td>
<td>0.846</td>
<td>0.873</td>
</tr>
<tr>
<td>17</td>
<td>2.83</td>
<td>0.916</td>
<td>355</td>
<td>5.872</td>
<td>0.739</td>
<td>0.803</td>
<td>0.812</td>
<td>0.838</td>
</tr>
<tr>
<td>18</td>
<td>2.89</td>
<td>0.935</td>
<td>247</td>
<td>5.505</td>
<td>0.693</td>
<td>0.753</td>
<td>0.762</td>
<td>0.786</td>
</tr>
<tr>
<td>19</td>
<td>2.94</td>
<td>0.951</td>
<td>223</td>
<td>5.407</td>
<td>0.680</td>
<td>0.739</td>
<td>0.747</td>
<td>0.771</td>
</tr>
<tr>
<td>20</td>
<td>3.00</td>
<td>0.971</td>
<td>179</td>
<td>5.187</td>
<td>0.653</td>
<td>0.709</td>
<td>0.717</td>
<td>0.740</td>
</tr>
<tr>
<td>21</td>
<td>3.04</td>
<td>0.984</td>
<td>160</td>
<td>5.075</td>
<td>0.639</td>
<td>0.694</td>
<td>0.702</td>
<td>0.724</td>
</tr>
<tr>
<td>22</td>
<td>3.09</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

FIG. 2. The vertical axis is $\frac{\ln f}{\ln f_{max}}$ and the horizontal axis is $\frac{\ln k}{\ln k_{lim}}$. The + points represent the entries of the Langenscheidt’s Pocket Japanese Dictionary, with the fit curve being the Bragg-Williams curve, BW(c=0.01), in the presence of external magnetic field, $c = \frac{H}{\gamma}$ = 0.01. The uppermost curve is the Onsager solution.
FIG. 3. The vertical axis is $\frac{ln f}{ln f_{\text{max}}}$ and the horizontal axis is $\frac{ln k}{ln k_{\text{lim}}}$. The + points represent the entries of the Langenscheidt’s Pocket Japanese Dictionary, with the fit curve being the Bragg-Williams curve, BW(c=0.01), in the presence of external magnetic field, $c = \frac{H}{\gamma e} = 0.01$. The uppermost curve is the Onsager solution.

FIG. 4. The vertical axis is $\frac{ln f}{ln f_{2n-\text{max}}}$ and the horizontal axis is $\frac{ln k}{ln k_{\text{lim}}}$. The + points represent the entries of the Langenscheidt’s Pocket Japanese Dictionary, with the fit curve, BP(4, $\beta H = 0.02$), being the Bethe-Peierls curve with four nearest neighbours, in presence of little magnetic field, m=0.01 or, $\beta H = 0.02$. The uppermost curve is the Onsager solution.
FIG. 5. The vertical axis is $\ln f/\ln f_{3n=\text{max}}$ and the horizontal axis is $\ln k/\ln k_d$. The + points represent the entries of the Langenscheidt’s Pocket Japanese Dictionary, with the fit curve, $\text{BP}(4, \beta H = 0.04)$, being the Bethe-Peierls curve with four nearest neighbours, in presence of little magnetic field, $m=0.02$ or, $\beta H = 0.04$. The uppermost curve is the Onsager solution.

FIG. 6. The vertical axis is $\ln f/\ln f_{4n=\text{max}}$ and the horizontal axis is $\ln k/\ln k_d$. The + points represent the entries of the Langenscheidt’s Pocket Japanese Dictionary, with the fit curve, $\text{BP}(4, \beta H = 0.08)$, being the Bethe-Peierls curve with four nearest neighbours, in presence of little magnetic field, $m=0.04$ or, $\beta H = 0.08$. The uppermost curve is the Onsager solution.
FIG. 7. The vertical axis is $\frac{ln f}{ln f_{5n_{max}}}$ and the horizontal axis is $\frac{ln k}{ln k_{lim}}$. The + points represent the entries of the Langenscheidt’s Pocket Japanese Dictionary, with the fit curve being the Onsager solution.
A. conclusion

From the figures (fig.2-fig.7), we observe that the entries of the Langenscheidt’s Pocket Japanese Dictionary, underlies the Onsager solution.

