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Abstract  

 
 
Because the CMBR follows the PLANCK's radiation law more or less exactly, it should, 

because of the indistinguishability of individual photons, apply to a whatever black emitter. 
Therefrom arises the guess, that the existence of an upper cut-off frequency of the vacuum 
could be the cause for the decrease in the upper frequency range. Since the lower-frequent 
share of the curve correlates with the frequency response of an oscillating circuit with the Q-
factor ½, it is examined, whether it succeeds to approximate the Planck curve by multi-
plication of the initial curve with the dynamic, time-dependent frequency response of the 
above mentioned model. Reason of the time-dependence is the expansion of the universe.  
 
This work is based on a model published in [7]. It is shown, that the PLANCK graph can be 
approximated by application of the cumulative frequency response given by the model, upon 
the spectrum of an oscillatory circuit with the Q-factor ½. Furthermore the progression of 
frequency, energy and entropy is analyzed. The results point out, that origin and progression 
of the CMBR have elapsed in a totally different manner than generally assumed. Because 
photons behaved like neutrinos immediately after BB they did not interact with other matter 
then. Thus, we can exactly calculate back to 8.08·10

–106
s instead of 379,000 years after BB. 

Section 6. has been reworked. 
 
Keywords: Cosmology, Big Bang Cosmology, Physics, Astronomy, Radio Astronomy, Wave 
Propagation, Expansion, Statistics, Thermodynamics, Relativistic Thermodynamics, Thermal 
Radiation, CMBR, Red-shift, Hubble-Parameter, Metrology. 
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1. Fundamentals 
 
 
This article is based on a model I published in [1] and later in [7]. The idea stems from 

Prof. Cornelius LANCZOS, outlined in a lecture on the occasion of the EINSTEIN-symposium 
1965 in Berlin. The lecture is put in front the work in [1]. It defines the expansion of the 
universe as a consequence of the existence of a metric wave-field. The temporal function of 
that field is based on the hypergeometric function 0F1 = √ , used in form of the 
Hankel-function. The particular qualities of the function lead to an increase of the 
wavelength. In this connection the phase angle 2ω0t = Q0 plays an important role, being 
identical with the frame of reference, affecting all proportions within the system. The value 
0 corresponds to the PLANCK frequency. With the metric wave-field it‟s about an EM four-
legged-field including vortices shaped as HERTZian dipoles arranged in form of a (regular) 
face-centered cubic (fc) crystal with the lattice-constant of the PLANCK-length. I named the 
vortices Metric Line Elements (MLE) and they are genuine physical objects. 

 
This version considers the correction of a calculating error in [1], effecting the frequency- 

and phase-response as well as the phase- and group delay. Furthermore, an updated value of 
H0 is used, based on the electron mass specified in [6]. In the annex the new Concerted 
International System of Units from [6] is used, but it doesn‟t have any effect to the result 
except for, that the calculation error is minimized. The model works with variable natural 
»constants«. But most of the resulting variations cancel each other. Only the LORENTZ-share 
remains. Thus, it‟s about a Virtual Relativity Principle. 

 
A special solution of the MAXWELL equations was found for the Hankel-function with 

overlaid interference function, which describes the wave-propagation in the vacuum and co-
includes the expansion. This special solution owns an inherent propagation-velocity in 
reference to the empty space (subspace) which is almost zero to the current point of time.  

 
One conclusion from the model is the existence of an upper cut-off frequency of the 

vacuum, which could not be detected until now, because its value is about magnitudes greater 
than the technically feasible one. Another conclusion of the model is the supposition that each 
photon is connected really or/and virtually with an origin at Q0 = ½. That is the frequency, at 
which the excessive energy with the shape of the metric wave-function has been coupled into 
the very same one, as an overlaid wave, where it can be observed until now as cosmic 
microwave background-radiation (CMBR). Furthermore could be determined, that the band-
width in the lower frequency range exactly matches the one of an oscillatory circuit with the 
Q-factor ½, which equals the conditions to the point of time of the input coupling. An excep-
tional feature of the model is, that the Q-factor of the oscillatory circuit increases con-
tinuously equalling the above mentioned phase angle 2ω0t = Q0 exactly. 

 
Hence the intention of this article is, to determine, whether the PLANCK's graph can be 

approximated by application of the frequency response given by the model, upon the 
spectrum of an oscillatory circuit with the Q-factor 1/2, furthermore to compare the calculated 
radiation temperature with the measured one. 

 

2. Frequency relations 
 
 
Since the cosmic background-radiation exactly follows the PLANCK's radiation law more or 

less, it should, because of the indistinguishability of individual photons, apply to a whatever 
black emitter. Therefrom arises the guess, that the existence of an upper cut-off frequency of 
the vacuum could be the cause for the weird curve regression in the upper frequency range.  

 
Another aim of this article is, to improve the proceeding any farther in order to make more 
precise statements. With the model attention should be paid to the fact, that with some many 
exceptions (c, 0, 0, 0, k), most of the fundamental physical constants are time- and refe-



4 

rence-frame-dependent. They are marked with a tilde (~) being simple values while the actual 
variables are written without. And there is a conductivity of subspace 0 different from zero. 
The model is based on the PLANCK units, which can be determined by the locally measurable 
values (e.g. ω0). On the one hand, it suggests the values of the universe as a whole (e.g. H0), 
on the other hand, the values of the so called subspace (e.g. ε0 = const). That‟s the medium the 
metric wave field is propagating in. The proportionality factor is the phase angle of the 
temporal function Q0 = 20t.  
 

The model is based on the fact, that electromagnetic waves don‟t propagate independently, 
but as interferences (overlaid) of the metric wave field. The wave length of the metric wave 
field is equal to the PLANCK-length and proportional Q. In return, the wave length of overlaid 
waves is proportional Q

3/2
. To the frequencies ω0~Q

−1
 and ω~Q

−3/2
applies. That means, both 

functions intersect somewhere in the past, both frequencies must have had the same value 
then. The intersection point is at Q = ½, as we can see well at the lower frequent branch of 
PLANCK‟s radiation function being identical to the frequency response of an oscillating circuit 
with a Q-factor of Q = ½.  

 
We just determined the frequency ω0 extremely accurate. Thus, we also know ω0.5 very 

precise and reversely, we are able to calculate the frequency of the peak value of CMBR and 
with it, its temperature. Even the bandwidth of the LAPLACE-transform of the first maximum 
suggests a Q-factor of 0.5. This would correspond to the conditions at the point of time t1/4 
with Q0.5 = ½, ωU = ω0.5 as well as r1/2, just our coupling-length. Then the frequency amounts 
to (new value):  
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Q
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That doesn't correspond to the value, which results from the impulse-length of the first 
maximum, but it is in the magnitude order. Now the conditions at this time are shaped by a 
very large uncertainty and a part of the emitted frequencies are, because of the large 
bandwidth, anyway above, others below (1), so that it is well possible that the in-coupling of 
the cosmologic background-radiation takes place right at this point of time with exactly this 
centre frequency.  

 
The following contemplations for the in-coupling especially apply to the CMBR. Maybe it 

seems to be a little bit complicated, but it‟s just a model, which should reflect reality as well 
as possible, not the other way around. Now – up to the moment t1/4 of input coupling, the 
already emitted energy exists as a free wave. The conditions at this point of time are  
analyzed in detail in Section 4.6.5.2. of [7] »The aperiodic borderline case«. Now there's 
going to be the construction of the metric lattice and the signal is coupled in. With the input 
coupling, a compression of the wavelength occurs i.e. an increase in frequency about the 
factor √  due to a rotation of the coordinate system about 45°, which we have done in Section 
4.3.4.3.3. of [7] (the metric wave moves in r-direction, the overlaid signals in x-direction).  

 
Furthermore, the metric wave, as well as the energy to be coupled in, exist side by side up 

to the moment t1/4, both with ω0~ωU~t−1/2~Q0
−1. But with the in coupling ωU→ωs the temporal 

dependence changes into ωs~t−3/4~Q0
−3/2. This results in a transformation corresponding to a 

multiplication by a factor ⅔, comparable with the transition from one medium to another with 
different refraction indices.  

 
But there is yet another, additional effect: In Section 4.6.1. of [7] we found, that a cube 

with the edge length r0 contains four MLE´s altogether. Hence, the energy must be divided 
among these four MLE´s. With it, the in-coupling frequency decreases additionally with the 
effect, that ωs is smaller than ω1/2 now. The first two effects are depicted in Figure 1. The 
split we have to take into account elsewhere. 
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Altogether, to the frequency at the moment of in-coupling the following factor is applied 
ωs = √  ωU  √  ω1 = √  1 ≈ 0.4714 1 =  7.29281·10103s–1. With respect to the 
energy hUU = 4 h11 only a share of 94.28% incorporated, since h is neither rotated, divided, 
nor transformed, it is a property of the metric wave field itself. The split has no effect onto the 
energy balance. The 94.28% relate to a coefficient of absorption of εν = 0.9428 √ . 
Therefore we are dealing with a gray body [4]. The black body is only a model, which doesn‟t 
exist in nature. The reflected share yields a further decrease of ωs and with it even of ωk. So 
we also have to multiply with εν.  

