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By assuming that the Ricci curvature tensor consists of a set of subset fields or a set of curvature components,
complex scalar fields, in the case of a weak field and the Newtonian limit, we derive the equation of Newton’s
theory of gravitation in (2+1)-dimensional space-time expressed using the Clebsch variables. These vari-
ables obey the topological quantum condition. The Chern-Simons action is interpreted as a gravitational knot.
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I. INTRODUCTION

It is commonly believed there exists no topological ob-
ject in the linear theory, such as Newton’s theory of grav-
itation. It is because a topological theory must be a non-
linear theory1. How could topological object (a gravita-
tional knot) exist in Newton’s linear theory of gravitation
as the weak-field limit of Einstein’s non-linear theory of
gravitation?

We consider that in analogy to the existence of a topo-
logical structure in Maxwell’s linear theory of vacuum
space1,2, the curvature (the set of the solutions of Ein-
stein field equations) of an empty space-time has a set
of subset fields or a set of curvature components with a
topological structure. An empty space-time here means
that there is no matter present and there is no physi-
cal fields exist except the weak gravitational field. The
weak gravitational field does not disturb the emptiness
of space-time. But other fields disturb3.

A set of curvature components is locally equal to curva-
ture i.e. curvature can be obtained by patching together
a set of curvature components (except in a zero-measure
set) but globally different. The difference between a set
of curvature components and the curvature in an empty
space-time is global instead of local since a set of curva-
ture components obey the topological quantum condition
but the curvature does not.

Curvature satisfies a linear field equation, Newton’s
theory of gravitation, but a set of curvature components
satisfies a non-linear field equation. Both, curvature and
a set of curvature components, satisfy a linear field equa-
tion in the case of a weak field of gravitation. It means
that, in the case of a weak field, a non-linear field theory
reduces to Newton’s linear theory of gravitation.

In this article, we propose there exists a gravita-
tional knot in Newton’s theory of gravitation of (2+1)-
dimensional empty space-time. This gravitational knot
could exist in Newton’s theory of gravitation of an empty
space-time because Newton’s theory of gravitation of an
empty space-time is the weak-field limit2 of a non-linear
field theory. To the best of our knowledge1,4–6, the for-
mulation of a weak field gravitational knot in Newton’s
theory of gravitation has not been done yet.

II. WEAK-FIELD LIMIT OF GRAVITATION

In the limit of weak gravitational field, low velocities
(of sources), and small pressure, the general theory of
relativity reduces to Newton’s theory of gravitation7. In
the case of a weak field, linearization (we assume that we
ignore the non-linear terms of connection8) of the Ricci
curvature tensor yields7

Rµν = ∂αΓαµν − ∂νΓαµα (1)

This equation is identical to Abelian field strength ten-
sor equation in electromagnetic theory where the curva-
ture (the Ricci curvature tensor), Rµν , is identical to the
field strength tensor, Fµν , and the connection (Christoffel
symbol), Γαµα, is identical to the gauge potential, Aµ.

The time-time component of Ricci curvature tensor (1)
can be written as7

Rtt = ∂αΓαtt − ∂tΓαtα (2)

where the second term in the right-hand side of (2) is
assumed zero, ∂tΓ

α
tα = 0 (due to the test body of the

gravitational source moving very slowly or static). We
consider that the choice of the time-time component of
the Ricci curvature tensor is the simplest choice which
relates to the Ricci curvature tensor in the case of the
weak field and the Newtonian limit. Eq.(2) becomes

Rtt = ∂αΓαtt (3)

where α denotes the components of (3-dimensional)
space.

In the case of a weak-field limit where the source of
gravitation is static8 or moving very slow compared to
the speed of light, we could write Newton’s theory of
gravitation7,9,10 as a linear equation below

Rtt = ~∇ · ~g = ~∇ · ~∇φ = ∇2φ (4)

where Rtt is the time-time component of the Ricci curva-
ture tensor, ~g is the gravitational field, φ is the (scalar)
potential of gravitation, ∇2 (div of grad) is the Euclidean
Laplacian operator with respect to space, and

∇2φ = 4πρ (5)

is Poisson’s equation7, ρ is the mass density.