Moreover, the associated correspondence is,

\[
\frac{\ln f}{\ln f_{5n_{\text{max}}}} \leftrightarrow \frac{M}{M_{\text{max}}},
\]

\[
\ln k \leftrightarrow T.
\]

k corresponds to temperature in an exponential scale, [73].
III. APENDIX: MAGNETISATION

A. Bragg-Williams approximation

Let us consider a coin. Let us toss it many times. Probability of getting head or, tale is half i.e. we will get head and tale equal number of times. If we attach value one to head, minus one to tale, the average value we obtain, after many tossing is zero. Instead let us consider a one-sided loaded coin, say on the head side. The probability of getting head is more than one half, getting tale is less than one-half. Average value, in this case, after many tossing we obtain is non-zero, the precise number depends on the loading. The loaded coin is like ferromagnet, the unloaded coin is like para magnet, at zero external magnetic field. Average value we obtain is like magnetisation, loading is like coupling among the spins of the ferromagnetic units. Outcome of single coin toss is random, but average value we get after long sequence of tossing is fixed. This is long-range order. But if we take a small sequence of tossing, say, three consecutive tossing, the average value we obtain is not fixed, can be anything. There is no short-range order.

Let us consider a row of spins, one can imagine them as spears which can be vertically up or, down. Assume there is a long-range order with probability to get a spin up is two third. That would mean when we consider a long sequence of spins, two third of those are with spin up. Moreover, assign with each up spin a value one and a down spin a value minus one. Then total spin we obtain is one third. This value is referred to as the value of long-range order parameter. Now consider a short-range order existing which is identical with the long-range order. That would mean if we pick up any three consecutive spins, two will be up, one down. Bragg-Williams approximation means short-range order is identical with long-range order, applied to a lattice of spins, in general. Row of spins is a lattice of one dimension.

Now let us imagine an arbitrary lattice, with each up spin assigned a value one and a down spin a value minus one, with an unspecified long-range order parameter defined as above by $L = \frac{1}{N} \sum_{i} \sigma_{i}$, where σ_{i} is i-th spin, N being total number of spins. L can vary from minus one to one. $N = N_{+} + N_{-}$, where N_{+} is the number of up spins, N_{-} is the number of down spins. $L = \frac{1}{N} (N_{+} - N_{-})$. As a result, $N_{+} = \frac{N}{2} (1 + L)$ and $N_{-} = \frac{N}{2} (1 - L)$. Magnetisation or, net magnetic moment, M is $\mu \Sigma_{i} \sigma_{i}$ or, $\mu (N_{+} - N_{-})$ or, $\mu N L$, $M_{\text{max}} = \mu N$. $\frac{M}{M_{\text{max}}} = L$. $\frac{M}{M_{\text{max}}}$ is...
referred to as reduced magnetisation. Moreover, the Ising Hamiltonian,\([70]\), for the lattice of spins, setting \(\mu\) to one, is
\(-\epsilon \sum_{n,n} \sigma_i \sigma_j - H \sum_{i} \sigma_i\), where n.n refers to nearest neighbour pairs. The difference \(\Delta E\) of energy if we flip an up spin to down spin is, \([71]\), \(2\epsilon \gamma \bar{\sigma} + 2H\), where \(\gamma\) is the number of nearest neighbours of a spin. According to Boltzmann principle, \(\frac{N}{N_e}\) equals \(exp\left(\frac{-\Delta E}{k_B T}\right)\), \([72]\). In the Bragg-Williams approximation,\([73]\), \(\bar{\sigma} = L\), considered in the thermal average sense. Consequently,
\[
\ln \frac{1 + L}{1 - L} = 2 \frac{\gamma \epsilon L + H}{k_B T} = 2 \frac{L + \frac{H}{\gamma \epsilon / k_B}}{\frac{T}{T_c}} = 2 \frac{L + c}{\frac{T}{T_c}}
\]
(1)

where, \(c = \frac{H}{\gamma \epsilon}\), \(T_c = \gamma \epsilon / k_B\), \([74]\). \(\frac{T}{T_c}\) is referred to as reduced temperature.

Plot of \(L\) vs \(\frac{T}{T_c}\) or, reduced magnetisation vs. reduced temperature is used as reference curve. In the presence of magnetic field, \(c \neq 0\), the curve bulges outward. Bragg-Williams is a Mean Field approximation. This approximation holds when number of neighbours interacting with a site is very large, reducing the importance of local fluctuation or, local order, making the long-range order or, average degree of freedom as the only degree of freedom of the lattice.

To have a feeling how this approximation leads to matching between experimental and Ising model prediction one can refer to FIG.12.12 of \([71]\). W. L. Bragg was a professor of Hans Bethe. Rudolf Peierls was a friend of Hans Bethe. At the suggestion of W. L. Bragg, Rudolf Peierls following Hans Bethe improved the approximation scheme, applying quasi-chemical method.