 
Now to the transfer itself. According to (281 [6]) is the frequency of time-like vectors 

proportional to  ~ t−3/4. That equals  ~ Q−3/2  for the Q-factor. We do the following ansatz: 
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The factor 2√  has nearly the same size as the factor x = 2.8214‟ from WIEN‟s displacement 
law. See Section 3. For the derivation. In Section 5. we will notice that using x instead of 2√ , 
actually intended as an approximation, leads to the only result (136) that is within the error 
margins of the COBE measurement. Then (4) should read as follows: 
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This would correspond to a slightly different refractive index and the factor x in (5) does 

not seem implausible either, as it is closely linked to the radiation laws. Apart from that we 
can see, that it‟s better to relate to 1 or U. The components z1b are describing the frequency 
related, the z2b however the energy related redshift. For k (5) we obtain a value of 
1.00673·10

12
s

–1
.  Curve 1 in Figure 2 corresponds to the signal s redshifted by x Q0

3/2 with the 
frequency response of a 1st order filter with the Q-factor Q = ½. Except for the decline in the 
upper frequency range it is identical with k (Curve 6). The conditions before, during and 
after in-coupling are shown in Figure 1. 
 

According to (5), the CMBR redshift has a value of z = 6.79605·10
91

, which is orders of 
magnitude higher than z = 1100, as »generally« assumed. On the one hand, this is due to the 
fact that this model works with variable natural »constants« whereas the photons behave like 
neutrinos shortly after BB and vice versa. Due to the expansion, i.e. the increase of r0 ~ Q0 
(the viewer grows with it) the impression is given, that z is only proportional to Q0

1/2
. This 

would correspond to a value of z = 8.14828·10
30 

and is still well above 1100.  
 

On the other hand, one assumes today that the physical laws shortly after BB did not differ 
significantly from those of today. So the origin of the CMBR is said to be around 3000 K, the 
recombination temperature of hydrogen, at a point in time 379000 years after BB. However, 
the exact results of the calculation of the CMBR temperature in relation to the time t1/4 
suggest that we must slowly get used to the idea that it must have been different at that time. 
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Figure 1  
In-coupling process  
and expansion 

 
 

Figure 2  
Intensity of the cosmologic microwave  
background radiation with estimate 
 

 
Let us now assume that the decline at the 
higher frequencies is really caused by the 
existence of a cut-off frequency. In any case, 
such a specific course cannot be achieved 
with a normal LC-low-pass filter of any 
order. Then the intensity of the cosmological 
background radiation should have to follow 
exactly PLANCK‟s radiation formula. We 
therefore want to see whether PLANCK‟s 
curve 6 in Figure 2 can be approximated from 
the original curve 1, initially only as an 
estimate. 
 

 
We have already realized that a single MLE owns an upper cut-off frequency (147 [7]), 

which changes during expansion. During propagation, only the active-part A()·cos with 
 = B() is been transferred (real part). Thus we exactly get the value g = 21, it applies 
 =  /(21). With more exact contemplation we can see, the cut-off frequency may become 
effective in the first moments of propagation only. 

 
Let‟s have a look at the moment of in-coupling now: The signal ωs (curve 1) is multiplied 
with the frequency response A()·cos after in-coupling. As a result, we obtain curve 2, 
which already comes very close to the PLANCK-curve. Now the signal is transferred to 
another MLE, at which point the frequency has decreased to a value of s /√  within this 
period. We now re-apply the frequency response to the signal obtaining curve 3 (We 
considered the frequency to be constant at the presentation scaling up the upper cut-off-
frequency accordingly instead). Curve 3 comes even closer to the targeted result. We repeat 
the entire process twice again obtaining graph 4 (s /1) and finally graph 5 (s 

/2), which 
figures a very good approximation of PLANCK‟s graph. 

 
It could be so just thoroughly that PLANCK‟s radiation-law is really the result of the existence 
of an upper cut-off frequency of the vacuum. In this connection is to be paid attention to the 
fact, that that, being applied to time-like vectors emitted directly after Big Bang, must apply 
to each time-like vector emitted at a later point of time (e.g. today) too. With time-like 
vectors, it is impossible to determine exactly, when and where they have been emitted, they 
are timeless. Since no vector can be marked with respect to a second one, each thermal 
emission must run according to the same legalities (PLANCK‟s radiation-law) then. 
 
After we have been able to confirm our assumption with the estimate, it is appropriate to 
carry out an exact calculation. We will do this in the next section. 
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3. The WIEN displacement law and the source-function 
 
 
During the examination of the WIEN displacement law meets the eye, that the displacement 

happens exactly at the lower wing pass of the PLANCK's radiation-function, which coincides 
with the wing pass of an oscillatory circuit with the Q-factor 1/2 in this section. Quite often in 
publications the curve is shown in another manner. I prefer the duplicate logarithmic 
presentation, then the curve turns into a straight line, which even clearly shows the function 
of the factor ̃, which makes the difference between peak and slope.  

 
Considering the WIEN displacement law (13) more exactly, the factor ̃ = 2.821439372 

attracts attention particularly. With an oscillatory circuit of the Q-factor 1/2 rather the factor 
2√  would be applicable for this, at which point the 2 stems from the source-frequency 21. 
The expression √  arises from the rotation of the coordinate-system about π/4.  
 

During an investigation in the Internet, I found a detailed deduction of the WIEN displace-
ment law [2]. The value of the proportionality-factor can be obtained by the identification of 
the maximum of PLANCK's radiation law as follows. We start from (406 [7]): 
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lx is LAMBERT's W-function (ProductLog[#]). Finally, after insertion into the middle expres-
sion WIEN‟s displacement law turns out: 
 

ћmax =   ̃ kT  =  2.821439372 kT      WIEN’s displacement law    (13) 
 
On success in doing the same even for the source-function with Q = ½, obtaining the same 
result, we would be a step forward in answer to the question: Is the course of the Planck's 
radiation-function the result of the existence of an upper cut-off frequency of the vacuum? 
First of all however, we have to bring the output-function into a form, suitable for further 
processing. We start with ([7] 405) with the substitution: 
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The expression stems from electrotechnics describing the power dissipation Pv of an 
oscillatory circuit with the Q-factor Q and the frequency  (see [3]), v is the detuning. The Q-
factor is known and amounts to Q = 1/2 at s = 21. The right-hand expression results directly 
from the sampling-theorem. The cut-off frequency of the subspace 1 is the value 0 at Q =1. 
After substitution, we get the following expressions: 
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You can find that expression more often in [1] and [7], among other things even with the 
group delay TGr however for a frequency 1. For a frequency 21 applies for TGr and the 
energy Wv: 
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The factor ¹⁄₆ comes from the splitting of energy onto 4 line-elements, as well as from the 
multiplication with the factor ²⁄₃ because of refraction during the in-coupling into the metric 
transport lattice. It oftenly occurs in thermodynamic relations, which doesn't astonish. Thus, 
total-energy of the CMBR during input coupling is equal to the product of power dissipation 
and group delay, that is the average time, the wave stays within the MLE, but only for what 
it‟s worth. With the help of (16) we obtain: 
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b is a factor, we want to determine later on. Let's equate it to one at first. We determined the 
value Ps with the help of (394) using the values of the point of time Q = 1/2. Interestingly 
enough, the HUBBLE-parameter H0 at the time t0.5 is greater than 1 and 0. For an individual 
line-element applies: 
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Expression (18) is very well-suited for the description of the conditions at the signal-source. 
Here, the power makes more sense than the POYNTING-vector Sk. But for a comparison with 
(382) we just need an expression for Sk, quasi a sort of PLANCK's radiation law for technical 
signals with the bandwidth 21/Q0.5 = 41. Then, this would look like this approximately: 
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We determine the factor A by a comparison of coefficients (8). We assume, the WIEN 

displacement law (13) would apply and substitute as follows: 
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We put in 2√  1 as initial-frequency into the expression k
4
T

4
 That‟s advantageous, as we 

will already see. This frequency is not a metric indeed (x~Q
–1

), but an overlaid frequency 
(~Q

–3/2
). During red-shift of the source-signal, likewise not the factor 2.821439372 but the 

factor 2√  becomes effective. Thus applies: 
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Indeed, that submits only the expression without consideration of red-shift. We determine the 
actual values to the point of time of input coupling, in that we apply the values for Q = 1/2 in 
turn. It applies: 
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b will be determined later on. It shows, the POYNTING-vector is equal to the quotient of a 
power Pk resp. Ps and the surface of a sphere with the radius R (world-radius), exactly as per 
definition. Omitting the surface, we would get the transmitting-power Pv directly. In the 
above-mentioned expressions the parametric attenuation of 1Np/R, which occurs during 
propagation in space, is unaccounted for. This must be considered separately if necessary. 
 