By substituting eq.(5) into eq.(4) we obtain New-
ton’s theory of gravitation expressed as Newtonian field
equation7

Rtt = 4πρ (6)

We see from eqs.(4),(6), the time-time component of
Ricci curvature tensor is dominant. It is because, as we
had mentioned, we ignore the non-linear terms of con-
nection i.e. the higher order of the space and the mixed
components of the Ricci curvature tensor. Physically, it
means that in the case of infinite distance from the gravi-
tational source, the gravitational field (the perturbation)
is so weak.

III. SET OF SUBSET FIELDS PROPERTY AND MAPS
S3 → S2

Let us consider maps of a set of subset fields (con-
sisting of complex scalar fields) from a finite radius r to
an infinite r implies from the stronger field to the weak
field. A scalar field has properties that, by definition, its
value for a finite r depends on the magnitude and the
direction of the position vector, ~r, but for an infinite r it
is well-defined2 (it depends on the magnitude only). In
other words, for an infinite r, a scalar field is isotropic.
Throughout this article, we will work with the classical
scalar field.

The property of a set of subset fields can be interpreted
as maps

a set of subset fields : S3 → S2 (7)

where S3 and S2 are 3-dimensional and 2-dimensional
spheres respectively i.e. after identifying via stereo-
graphic projection, 3-dimensional physical space, R3 ∪
{∞}, with the sphere S3 and the complete complex
plane, C ∪ {∞}, with the sphere S21. These maps can
be classified in homotopy classes labeled by the value of
the corresponding Hopf indexes, integer numbers, and
the topological invariants1,2. The other names of the
topological invariants are the topological charge, and the
winding number (the degree of a continuous mapping)11.
The topological charge is independent of the metric ten-
sor, it can be interpreted as energy12.

We see there exists (one) dimensional reduction in such
maps (7). We consider this dimensional reduction as a
consequence of the isotropic (well-defined) property of
(complex) scalar fields for an infinite r. The property of
scalar fields as a function of space seems likely in har-
mony with the property of space-time itself. Space-time
could be locally anisotropic but globally isotropic (the
distribution of matter-energy in the universe is assumed
to be homogeneous).

IV. HOPF INVARIANT AND ABELIAN
CHERN-SIMONS

Let us discuss the maps above more formally. As we
mentioned we have complex scalar fields as a function of
the position vector, ea(~r), ea

∗
(~r), with a property that

can be interpreted using the non-trivial Hopf maps writ-
ten below1,2

ea(~r), ea
∗
(~r) : S3 → S2 (8)

These non-trivial Hopf maps are related to the Hopf
invariant13, H, expressed as an integral13–15

H =

∫
S3

ω ∧ dω (9)

where ω is a 1-form on S313 and dω is a 2-form. We
see eq.(9) is identical to the formulation of circulation in
hydrodynamics21 where circulation is identical to Hopf
invariant, ω and dω are identical to velocity field and
vorticity, respectively.

The relation between the Hopf invariant and the Hopf
index, h, can be written explicitly as1

H = h γ2 (10)

where γ is the total strength of the field which is the
sum of the strengths of all the tubes formed by the in-
tegral lines of electric and magnetic fields1. Related to
gauge theory and magnetohydrodynamics (self-helicity),
it can be interpreted naturally that the Hopf invariant
has a deep relationship with the Chern-Simons action
(the Chern-Simons integral)13. We will see that the Hopf
invariant is identical to the Chern-Simons action itself.

The Hopf invariant is just the winding number of Gauss
mapping13 (so probably, there exists a relationship be-
tween Gauss mapping and non-trivial Hopf maps). Hopf
invariant or the Chern-Simons integral is an important
topological invariant to describe the topological charac-
teristics of the knot family13,16. In a more precise expres-
sion, the Hopf invariant or the Chern-Simons integral is
the total sum of all the self-linking and all the linking
numbers of the knot family13,16. The self-linking and
linking numbers by themselves have a topological struc-
ture.