B. Bethe-peierls approximation in presence of four nearest neighbours, in absence of external magnetic field

In the approximation scheme which is improvement over the Bragg-Williams, \([71]\), \([71]\), \([72]\), \([73]\), \([74]\), due to Bethe-Peierls, \([75]\), reduced magnetisation varies with reduced temperature, for \(\gamma\) neighbours, in absence of external magnetic field, as

\[
\frac{\ln \frac{\gamma - 2}{\gamma - 1}}{\frac{\ln \text{factor} - 1}{\text{factor} - 1}} = \frac{T}{T_c}; \text{factor} = \frac{M}{M_{\text{max}}} + 1
\]

\[
\ln \frac{\gamma}{\gamma - 2}
\]
(2)

for four nearest neighbours i.e. for \(\gamma = 4\) is 0.693. For a snapshot of different kind of magnetisation curves for magnetic materials the reader is urged to give a google search ”reduced magnetisation vs reduced temperature curve”. In the following, we describe
<table>
<thead>
<tr>
<th>BW</th>
<th>BW((c=0.01))</th>
<th>BP((4,\beta H = 0))</th>
<th>reduced magnetisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.435</td>
<td>0.439</td>
<td>0.563</td>
<td>0.978</td>
</tr>
<tr>
<td>0.439</td>
<td>0.443</td>
<td>0.568</td>
<td>0.977</td>
</tr>
<tr>
<td>0.491</td>
<td>0.495</td>
<td>0.624</td>
<td>0.961</td>
</tr>
<tr>
<td>0.501</td>
<td>0.507</td>
<td>0.630</td>
<td>0.957</td>
</tr>
<tr>
<td>0.514</td>
<td>0.519</td>
<td>0.648</td>
<td>0.952</td>
</tr>
<tr>
<td>0.559</td>
<td>0.566</td>
<td>0.654</td>
<td>0.931</td>
</tr>
<tr>
<td>0.566</td>
<td>0.573</td>
<td>0.7</td>
<td>0.927</td>
</tr>
<tr>
<td>0.584</td>
<td>0.590</td>
<td>0.7</td>
<td>0.917</td>
</tr>
<tr>
<td>0.601</td>
<td>0.607</td>
<td>0.722</td>
<td>0.907</td>
</tr>
<tr>
<td>0.607</td>
<td>0.613</td>
<td>0.729</td>
<td>0.903</td>
</tr>
<tr>
<td>0.653</td>
<td>0.661</td>
<td>0.770</td>
<td>0.869</td>
</tr>
<tr>
<td>0.659</td>
<td>0.668</td>
<td>0.773</td>
<td>0.865</td>
</tr>
<tr>
<td>0.669</td>
<td>0.676</td>
<td>0.784</td>
<td>0.856</td>
</tr>
<tr>
<td>0.679</td>
<td>0.688</td>
<td>0.792</td>
<td>0.847</td>
</tr>
<tr>
<td>0.701</td>
<td>0.710</td>
<td>0.807</td>
<td>0.828</td>
</tr>
<tr>
<td>0.723</td>
<td>0.731</td>
<td>0.828</td>
<td>0.805</td>
</tr>
<tr>
<td>0.732</td>
<td>0.743</td>
<td>0.832</td>
<td>0.796</td>
</tr>
<tr>
<td>0.756</td>
<td>0.766</td>
<td>0.845</td>
<td>0.772</td>
</tr>
<tr>
<td>0.779</td>
<td>0.788</td>
<td>0.864</td>
<td>0.740</td>
</tr>
<tr>
<td>0.838</td>
<td>0.853</td>
<td>0.911</td>
<td>0.651</td>
</tr>
<tr>
<td>0.850</td>
<td>0.861</td>
<td>0.911</td>
<td>0.628</td>
</tr>
<tr>
<td>0.870</td>
<td>0.885</td>
<td>0.923</td>
<td>0.592</td>
</tr>
<tr>
<td>0.883</td>
<td>0.895</td>
<td>0.928</td>
<td>0.564</td>
</tr>
<tr>
<td>0.909</td>
<td>0.918</td>
<td>0.941</td>
<td>0.527</td>
</tr>
<tr>
<td>0.904</td>
<td>0.926</td>
<td>0.965</td>
<td>0.513</td>
</tr>
<tr>
<td>0.946</td>
<td>0.968</td>
<td>0.965</td>
<td>0.400</td>
</tr>
<tr>
<td>0.967</td>
<td>0.998</td>
<td>0.965</td>
<td>0.300</td>
</tr>
<tr>
<td>0.987</td>
<td>1</td>
<td>0.200</td>
<td></td>
</tr>
<tr>
<td>0.997</td>
<td>1</td>
<td>0.100</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE III. Reduced magnetisation vs reduced temperature data \(s\) for Bragg-Williams approximation, in absence of and in presence of magnetic field, \(c = \frac{H}{\gamma c} = 0.01\), and Bethe-Peierls approximation in absence of magnetic field, for four nearest neighbours.