Now we have framed the essential requirements and can dare the next step, the proof of the 
validity of the WIEN displacement law in strong gravitational-fields. The basic-idea was just, 
that the Planck's radiation law (382) should emerge as the result of the application of the 
metrics' cut-off frequency (302) to the function of power dissipation Pv of an oscillatory 
circuit with the Q-factor Q = 1/2 (18) We proceed on the lines of (7), in that we equate the first 
derivative of the bracketed expression (28) to zero. A substitution like in (6) is not necessary, 
because the expression is already correct. It applies: 
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The first solution is trivial, the second and third is identical, if we tolerate negative 
frequencies (incoming and outgoing vector). Now, we must only find a substitution for , 
with which (382) and (28) come to congruence in the lower range. This would be the 
displacement law for the source-signal then (27). Since the ascend of both functions has the 
same size in the lower range, there is theoretically an infinite number of superpositions, 
whereat only one of them is useful. Therefore, as another criterion, we introduce, that both 
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maxima should be settled at the same frequency. The displacement law for the source-signal 
would be then as follows: 
 

ћmax  =  a kT          Displacement law source-signal   (31) 
 
at which point we still need to determine the factor a. As turns out, we still have to multiply 
even the output-function itself, with a certain factor b, in order to achieve a congruence. The 
4 we had already pulled out. We apply the value 2√ and 2.821439372 for a one after the 
other and determine b numerically with the help of the relation and the function FindRoot[#] 
using the substitution 2x = ay: 
 



a
y

2 
3

e
a

y

2 1
 4b  

y

2

1 (y

2
)2











2

   0   y 10–5 b 2                      for  a  2 2              

b 2.009918917    for  a  2.821439372
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The maxima overlap accurately in both cases. The lower value a is equal to the factor in 
(903). Thus it seems, that with references, except for those to the origin of each wave with 
21, multiplied with √ , which is caused by the rotation of the coordinate-system about /4, 
rather the approximative solutions with the factor 2√  apply. With lower frequencies, the 
factor 2.821439372 of the WIEN displacement law applies then again.     
 
But to the exact proof of the validity of the WIEN displacement law in the presence of strong 
gravitational-fields this ansatz is not enough. We must also show that the maximum of the 
PLANCK's radiation-function behaves exactly according to the WIEN displacement law, that 
means the approximation and the target-function must come accurately to the congruence. 
Since the difference between a factor 2√  and 2.821439372 amounts to 0.5% after all, we 
will execute the examination with both values. Only the relations for b = 2√  are depicted. 
Now, we can set about to write down the individual relations: 
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1

       b = 2  (34) 

 

 
 

Figure 3 
Planck's radiation law and source-function 

in the superposition (logarithmic, relative level) 
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⨘
Q0

½ 

A(y) cos φ(y) đy dy           (38) 

Thus, we have found our source-function. In y it reads as follows: 
 

  



dS
k  
   

16



h0

2

4R2
 

y

2

1 (y

2
)2











2

 es  dy     R  for Q»1     (35) 

 
But we aren't interested in the absolute value but in the relative level only: 
 



dS
1  
  8  

y

2

1 (y

2
)2











2

dy          (36) 

 
We want to mark the approximation with dS2. For the target-function dS3 we obtain: 
 



dS
3  
  

(2.821439
y

2
)3

e
2.821439

y

2 1
 dy         (37) 

 
The course of the source-function and the PLANCK's graph are presented in Figure 3. 
 
 

 
 

4. Solution and analysis 
 

Of course, there is no shift-information y(Q) contained in these relations. Since the 
considered system is a minimum phase system, we now have to multiply the source-function 
dS1 with the amplitude response A(). The result is our approximation dS2. It is merely 
applied to a single line-element, which is traversed by the signal in the time r0/c. Thereat r0 is 
equal to the PLANCK's length and identical to the wavelength of the above-mentioned metric 
wave-function. That means, we have to execute the multiplication with A(ω) as often as we 
like, unless the result (almost) no longer changes.  
 
But thereat as well the frequency of the source-function as the cut-off frequency (frequency 
response) decrease continuously. Therefore it's opportune, to take up the displacement 
(frequency and amplitude) later on with the result dS2 (approximation), instead of shifting on 
and on the location of the source-function. For the proof of our hypothesis indeed this last 
shift is not of interest, so that we won't take up it in this place. 
 
There is another problem with the amplitude response A() and with the phase-angle φ. Since 
the cut-off frequency 0 = ƒ(Q, 1) and the frequency  are varying according to different 
functions, it causes difficulties to formulate a practicable algorithm. Thus we use the fact that 
there is no difference, whether we reduce the frequency of the input-function with constant 
cut-off frequency or if we shift upward the cut-off frequency with constant input-frequency. 
But this corresponds to a transposition of integration limits. We choose this second way incl. 
the displacement of the approximation at the end of calculation. This all the more, since we 
would be concerned with two time-dependent quantities (input-frequency and cut-off 
frequency) otherwise. To the approximation applies:  

 
 
 
 
 
 
Expression (33) looks a little bit strange maybe. It‟s about a so called product integral, i.e. 
you have to multiply instead of summate. Then, the letter đ isn‟t the differential-, but the… 
let‟s call it divisional-operator. I don‟t want to amplify that, because we anyway have to 
convert expression (33) to continue. We use Q0 = 8.34047113224285·10

60
 from [6] as the 

updated value of the Q-factor and the phase-angle of the metric wave-function
1
. It determines 

                                                 
1
 The equality of the Q-factor Q0 and the phase angle 2ω0t is a special property of this function 
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the upper limit of the multiplication resp. summation. Fortunately the frequency response can 
be depicted as e-function, so that the product changes into a sum. We simply have to integrate 
the exponent quite normally then. We obtain the frequency response inclusive phase-
correction with the help of the complex transfer-function (150) to: 
 

 
( )A( )   ecos ( )  B( )          Frequency response of a line element (39) 

 
The fact, that only the real component is transferred, is taken into account by the 
multiplication of A(ω) with the expression cos φ. I used (302) from [1] for Ψ(ω). Unfor-
tunately, the expression stated there is wrong, because I miscalculated in Section 4.3.2. and I 
could reveal the error only now. After all the function determined there was not referenced in 
any correspondence table and I was unable to perform the inverse Laplace-transform to the 
verification until then.  
 
The corrected expressions and figures have been published in [7] as well as in a corrigendum. 
Fortunately I used a different approach for the rest of the work, without an error. Only 
Section 4.3.2. was concerned. With ω1= 1/(2t1) = κ0/ε0 expression (140 [1]) reads correctly:  
 

2

1

a p 1a adp CCp p p 2pt1

1

C a 1
y(p) e e e e

p p 2pt
 (140 [7]) 

 
Because of cos(φ) = cos(–φ) we obtain the following corrected expression (302 [1]):  
 

2

2
2 2

1
( ) ln 1 lncos arctan

1 12
( )     (305 [7]) 

 
As next, we substitute  by y with the help of (34): 
 

   

2 y y2

2 2

y y2 2

2 2

1 y y
( ) ln 1 ln cos arctan

2 2 1 2 1

( )

( ) ( )
     (40) 

 
The value  in the numerator of y figures the respective frequency of the cosmic background-
radiation, for which we just want to determine the amplitude. It is identical to the  in 
PLANCK's  radiation law. Thereat, it's  about an overlaid frequency, which is proportional to  
Q

–3/2
 in the approximation. The frequency is exactly proportional to Q

–1
.  

 
Instead of the value 1 in the denominator actually the PLANCK's frequency 0 should be 
written with the frequency response. That is also the cut-off frequency for the transfer from 
one line-element to another. But with Q = 1 the value 0 is right equal to 1, at which point 
0varies with the time; 1 on the other hand is strictly defined by quantities of subspace 
having an invariable value therefore. It applies 0= 1/Q. That means, that even y depends 
on time, being proportional to Q

–1/2
. 