V. NON-LINEAR FIELD AND LINEARIZED RICCI
THEORIES

We assume that the property of a set of curvature com-
ponents consisting of complex scalar fields, ea, ea

∗
, could

be described by the maps of (3+1) to (2+1)-dimensional
space-time gravitational theory written below

ea(~r, t), ea
∗
(~r, t) : M3+1 →M2+1 (11)

where M denotes manifold. We see from eq.(8) that com-
plex scalar fields in non-trivial Hopf maps are written as
ea(~r), ea

∗
(~r), i.e. time-independent complex scalar fields.
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It differs from time-dependent complex scalar fields writ-
ten as ea(~r, t), ea

∗
(~r, t), in eq.(11). This problem could be

solved by interpreting some of the quantities that appear
in Hopf’s theories as Cauchy’s initial time values17.

These maps (11) have a consequence (by considering
that the field strength is identical to the curvature) that
we could write the Ricci curvature tensor as

Raµν =

√
c

2πi

(
∂µe

a∗∂νe
a − ∂νea

∗
∂µe

a

(1 + ea∗ea)2

)
(12)

where ea is the set of components of the Ricci curvature
tensor, and ea

∗
is the complex conjugate of ea. In anal-

ogy to non-linear field theory in electromagnetism1, we
consider c as an action constant, introduced so that the
Ricci curvature tensor will have suitable dimensions for
the curvature. Eq.(12) is the non-linear equation where
the nonlinearity is shown by the ea

∗
ea term in the de-

nominator. The superscript index a in ea represents a
set of indices that label the components of curvature.

In the case of a weak field of gravitation, the complex
scalar fields are very small, |ea∗ea| << 1, so eq.(12) re-
duces to a linear equation as written below

Raµν =

√
c

2πi

(
∂µe

a∗∂νe
a − ∂νea

∗
∂µe

a
)

(13)

This linear equation (13) is equivalent to eq.(1). It means
that the linearized Ricci theory (1) could be interpreted
as the same as the Ricci theory in the case of a weak field
(13).

VI. SCALAR AND VECTOR POTENTIALS

We consider a set of curvature components, complex
scalar fields, ea(~r, t), ea

∗
(~r, t), as scalar potentials and

it could be interpreted similarly to linearized metric
perturbations. Linearized metric perturbations take a
role as ”potentials” in linearized gravitation identical
to electric (scalar) and magnetic (vector) potentials in
electromagnetism18. Linearized (small) metric perturba-
tions

hαβ = gαβ − ηαβ (14)

can be written as18

hαβ = ραβ e
i~k·~r (15)

where gαβ is the metric tensor, ηαβ is the metric of flat

space-time, ραβ is amplitude and ~k is wave vector. Small
metric perturbations mean that |hαβ | << 1 for all α and
β. The subscript index α, β, represent space-time coor-
dinates. In an empty space-time, a weak field, the am-
plitude is constant. Eq.(15) shows us that the linearized
metric perturbations can be understood in terms of the
wave.

In analogy to eq.(15), we propose that the scalar field
or the scalar potential and the related vector potential
could be written in terms of the wave, respectively as19

ea = ρaeiq (16)

and

eaρ = fa ∂ρq (17)

where ρa is the amplitude, q is the phase, the
notation e in eiq is exponential (eiq = exp(iq)),
fa = −1/

{
2π[1 + (ρa)2]

}
, fa and q are the Clebsch

variables17. The subscript index ρ in eaρ represents space-
time coordinates.

We consider that the Ricci curvature tensor (13) is
identical to the field strength tensor of electromagnetic,
Fµν = ∂µAν − ∂νAµ. By using eq.(17), the Ricci curva-
ture tensor (13) could be written as17

Raµν =

√
c

2πi
{∂µ(fa ∂νq)− ∂ν(fa ∂µq)} (18)

This is the Ricci curvature tensor written in term of the
Clebsch variables.