data \(s\) generated from the equation(1) and the equation(2) in the table, III, and curves of magnetisation plotted on the basis of those data \(s\). BW stands for reduced temperature in Bragg-Williams approximation, calculated from the equation(1). BP\((4)\) represents reduced temperature in the Bethe-Peierls approximation, for four nearest neighbours, computed from the equation(2). The data set is used to plot fig.8. Empty spaces in the table, III, mean corresponding point pairs were not used for plotting a line.
C. Bethe-peierls approximation in presence of four nearest neighbours, in the presence of external magnetic field

In the Bethe-Peierls approximation scheme, the reduced magnetisation varies with reduced temperature, for γ neighbours, in presence of external magnetic field, as

$$\frac{\ln \frac{\gamma}{\gamma-2}}{\ln e^{-\frac{2\beta H}{T}} \text{factor}^{-1} - e^{-\frac{2\beta H}{T}} \text{factor}^{-\frac{1}{\gamma}}} = \frac{T}{T_c} : \text{factor} = \frac{M}{M_{\max}} + 1 \left(1 - \frac{M}{M_{\max}}\right).$$

Derivation of this formula is given in the appendix of the text.

$\ln \frac{\gamma}{\gamma-2}$ for four nearest neighbours i.e. for $\gamma = 4$ is 0.693. For four neighbours,

$$\frac{0.693}{\ln e^{-\frac{2\beta H}{T}} \text{factor}^{-1} - e^{-\frac{2\beta H}{T}} \text{factor}^{-\frac{1}{\gamma}}} = \frac{T}{T_c} : \text{factor} = \frac{M}{M_{\max}} + 1 \left(1 - \frac{M}{M_{\max}}\right).$$

In the following, we describe data in the table, generated from the equation and curves of magnetisation plotted on the basis of those data. BP(m=0.03) stands for reduced temperature in Bethe-Peierls approximation, for four nearest neighbours, in presence of a variable external magnetic field, H, such that $\beta H = 0.06$. calculated from the equation. BP(m=0.025) stands for reduced temperature in Bethe-Peierls approximation, for four nearest neighbours, in presence of a variable external magnetic field, H, such that
$\beta H = 0.05$. calculated from the equation (4). BP(m=0.02) stands for reduced temperature in Bethe-Peierls approximation, for four nearest neighbours, in presence of a variable external magnetic field, H, such that $\beta H = 0.04$. calculated from the equation (4). BP(m=0.01) stands for reduced temperature in Bethe-Peierls approximation, for four nearest neighbours, in presence of a variable external magnetic field, H, such that $\beta H = 0.02$. calculated from the equation (4). BP(m=0.005) stands for reduced temperature in Bethe-Peierls approximation, for four nearest neighbours, in presence of a variable external magnetic field, H, such that $\beta H = 0.01$. calculated from the equation (4). The data set is used to plot fig. Empty spaces in the table IV, mean corresponding point pairs were not used for plotting a line.
<table>
<thead>
<tr>
<th>Reduced Magnetisation</th>
<th>Reduced Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>0.01</td>
</tr>
<tr>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>0.04</td>
<td>0.05</td>
</tr>
</tbody>
</table>

TABLE IV. Bethe-Peierls approx. in presence of little external magnetic fields

FIG. 9. Reduced magnetisation vs reduced temperature curves for Bethe-Peierls approximation in presence of little external magnetic fields, for four nearest neighbours, with $\beta H = 2m$.
D. Onsager solution

At a temperature T, below a certain temperature called phase transition temperature, T_c, for the two dimensional Ising model in the absence of external magnetic field i.e. for H equal to zero, the exact, unapproximated, Onsager solution gives reduced magnetisation as a function of reduced temperature as, [17], [18], [19], [20],

$$\frac{M}{M_{max}} = [1 - (\sinh \frac{0.8813736}{T/T_c})^{-1}]^{1/4}.$$

Graphically, the Onsager solution appears as in fig. 10.

![Onsager solution graph](image)

FIG. 10. Reduced magnetisation vs reduced temperature curves for exact solution of two dimensional Ising model, due to Onsager, in the absence of external magnetic field
We have used gnuplot for plotting the figures in this paper.

[40] Anindya Kumar Biswas, "Along the side of the Onsager's solution, the Ekagi language", viXra: 2205.0065[Condensed Matter].

[63] Anindya Kumar Biswas, "Khasi-Jaintia Jaids(Surnames) and the Graphical law”, viXra:2307.0135[Social Science].