 
Now however, we want to freeze the value , at least up to the end of the calculation, with 
the consequence, that we must divide y by a supplementary function , which is proportional 
to Q

1/2
. It applies  = cQ

1/2
 and 

 

   

y y22 1 1
2 2

y y2 21 1
2 2

1 y 1 y 1
( ) ln 1 ln cos arctan

2 2 21 1

( )

( ) ( )
   (41) 

 
The factor c arises from the initial conditions at Q = 1/2 (resonance-frequency 21, cut-off fre-
quency 1) to c = 4 (In the program cc = y/2): 
 



y    
  

0

 ~ 



2
– 3

2

2
1
2

   
1

4
         



  4 Q     Approximation  (42) 
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Thus, together with the 2 of y/2, we acquire exactly the same factor 8 as in the source-
function (36). Then, the approximation dS calculates as follows: 
 

 

       

0 2y y1 12
2 2

2 2y y1 1
2 2

1 2

Q

1 y 1 y1 1 ln 1 ln cos arctan dy2 22 2 2y 1 1
2

2 y 2

2

dS   8  dy
1 ( )

e

  (43)

 

 
The negative sign before the integral results from the re-exchange of the integration limits. 
For the determination of the integral, a value of 10

3
 as upper limit suffices indeed. Over and 

above this, it changes very little. Therefore, I worked with an upper limit of 3·10
3
 in the 

following representations. The integral only can be determined numerically, namely with the 
help of the function NIntegrate[ƒ(Q), Q, 1/2, 310

3
]. The quotient of y/2 and  expression 

(42) however describes the dependency y(Q) in the approximation only. There is an exact 
solution as well. According to [1] (209), (299) and (509) applies: 
 

 

 

4

4

1a 1 (Q)

b Q (Q) 1% %
R

R
        with  

1
Q

2
%            and   (44) 

 

1
2

Q

00

3 dQ
(Q) Q

2
R         with  2 2 2

0
4

1
(1 A B ) (2AB)

2
 (45) 

 

0 2 0 2

2 2

0 0

J (Q)J (Q) Y (Q)Y (Q)
A

J (Q) Y (Q)
      2 0 0 2

2 2

0 0

J (Q)Y (Q) J (Q)Y (Q)
B

J (Q) Y (Q)
     (46) 

 
The factor b arises from the demand, that the exact function  and its approximation should 

be of the same size with larger values of Q. The factor a we will determine later on in turn. 
The functions in (46) are Bessel functions. 

 
Problematic in (45) and (50) is the integral, which can be determined even only by numerical 
methods. In order to avoid the numerical calculation of an integral within the numerical 
calculation of another integral, it's opportune, to replace the integrand by an interpolation-
function (BRQ1), and that inclusive the factor B. The value r cancels itself because of (44). 
We choose sampling points with logarithmic spacing: 
 

brq = {{0, 0}};   

For[x = −8; i = 0, x < 25, (++i), x += .1;  

 AppendTo[brq, {10^x, N[BRQP[10^x]/BGN/(2.5070314770581117*10^x) ]}]] 

BRQ0 = Interpolation[brq]; 

BRQ1 = Function[If[# < 10^15, BRQ0[#], Sqrt[#]]]; 

 
The function BRQP is equal to the product of Q, root-expression and integral in the 
denominator of (50). The value BGN is equal to the initial value of the same product at 
Q = 1/2. You'll find the complete program in the appendix. The factor b arises to 2.5(0703). 
According to (214 [7]), (581 [7]) and (623 [7]) applies further: 
 



    
sin  

sin
     

Mc
 argc arccos sin

c 4
  (48) 

 

 

2 23 1
 arg c  arg 1 A B j2AB

4 4 2
(( ) )    Mc c   (49) 
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0
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4–

Q

0
0

4– dQ
1Q2

2

3
a  

dQ
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b

a
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3
      

2
1

2
1

   (50) 

 
c is the complex propagation-velocity of the metric wave-field. As next, we want to take up a 
comparison of the two functions Q

1/2
 and BRQ1 (Figure 4): 

(47) 
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Figure 4 
Function BRQ1 exactly and approximation 

 
On the basis of the demand, that the result of both functions must be identical with Q»1 we 
choose the factor a to √ . In this connection is to be remarked that the exact value is √ ̅ in 
fact. But since we finally will not find, in any case, an exact fit in the course of both 
functions, this small „cheating“ in the initial conditions should be allowed. The value √  
namely leads to the result with the smallest difference, so that we obtain the following final 
relation for :  
 
















 

Q

0
0

4– dQ
1Q2

2

3
    

2
1

  
3

cc 2 3.756
2

  (51) 

 
For √ ̅ a value of c = 4 would arise. The bracketed expression corresponds to the factor Q

1/2
 

in the approximation. The course of the integral function in (43) as well as of the dynamic 
cumulative frequency response Ages(ω) = e

–∫Ψ(ω)dQ you can see in Figure 5 and 6. For your 
information the amount of the complex frequency response |Xn(jω)| of subspace is plotted, 
that‟s the medium, in which the metric wave field propagates (ΩU = Ω).  
 

n

1 1 1
X ( j ) 1

2 1 j 1 j
     Complex spectral function      (52) 

 
That applies to EM−waves propagating simultaneously with the metric wave field but not to 
the metric wave field itself. They achieve the aperiodic borderline case at Q = ½. 

 

 
 

Figure 5 Bild 4 
Course of the Integrals Ψ(ω) in (43) 
for the approximation and exact function 

 
 
Figure 6 
Cumulative frequency response Ages(ω)  
and |Xn(jω)| of the metric wave field 
and subspace 

  
Thus, all requirements are filled and we are able to demonstrate the course of the 
approximation (43) in comparison with the target-function (37) and that as well for the 
approximation as for the exact function ξ. We use a logarithmic scale with the unit decibel 
[dB] and, because it‟s about power per surface, with the factor 10. 
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Figure 7 
PLANCK’s radiation law and approximation 
with approximation for the function  (relative level) 
 
 

Figure 7 shows the shape of the approximation using the approximation (42) for the 
function  (c = 4). The figure shows a phantom branch at the right side due to the down-
limited decimal resolution by sign-change according to e

1/±


0
. It will be removed in the 

following presentations. Furthermore we can see, both curves doesn‟t match exactly. The 
maximum frequency Ω⋔ is downshifted by 18.28% (0.81721). The maximum deviation of the 
amplitude Δ A⩞ is with –1.78 dB, the difference between both maxima Δ A  +0.42886 dB 
(+10.38% resp. 1.1038). Altogether the function resembles the shape, shown in [7] Section 
4.6.4.2.3., obtained by multiplication of the source-function with only 4 choosed values of 
the frequency response. But there are disparities in the declining branch with higher 
frequencies. 

 
 
Figure 8 
PLANCK’s radiation law and approximation under 
application of the exact function  (relative level)
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Figure 8 presents the course of the approximation under application of the exact function  
(51) for c = 3.756. With it, the best fit (without group delay correction) turns out (With  c  = 4, 
there is only a minor difference to Figure 7). But both functions don't overlap exactly neither 
in this place. Once again, the maximum frequency Ω⋔ is downshifted by 13.61 % (0.86386) 
The maximum deviation of amplitude Δ A ⩞ is about +1.33 dB, between both maxima Δ A  at 
+0.75834 dB (+19.07%).  
 

The course of deviation (logarithm of the quotient of approximation and PLANCK‟s 
radiation law) as a function of y is shown in Figure 9. One sees, from ca. 10  on the relative 
deviation between both functions is strongly growing. But since the absolute level in this 
range is already microscopic (−54dB at the third zero), nobody will take notice of it. Even 
there it seems rather to be about a small frequency shift, than about a deformation of the 
envelope.  
 
In any case, the form of the approximation-graph doesn't correspond to that of a black emitter 
and the value is too high. But during the COBE-experiment, they just have been ascertained, 
that the spectrum of the CMBR is exactly? black. Therefore, more forces are required in order 
to change the form in such a manner, that it equals that of a black emitter. In the next section 
we will see, which influences may come into consideration for that purpose.  
 
As further considerations [6] show, the above mentioned deviation is less because of the 
curve shape, but because of the value of the HUBBLE-parameter, determined in [1]. With the 
value from [6] and [7] the calculation exactly fits the limits of the measuring tolerance of the 
COBE/WMAP-satellite. Read Section 5 for details. 
 
In Figure 9 we can see that we yield an improvement if we use the exact function . Never-
theless a certain left-over difference remains. If we take a look at the course in the 2nd 
quadrant, we can see a „gap“ where an already known function, multiplied with the factor ½,  
could slot right in there. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 9 
Relative offset between   
approximation and 
radiation law in 
dependency of the 
function  used 
 

 

That‟s the group delay TGr of the metric wave field of [7] Section 4.3.2. Whereas the phase 
response affects the form of the carrier frequency (ω1 resp. ω0), the group response affects the 
shape of the envelope curve. It reads: 

22

Gr 2
1 1

2 θd
T B( ) 2

1d
 (53) 

 
With Ω=ω/ω1. The factor 2 cancels out, since it‟s about a spin2-system, with which all 
temporal constants are 2T instead of T (double phase-/group-velocity). Whereas the group 
response is constantly equal to zero across nearly all decades, it is not the case close to ω1 
resp. ω0 nowadays. A frequency dependent group response always leads to a distortion of the 
envelope curve. 
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As we can see, the group response is negative. That happens in technology too and is not a 
violation of causality. See [8] for details. So far we have taken into account the frequency 
response A(ω) and the phase response B(ω), only the group delay correction Θ(ω) = ½ ω1Tgr, 
is missing, implemented by the function gdc[ω]: 
 

1

1 Gr

21
T =

2 12
 

2 2

2 2
=

1 1
      (54)  

 
2 2 2

2 2 2
1 Gr

lge 0,
1 1 1

434294
T

( ) e e 10 10     (55) 
 
The decimal power is important, if we want to calculate with dB. The group delay correction 
Θ(ω) on dS2 is applied only once:   
 

 

       

0
2y y1 12 2 2

1 Gr2 2y y1 1
2 2

1 2

Q

1 y 1 y 11 1 ln 1 ln cos arctan dy T
222 2 2 2y 1 1

2
2 y 2

2

dS   8  dy
1 ( )

e      (56) 

 
The resulting functions with group delay correction for both ξ are shown in Figure 10 and 11. 
There is already a better fit of both graphs in Figure 10, as we can see. Now the maximum Ω⋔ 
of the frequency is downshifted about 12.52% (0.87476). The maximum deviation of ampli-
tude Δ A ⩞ amounts to +0.42061 dB. The deviation between both peaks Δ A  is –0.40484 dB or 
–1.45%. 
 