The time-time component of the linear Ricci curvature
tensor (18) could be written as

Ratt =

√
c

2πi
{∂α(fa ∂αq)− ∂t(fa ∂tq)} (19)

where the index α denotes the space component (space
coordinate). The second term on the right-hand side of
(19) is equal to zero. It is because, in the Newtonian
limit, it is considered that the speed of the body as the
gravitational source is very slow compared to the speed
of light. So eq.(19) becomes

Ratt =

√
c

2πi
∂α(fa ∂αq) (20)

Eq.(20) is the equation of Newton’s theory of gravitation
expressed using the Clebsch variables. The first ∂α means
divergence and the second is gradient. Roughly speaking,
eq.(20) says that the source of the potential of gravitation
is the curvature. Eq.(20) is equivalent to (3).

VII. A GRAVITATIONAL KNOT

Roughly speaking, in three or (2+1)-dimensional
space-time of the general theory of relativity, the dynam-
ics is topology22. The (2+1)-dimensional general the-
ory of relativity could be interpreted as a Chern-Simons
three form23 where Chern-Simons theory is topological
gauge theory in three dimensions22. Chern-Simons the-
ory was discovered in the context of anomalies and used
as a rather exotic toy model for gauge systems in (2+1)
dimensions ever since25. The Chern-Simons action pre-
cisely coincides with the (2+1)-dimensional space-time of
the Einstein-Hilbert action23,24.

The (2+1)-dimensional space-time of Abelian Chern-
Simons action could be written as23,24

SCS =

∫
M

εµνρ eaρ R
a
µν d

3r (21)
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where εµνρ is the Levi-Civita symbol. By substituting
eqs.(17), (18), into eq.(21) we obtain

SCS =

√
c

2πi

∫
M

εµνρ fa ∂ρq {∂µ(fa ∂νq)− ∂ν(fa ∂µq)} d3r

(22)

The action, SCS , (22) is related to a topological object i.e.
a knot23, a gravitational knot (a gravitational helicity),
an integer number in the case of a weak field. This integer
number is what we mean with a set subset fields or a set of
curvature components obeying the topological quantum
condition.

In the case of a weak field and the Newtonian limit, by
substituting eq.(20) into (21), we obtain

SCS =

√
c

2πi

∫
M

εµνρ fa ∂ρq ∂α(fa ∂αq) d
3r (23)

The action, SCS , (23) takes a role as a gravitational knot
in the case of a weak field and the Newtonian limit.

VIII. DISCUSSION AND CONCLUSION

The proposal that curvature i.e. Ricci curvature tensor
has a set of subset fields or a set of curvature components,
complex scalar fields (scalar potentials) has deep and far-
reaching consequences. One of the consequences is that
we can formulate the Ricci curvature tensor in non-linear
form using the scalar field and its conjugate complex (12).

In the case of an empty space-time or weak field, the
non-linear Ricci curvature tensor (12) reduces to the lin-
ear Ricci curvature tensor (13) where Newton’s theory of
gravitation in the form of a subset field, a scalar field,
could be derived from eq.(13). The linearized Ricci cur-
vature tensor (13) is locally equivalent to eq.(1), but glob-
ally different. Eq.(1) is no longer valid globally.

We assume that a subset field, a scalar field, or a com-
ponent of Ricci curvature tensor, as a map of gravita-
tional theory in (3+1) to (2+1)-dimensional space-time.
It implies there exists (one) dimensional reduction in such
a map. We consider this dimensional reduction as a con-
sequence of the isotropic (well-defined) property of a sub-
set field, a scalar field, for an infinite r i.e. for infinite
distance from the source the gravitational field is weak.
It implies also that the linearized Ricci curvature tensor
and its derived Newton’s theory of gravitation can be
formulated in (2+1)-dimensional space-time.

The remarkable one, as we mentioned that the (2+1)-
dimensional general theory of relativity could be inter-
preted as a Chern-Simons (topological gauge theory)
three form, it has a consequence that we could relate
and interpret (2+1)-dimensional linearized Ricci curva-
ture tensor (13) and its derived Newton’s theory of gravi-
tation as Chern-Simons three form in (2+1)-dimensional
space-time where its action is related to a gravitational
knot, an integer number (22). It means that the subset
fields obey the topological quantum condition.
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