 
 
Figure 10 
PLANCK’s radiation law and approximation 
with group delay correction with approxi- 
mation of the function  (relative level) 
 

 
A nearly perfect result we have got for the case exact ξ with group delay correction (Figure 
11). Now the maximum frequency Ω⋔ is downshifted about –7.00% (0.93003) only. That 
value is far in excess of the –2.36% deviation between measured and calculated CMBR-
temperature. The maximum amplitude deviation Δ A ⩞ is at about –0.58954 dB, between both 
maxima Δ A  is at –0.02762 dB (–0.64%). Of particular interest is the extremely high 
correlation coefficient of 0.999835 between both curves. 
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Figure 11 
PLANCK’s radiation law and approximation 
with group delay correction under application 
of the exact function  (relative level) 

 

 

 
 
Figure 12 
PLANCK’s radiation law and approximation 
with group delay correction under application of 
the exact function  (relative level) high resolution 
 

 
To the better clarity, the last case is depicted in Figure 12 with higher resolution. You can 
find the exact results in Table 1. Figure 13 shows a summary of the relative deviations of all 
solutions in comparison with the course of the absolute value of the complex frequency 
response |Xn(jω)| of subspace. 
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Figure 13  
Relative deviation between approximation and  
radiation law according to the function  used 
without and with group delay correction 

 
 

Value 
 

Ω⋔ Δ Ω⋔ A  Δ A  Ω⩞ Δ A ⩞ Ω⩞ ΔA ⩞ 

 [1] [%] [dB] [dB] [1] [dB] [1] [dB] 

Planck    1.00000 ± 0.00 +1.52727 ±0.00000 −− −− −− −− 

Figure  7 0.81721 −18.28 +1.95613 +0.42886 0.41944 +1.20008 2.88334 –1.78499 

Figure  8 0.86386 −13.61 +2.28561 +0.75834 0.46495 +1.29392 5.55922 +1.32996 

Figure 10 0.87476 −12.52 +1.12244 –0.40484 0.14776 +0.42061 –– –– 

Figure 11 0.93003 − 7.00 +1.49965 –0.02762 0.15421 +0.43171 1.95909 –0.58954 

 
Table 1 

Extreme values of PLANCK’s radiation-function and 
approximation according to the function  used 

without and with group delay correction 

5. The WIEN displacement 
 

The solution according to Figure 11 seems to fit to the best the observations. As we can see 
in figure 11, the curve oscillates around the nominal value near the upper cut-off-frequency, a 
behaviour, as we even know from technical minimum-phase low-pass filters (overshoot). 
Usually it is being suppressed by an attenuator and there is the parametric damping. Aside 
from that the level at the third null is already with –50dB, the rest disappears in noise. 

 
Let‟s suppose, that the 

+1.5
–0.5 dB are „healed up“ during the many billion years or have been 

„ironed out“ by other influences not considered here – at the end, we must carry out, as 
promised, a WIEN-displacement. Evidently the WIEN displacement law applies then. Most 
publications do not explain why it is called displacement law. Usually a graphic of nested 
curves for the wavelength λ is shown in a linear presentation. It should also be noted that the 
usual formula λ = c/ν cannot be used for the conversion ωmax → λmax for thermal spectra. The 
reason is the different radiation distribution. According to [10] applies λmax = 0.6 c/νmax. 
 

The name can only be properly understood in double logarithmic representation, e.g. in dB. 
Then you can see that the curves are really down-shifted along the left slope as tempe-
rature/frequency decreases (Figure 14). This can be achieved in a graphics program by 
moving the top right corner of the curve to the bottom left while holding down the Shift key. 
This results in a simultaneous reduction in frequency and amplitude. However, the 
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prerequisite is that the aspect ratio is equal to 1. Then the factor x describes exactly the 
distance between the peak value and the edge. 

 
In principle, an explicit peak value is assigned to each peak frequency, including to the 
integral of the intensity over the entire frequency range, i.e. to the POYNTING vector ̅ . 
Before calculating the value ̅ , we first determine ̅  by extrapolating ̅ . The values of 
Q0, ω1 and Tk are known or can be calculated exactly. However, one peculiarity of the CMBR 
should be noted: 

 

 
 The cosmological background radiation CMBR is subject to the parametric 
 damping, but not to the geometric damping. 
 

 
The reason is that the entire universe is permeated by the radiation affecting the observer 
from all sides (state of equilibrium). We calculate the value ̅  using the STEFAN-
BOLTZMANN radiation law (409). 
 

Figure 14     
The WIEN displacement law 
schematic presentation 

 
However, this requires an exact determination of Tk. Of course we could use the COBE value 
for it, but we want to set up an accurate relation to Q0 indeed. Therefore, at first, we will deal 
with Tk in the next section. All relevant frequencies are listed in Table 2, the values for H0 >70  
are for information only.  

 

 Emission frequency  (H0=68.6) U 3.09408·10104 s–1 fe 4.92438·10103Hz 

 Immission frequency  (H0=68.6) s 6.85874·10103s–1 fs 1.09160·10103Hz 

 CMBR-frequency  (H0=75.9) k 1.12584·1012s–1 fk 179.18259 GHz 

 CMBR-frequency  (H0=72.0) k 1.09639·1012s–1 fk 174.49511 GHz 

 CMBR-frequency (62)  (H0=68.6) k 1.00673·1012s–1 fk 160.22630 GHz 

 CMBR-frequency  (COBE) k 1.00675·1012s–1 fk 160.23±0.1GHz 
 

Table 2 
Frequencies of the cosmologic 

background radiation 
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6. The temperature of the CMBR 
 
 
With the help  of the expressions given in [7] Section 4.6.4.2.5., we are able to calculate the 

temperature of the CMBR to compare it with the COBE-measuring. Indeed, it is hard to 
believe, that we can actually calculate back until a point of time before the phase jump at 
Q = 1. But the contemplations conducted in [6] turned out, that both, photons – these behaved 
like neutrinos in the beginning – and electrons and protons, had had different properties 
shortly after BB, banish the usual notions of this period to the realm of imagination.  

 
Albeit with a different value for H0 (71.9845 km s

–1
Mpc

–1
), I succeeded in [1], to calculate a 

CMBR-temperature of 2.79146K with the model. This was close to the 2.72548K ±0.00057K 
(±2.09137∙10

−4
), determined by the COBE-satellite. What works in one direction, naturally 

also works in the other direction. So the 2.72548K of COBE using the values from [1] match 
an H0 in the amount of 68.6072 km s

–1
Mpc

–1
. Indeed, that‟s less than I calculated. Now, based 

on the electron, I determined, a new H0 with an amount of  68.6241km s
–1

Mpc
–1

 in this work. 
And I was not a little surprised, that it was extremely close to the COBE-value. So I assume, 
that the new value must be more accurate, than the one calculated in [1]. Now to the 
calculation. 

 
Whereas the temperature of the metric wave field is equal to zero (see below), it‟s not the 

case with the CMBR. Since it‟s about almost black radiation (εν = 0.9428 √ ), we are able 
to calculate the black temperature indeed, but we want to work-on with the grey temperature. 
By transposing the WIEN displacement rule with the energetic redshift z22 = 12 εν Q0

5/2 of (4) 
we obtain for U = 21: 
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  (58) 

 
That‟s the temperature of the cosmologic background radiation in consideration of the 
frequency response. The temporal course is shown in Figure 15 and 16a-b. There are 
similarities to the energy density. The presentation of the spatial dependency should be 
omitted here.  
 

 
Figure 15 
Temporal dependence of the radiation-  
temperature of the CMBR (linearly) 
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I already offered expression (58) as an approximation in [1], since the value 
̃  = 3 + lx (−3e

−3
) is only 0.25% below √ , see also Section 3. With it, we get an extremely 

simple expression, which corresponds to a value εν = ̃/3. That would be 4× the 3 in one 
expression and the subspace slightly greyer, as thought. Since we want to know exactly, we 
will verify even this approach.  
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18k
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 (61) 

 
The third, artificially created case for a “wonder” turns out the 2.72548K exactly. Table 3 
shows all possible solutions once again including the accuracy limits of the COBE data. 
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 [1] [s
–1

] [kms
–1

Mpc
–1

] [K] [K] [%] 

(890) [1] 7.9518·1060 2.3328·10–18 71.9843 2.791460 +0.06598 +2.42086 

(59) 8.3405·1060 2.2239·10–18 68.6241 2.732186 +0.00671 +0.24605 

(COBE)+ 8.3397·1060 2.2243·10–18 68.6365 2.726050 +0.00057 +0.02091 

(COBE)0 8.3404·1060 2.2239·10–18 68.6250 2.725480 ±0.00000 ±0.00000 

(61) 8.3405·1060 2.2239·10–18 68.6241 2.725480 ±0.00000 ±0.00000 

(62) 8.3405·1060 2.2239·10–18 68.6241 2.725436 −4.4×10⁻⁵ −0.00161 

(COBE)– 8.3411·1060 2.2236·10–18 68.6135 2.724910 −0.00057 −0.02091 

(60) 8.3405·1060 2.2239·10–18 68.6241 2.717830 -0.00765 -0.28069 

 
Table 3 

Calculated and measured CMBR-temperature in 
comparison with the values of the HUBBLE-parameter 

 
The Q0- and H0-values for the COBE-satellite have been determined with the help of (58). The 
upper and the lower limits of the COBE-values are yellow highlighted. As we can see, the 
approximation (58) is very good. The value from [1] is much too high and (59) is outside the 
measuring precision of COBE. Expression (62) is out of question, since its value is below the 
measured one. Moreover it‟s not related to the model. That also applies to (61). The 
approximation (58) in contrast, seems to hit the nail on the had. Whether that‟s true, further, 
more precise measurements will prove. Thus, we define: 
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1
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hh

 
(62) 

 
 
The calculated value is within the accuracy limits of the value 2.72548K ±0.00057K mea-
sured by the COBE-satellite and is reference frame dependent (~ Q0

–5/2). For the choose of the 
correct relation to the calculation of TK I leave the reader room for his own interpretations.  
 
Even if the CMBR temperature used to be higher, it never exceeded the PLANCK-temperature. 
I would like to point out that although a PLANCK-temperature can be defined, it is by no 
means identical to the temperature of the metric wave field (0K). Rather, it represents the 
maximum possible temperature of a system without violating any physical laws e.g. vrot>c. It 
is generally assumed that this is a value, firmly defined at Tk0 = 1,416784·10

32
K. And it 

should equal the temperature of the metric wave field, to be correct even divided by 8π. But 
that‟s not the case. According to [4] this results from the GIBBS fundamental equation:  
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T0 dS0 =  d(mc
2
) − ωdL           

 
T0 dS0 =  d(m0 c

2
) – ħω0 dL  =   0 T0  ≡ 0K            

 
because of ω0 ≠ const. That well fits the observations. Thus, the famous expression mc

2
 = ħω 

is nothing other than a special case of the GIBBS fundamental equation for T0 = 0 at the level of 
the metric wave field. It thermally speaking, does not make an appearance – otherwise we 
would have been vaporised long ago. For the case L= 0 the temperature would be expression 
(64) divided by 8π. Thus, the correct PLANCK-temperature T0 is equal to zero. 
 
In fact, according to this model, the CMBR initially would have been above the PLANCK-
temperature with all the resulting questions. However, it is generally assumed that the 
universe – not the CMBR – should have had this temperature shortly after BB. However, ac-
cording to the prevailing world view, the CMBR only came into being “a few hundred thou-
sand years later”, which is unfortunately wrong. 
 

 
Figure 16a 
Temporal course of the CMBR radistion-temperature in compa- 
rison with the PLANCK-temperature from incoupling until now 
 

 

 
 
Figure 16b 
Temporal course of the radiation-temperature of the CMBR 
CMBR in comparison with the PLANCK-temperature shortly after BB 

(63) 
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This model is based on the assumption that most of the so-called natural constants, including 
the PLANCK-quantities, depend on space and time and may thus vary over time. Of course the 
same should also apply to the PLANCK-temperature. Then, the value Tk0 would not be as fixed 
as expected. To document the temporal dependency, we use the definition in [55] as a starting 
point. Since there are further masses additionally to m0, as well as G1 and G2, we can also 
define two further temperatures. See [7] section 6.2.4. With the help of (824) ibidem we get: 
  

2 5

0m c 1 c

k k G
p0T

h
 

2 5

1

1

M c 1 c

k k G
p1T

h
 

2 5

2 1

2

M c 1 c

k k G
p2T

h
 (64)  

 1.416784486973612·1032
 K 1.181665011421290·1093

 K 9.855642915740686·10153
 K  

 
It applies m0 |×Q0 → M1 |×Q0 → M2 as well as G |×Q0 

2 → G1 |×Q0 → G2. Then, the following 
relationships exist between the individual temperatures Tp0 |×Q0 → Tp1 |×Q0 → Tp2. While the 
first value is valid at the event horizon directly at the observer, the second one is determined 
for the particle horizon. It rather depends on distance. The third value applies to the moment 
t1 shortly after BB with Q0 = 1. Now we can set about specifying the relations Tp0 =ƒ(Q0) =ƒ(t)  
and Tk0 =ƒ(Q0) =ƒ(t): 
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M c 1
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        (65a) 
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Figure 16 was generated using the following program: 
 

Plot[{ 

   Log10[TpST[10^t44]](*Planck*), 

   Log10[TkST[10^t44]](*CMBR*)}, {t44, -105, 20}, 

 AxesOrigin -> {0, 0}, PlotStyle -> { 

    {Thickness[0.0035], CMYKColor[0.5, 0.5, 0.08, 0.21]}, 

    {Thickness[0.0035], Red}}]; 

Show[%, 

 GV[Log10[T], -11, 300],  

 GV[Log10[5.91654] - 100, -11, 300], GV[Log10[8.07995] - 106, -11, 300],  

 GH[Log10[1.41678448] + 32, -110, 20], GH[Log10[1.44598] + 146, -110, 20],  

 GH[Log10[2.72543604], -110, 20], GH[Log10[3.09733] + 153, -110, -75], 

 ImageSize -> Full,  LabelStyle -> {FontFamily -> "Chicago", 12, Black}] 
 
The analysis shows, the CMBR never had a temperature higher than the PLANCK-temperature. 
This removes all doubt. However, the variable PLANCK-temperature also means that the 
prevailing models of CMBR formation are incorrect, since the recombination temperature of 
hydrogen changes too. In addition, the photons initially had a much larger rest mass than the 
electrons and protons. 
 
In addition, we want to calculate the corresponding frequencies for the technicians too. With 
the help of WIEN‟s displacement rule and (62) we get the following relations: 
 

– –

max 1 0 max 1 0

12 1
3 3
2 21.0067316 10 s

1 1
 Q  Q 160.2263GHz
18 36

x x% %  (66) 

 
The factor ζ of the STEFAN-BOLTZMANN radiation rule S̄k = ζT 

4
 es is also a function of Q0, 

see (89) in the next section for details. In [11] also the existence of a background field with 
neutrinos is postulated, which is said to have a temperature of approx. 1.9 K. Dividing Tk by 
√  a value of 1.92717 K turns out, which fits well the idea underlying this model that 
neutrinos propagate rectangularly to photons. 

 

7. Energy and entropy of the CMBR 
 
By this we mean at first the POYNTING Sk, but also the energy density wk over the 

entire frequency range. As said, the calculation is done with the help of the STEFAN-
BOLTZMANN radiation law (409). We do not know the values Sk0.5 Sk1, wk0.5 and wk1 shortly 

TpSQ = Function[M2 c^2/k/#^2]; 

TpST = Function[hb1/2/k/#]; 
 

TkSQ = Function[hb1 Om1/18/k/#^2.5]; 

TkST = Function[hb1 Om1 t1^1.25/18/k/#^1.25]; 
 

(65c) 
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after Big Bang, but we want to calculate them. However, the current value of the energy 
density is given in [12], amounting to wk0 = 4.17·10

–14
 J/m

3
. That corresponds to a number of 

411 photons/cm
3
. With it we can first calculate Sk0. We are only interested in the amount: 

 
14 3 2 2

k04.17 10 Jm S c 12.5013µWm [71dBpWm ]k0 k0w w  (67) 
 
Now we substitute Tk in (409 [7]) with (62) obtaining the following expression: 
 

4 4
3 101
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1
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S Q Q
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h

h h
   (68) 

 
However, the expression on the left is only valid for a single MLE. However, we consider a 
cube with the edge length r0, which contains a total of 4 pcs. Therefore we need to multiply 
by 4 obtaining: 
 

4 2
7

2 2

2

71 1 1 1
k 0 02

1

4
S

6298560 1574
Q

c 640
Q

r

h h
     (69) 

 
It is better to use /Q0

4
/Q0

3
 instead of 4Q0

–7
 in the calculation, otherwise an underflow of values 

may occur. Interestingly enough, the BOLTZMANN constant k cancels out. That means that it 
cannot be calculated from other values. Also, it is the only constant which contains the 
Kelvin. That means, it‟s really fundamental and can be fixedly defined as how it happened. 
 
Now in principle, we could calculate the value Sk1 by setting Q0 in (69) equal to one. 
However, the expression is not yet complete. As already noted, the CMBR is subject to the 
parametric attenuation. Regardless of the reference frame, the damping factor  is always 
equal to –1/R, at which point R varies.  affects both, E and H, so we need to multiply (69) 
by e

–2r/R
. Since the CMBR has always covered the maximum time-like distance r = R = 2cT, the 

expression simplifies to e
–2

. We expand the fraction by e
2
: 
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2 71 1
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S e Q e Q

1574640 r 21592 r

e h h
        [21591.9850214238] (70) 

 
Because of the imprecise value of (67), we can work with the approximation with a clear 
conscience (Δ = –6.94·10

–7
). With the bracketed expression Sk1 is actually already defined, but 

we have to find out whether it is correct. 
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 (71) 

 

31 1 k1

1

4 3

3

1S
Jm

1
8.6

r
5 10999

21592 c
k1w

h
  [8.85872·10418 w1 metrics]    (72) 

 
For comparison, the energy density w1 of the metrics. Here S1 must be divided by cM[1] and 
multiplied by 4. The value wk1 is orders of magnitude below w1. Attention, both Sk1 and wk1 
are the values the CMBR would have, if the curve and thus the distribution were the same as 
today. As can be seen in Figure 2, the dynamic frequency response at Q0 = 1 is not yet ready 
with its work. There is no PLANCK-distribution, but curve 4. This is quite similar to the target 
function curve 6, but not completely. However, Sk1 and wk1 are very well suited as fixed 
reference points.  

 
Now we can use (70) to calculate the actual values and compare them with the measured ones 
(67): 
 

2
7 2 7 5 21 1

k0 0 k1 02
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1
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 [12.5013µW–2]  (73) 
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7 2 7 31
0

4
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1

11 Q
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4.174e 4
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h

 

[4.17·10–14
 J m–3] (74) 

 
That results in the local density of the CMBR background (r ≤ 0,01R):  

7 31
0

4

22 3

1

31 Q kg
1

4.64465
159544 r

1 dm0
c c

k0
k0

wh
 [4.64·10–34

 kg dm–3] (75) 

 
The values in square brackets are those given in [12]. The deviation of –1.06·10

–3
 is less due 

to a calculation error than to the fact that the comparative values are only given with two 
decimal places. Rather, the calculated values are accurate and actually much more accurate: 
wk0 = 4.174403405098·10

–14
J m

–3
, but only under the assumption that the CMBR has not 

interacted with other matter losing energy in the process. Since the deviation is a maximum of 
0.1%, it does not appear to be the case. Because the model can be used to calculate back to 
Q0 = ½ exactly, we can confidently shelve the idea of the CMBR origin 379,000 years after 
Big Bang. Then any thermal radiation would only be a narrow spectral line. 

 
However, since in-coupling did not take place at Q0 = 1 but at Q0 = ½, there are 4 additional 
values of interest: Sk05, wk05 SkU as well as wkU. The first two are again the values immedia-
tely after in-coupling, assuming a PLANCK distribution. To the calculation we use (73) and 
(74) by setting Q0 =½, e

2
 is already contained Sk1.  
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4 3161 1

3

1

128 1.10848 J1
16
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r699
k05 k1w w

h
  [8.85872·10418 w1 metrics] (77) 

 
In reality, the values are much larger, since the curve has not yet been clipped at this point of 
time still matching the shape of a resonant circuit with the Q-factor ½. The later POYNTING 
vector Sk results from the area ratio of the PLANCK-curve (11) and of the source curve ST (1). 
I determined this by numerical integration. 
 

 Sk  =  0.5503 ST          (78)  

 
Thus, if we want to determine the real in-coupling values SkU and wkU, we have to divide by 
this value. Then we get: 
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31 4161
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1
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92.83 r
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1
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  [8.85872·10418 w1 metrics] (80) 

 
I have reduced the accuracy here because the area method does not necessarily reflect the 
actual conditions. I don‟t want to go back before the point t1/4 (aperiodic borderline case), 
since there was no real wave propagation before. However, it is possible to determine the 
total energy that was used to build the CMBR. For this we need the real world radius at time 
t1/4 (Q0 =½). This means that the volume is known and the total energy WU can be calculated. 
We have already determined the exact world radius with the help of (45) lhs plus expansion 
implemented as the function BRQ1[Q] multiplied by Q

3/2
. There all angular and speed ratios 

are taken into account: 
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The course of the exact world radius is shown in Figure 17/18: 
 

  
 
Figure 17 
Exact world radius ƒ(Q) linear   

 
Therefrom, the following volumina arise (spheric): 
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Important for the calculation of Wk05 is the answer to the question: How many line elements 
fit into the universe in actual fact. Regardless of whether we consider a sphere or a cube, 
because the factor 4/3π as well as r1

3 cancel out, we get the following values with r0(Q) = Q r1: 
 

3 U3

U

U

/2
1.71367

780.4

N (0.5) 3
N Q BRQ1

9
[Q]

N 1(1)
    (84) 

 
At the point of time t1/4 (Q0 =½), the aperiodic borderline case, just one single line element 
fits into the universe, that‟s not a contradiction, while at Q0 = 1 already 780 of them fit in. 
However, the number decreases to 180 at Q0 = 2,295 in order to re-increase later approaching 
the function NU = Q0

3
. Then, from 10

3
 on the approximation applies, but not for long. For 

R≫10
3

 r1, r0 decreases towards the edge and (362) from Section 4.6.1 of [7] applies.  
 

33

30

0

Λr2 d 2 2
N π π πΛ

3 3 r 3
 (362 [7]) 

 
Λ is the constant wave count vector. This means that the line elements are arranged in a 
different packing at the beginning. At Q0 =1 there is a phase jump in the propagation function 
and thus a rearrangement towards fc. The course of NU exactly and approximation is shown 
in Figure 19. 
 
Depending on your point of view, the universe begins with a negative entropy or with zero if 
we consider the state at Q < ½ as a feasible degree of freedom. Therefore, when calculating 
the immission energy WkU we must decide whether we want to multiply the energy density 
wkU by the volume of an MLE or that of the entire universe (83), and whether we want to 
choose a sphere or a cube. According to expression (84), a cube with the edge length r1 also 
fits in, in its interior a line element with the radius r = r1/2. 

Figure 18 
Exact world radius ƒ(Q) log10 
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Figure 19 
Maximum possible number of line elements N  
in the universe at the beginning of expansion 

 
Since we determined the other values using a cube, we choose the (inner) cube obtaining the 
volume V⚀ = 7.2771·10

–288
m

3
. The outer sphere has a volume of V⚆ = 1.97988·10

–287
m

3
. For 

Wk1 we choose the approximation because it‟s used as a fixed reference for larger values of 
Q0 and also the cube with an edge length of r1. With it, the following values turn out: 
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    (85) 

 
This definition of Wk1 has the advantage, that the value divided by 0.5503·2

–7
 gives exactly 

the value of WkU. With this we can now even calculate the costs of generating the CMBR. 
After the last price increase from my electricity provider, the kWh costs € 0.3560. That equals  
US$ 0.39. Converted WkU  amounts to 4.07177·10

122
kWh, the costs to US$ 1.588·10

122
 

including 19% VAT, a bargain compared to the costs of the metric wave field. This as a little 
fun by the way. 
 

We now want to investigate whether we are able to derive an estimate of the current 
boson/fermion ratio from these values. It should also be possible to calculate the mean matter 
density, see Table 4. The photon number density at in-coupling looks very high but it applies 
per m

3
. If you multiply by the real volume r1

3
, you get 0.01 only. Since in fact only integer n 

can occur, we should get used to round-up to the next integer (Ceiling[#]), then it‟ll be fine. 
Please find the calculation further down. 

 
The value ρk0 (75) agrees very well with that given in [12], even if the formula stated there is 
completely unsuitable for calculation, since essential components have been omitted as 
»usual«. The same applies to the photon number density. Here the conditions are even more 
complicated.  
 
The value 411/cm

3
 specified there is plausible. I‟ve been trying to find a formula that 

calculates this. With [12] you get a totally wrong result of 5 photons per K
3
. A unit of length 

does not appear there. Still best of all one fares with [11]. On p. 197 in the continuous text 
nγ = 0.37 b k

–1
Tγ

3
 is given. 
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Value 

 

 Poynting vector 

 

dB 

 

Energy density 

 

Symb. 

 

Definition 

 

Number/m3 

Beginning 6.0380 
.10424Wm–2 4367.81  2.014.10416  J m–3 wkU Immission   1.30.10284 

Target now  1.25145.10–5Wm–2 70.9742  4.1744.10–14J m–3 wk0 Bosons target   4.245.108 

Actual now 1.25013.10–5Wm–2 70.9696  4.17?? 

.10–14 J m–3 n Bosons actual   4.105.108 

Density Target now local ρk0 —  4.645.10–34g cm–3 nM Fermions 45.81948 

Density Target now local ρG0 —  7.410.10–29g cm–3 n ∕nM Ratio   8.958.106 

 
Table 4 
Field strength and energy density of the 
cosmologic background radiation (H0=68,6) 

 

 
Here k is the BOLTZMANN constant and b should be the STEFAN-BOLTZMANN-constant ζ, 
which of course is defined differently again, so that the text formula has to be adapted. Then, 
with the COBE value we get: 
 

3 38n 1.48 410.466 cm 4.10466 10 m
k c

3

k0T     (86) 

 
That‟s actually only 410 photons, but we always wanted to round up in future. So I tried to 
figure out how to get to 0.37 to increase accuracy and failed miserably. After studying 
various sources, I do not refer to erroneous publications, it has been shown that the factor 
amounts to 2ζ(3)/π

2
. It results from the solution of an integral, ζ(x) is Riemann‟s zeta 

function. But I don‟t get a correct result with it. Rather it should be 4ζ(3)/π =1.53. There is 
probably a third, different definition of ζ. We use the CODATA2018 definition. With it, we 
obtain the correct expression: 
 

3 38424.4n 4 cm 10 m
k

73(3)
c

4.244733

k0T     (87) 

 
But now, with the COBE value of Tk, it are not 411, but 425 photons. What that means I leave 
open here. It‟s possible that one solution applies to the frequency, the other to the wavelength. 
Since both Tk0 (62) and ζ (409 [7]) depend on the reference frame, it should be possible to 
describe the photon number density of the CMBR as a function of Q0 and thus even of t. 
Expression (62) is already correct, still ζ remains. It contains h–3

. We define: 
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This of course eliminates the fixation of ζ, which passes over to ζ1, just like with h. Using 
(409 [7]) and (62) we get then for the photon number density: 
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          (90) 

 
Now we only used the photons of the cosmic background radiation to determine the photon 
number density. In reality, of course, there are also photons that have nothing to do with it, 
that originate from interaction processes or were created during the annihilation of matter and 
antimatter. A large part of the cosmic radiation spectrum comes e.g. from supernova 
explosions. So we have to correct the photon number slightly upwards. The graphical 
presentation follows further down together with the nucleon number density nM in Figure 23. 
However, before we are able to determine nM,  we need to have a look at entropy again. 
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Since the letter S is already heavily overburden, we must exercise special caution here. We 
had already used Sb, S0 and S1 for the entropy of the metric wave field, and S0, S1 a Sk0/1/U 
for the POYNTING vectors. Now we still need an expression for the specific entropy per 
nucleon.  
 
In [11] the expression Sγ is used for this. Since the letters U and M can also appear in this con-
text, we use Sγ instead. According to [11] »the specific entropy Sγ /M or – as a dimensionless 
quantity – its entropy per nucleon Sγ measured in natural entropy units, Sγ ≡ ma4k

–1 Sγ /M ... 
provides us with extraordinarily important information about the early days of the universe«. 
The third power is used there too, M = ρG R

3
 is the total mass of the fermionic matter, ma the 

nucleon mass, i.e. the atomic mass unit. We have to convert the formula given there for the 
calculation of Sγ again: 
 

21 1 3

G

G

am16
S 2.4562 10 kgdm

3 kc

3

kT  (4.101 [11]) 

 
To determine the matter density ρG we need the rest mass M of the incoherent matter of the 
entire universe. For this purpose, counts in the starry sky and estimates were carried out in the 
past, or one relied on a world model. I would like to expressly refrain from the calculation 
according to [11], since it uses the standard model, which this model is guaranteed not based 
on. Actually, we only need one mass and which one is the most suitable for this purpose? The 
MACH-mass M1 = μ0κ0h from Section 6.2.4.1. of [7]. This already represents the average rele-
vant for the observer. It applies M1 = ρG R

3
. This gives us the current value for ρG0: 

 
3 29 3

G0 1M R 7.41028 10 kgdm       (91) 

 
The value of ρG is based on the cube and agrees reasonably with the value ρG ≈10

–30
 g/cm

3
 

given in [11]. Other publications indicate values of 0.3...1.1·10
–30

 kg/dm
3
 for the density. 

However, these are only estimates. The entropy per nucleon Sγ0 (2.4·10
–9

) differs signifi-
cantly. The cause is the outdated value of H0 in the amount of 55 km s

–1
 Mpc

–1
 and the 

standard model used there. 
 

 
 

Figure 20  
Correction factor δ and reciprocal of the fine-structure- 
constant α as a function of time after BB and of the phase angle Q 

 
For Sγ0 we use (409 [7]) and (62) once more and we first replace ma by me. Since the ratio 

mp/me has been proven to be constant [13], the same applies to ma/me and Sγ0 too. By rear-
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ranging (806 [7]) with M1 = 9 π  

2
2 δ me Q0

4/3
 we can now substitute me by M1 and we get for 

the approximation: 
 

1 1/6 1/6

0 0 03
G

am16 16 1822.8884862 1
S Q Q

3 kc 3 60 429.18 9 2 638496677

3

kT  (92) 

 
The value of δ is defined by (806 [7]) as δ = 4π /α me /mp= const for all generic cases and as 
variable functions deltaF[Q] using alphaF[Q] immediately after BB with Q ≤ 10

3
, that‟s an age 

of T ≤ 2.13·10
–97

s (Definition see Appendix). 
 
In fact, all constants can be eliminated and only one constant factor and Q0 remain. Here, the 
dependency on Q0 is only considered for ζ. To R(Q) the approximation R = Q0

2
 r1 applies and 

to ma the linear approximation 1822.9 me′  from Figure 15. If we want to use the exact 
functions, we need the function BRQ1[Q] for the exact world radius, the function deltaF[Q], 
and expression (806 [7]). Then, the exact expression reads: 
 

71 4/33
0 0 0 0S BRQ1[Q ] de

1

458.10754347
ltaF[Q ] Q 3.31458 10

7
  (93) 

 
All non-linearities in the world radius and the nucleon mass shortly after Big Bang are taken 
into account here. The results of (92) and (93) for Q0 are identical since Q0≫1.  
 

 
 
Figure 21 
Entropy per nucleon and photon/nucleon- 
ratio of the CMBR large scale 

 
Now we can also calculate the nucleon number density nM. According to [11] the quotient 
nγ /nM is Sγ. It applies: 
 

M
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M
M

8.95833 10
n n

S 3.7 n 45.8
n

195 m
n

 (4.102 [11]) 

 
3 3

1 119/6 14/33
M 0 0 0 0n BRQ1[Q ] deltaF[

r r

14.133123 15.0696
Q ] Q Q

23
  (94) 

 
Now we have determined the current values. Thus, we can calculate the course of Sγ for 
larger and smaller values as a function of Q. It is shown in Figure 21 and 22. 
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Figure 22 
Entropy per nucleon of 
the CMBR small scale 
 

  

Now there is the well-known initial entropy problem with the standard model, i.e. it is 
assumed that the universe was in thermodynamic equilibrium at BB, a state of maximum 
entropy. However then, at the origin of the CMBR at 3000K the entropy must have been lower 
in order for it to increase over time, since a decrease without energy addition is physically 
forbidden. After the BB, however, there was no more energy supply. Therefore, most people 
blame it on the influence of gravity. 
 
Now I had thought that this problem does not exist with my model, since the CMBR here is 
related to the point Q = ½, i.e. much earlier. If you take a closer look at Figure 22, however, 
you can see that there is also a section where the entropy decreases. The question is now, is 
there such a problem with my model too? The answer is: No. In reality, it is a statistical 
problem. 

 

 
 
Figure 23 
CMBR-photon-number- in comparison  
to the nucleon-number-density per m

3 

 

 
Even if the mass, photon- and nucleon-number density assumes impressively high values
shortly after BB, the number of particles involved is very small, since the world radius is 
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extremely small at this time. Since entropy is a statistical variable, but statistics requires a 
minimum number of possible degrees of freedom (particles) in order to generate relevant 
results, the results are not relevant if this number is not reached, nor violations of physical 
principles. I assumed the minimum value to be 32 and marked it in picture 80. There are two 
different values, one for nucleons (Q =112), the other for photons (Q = 8238), after that, i.e. 
from 2.13·10

–97
s after BB on, there were no more violations and therefore no problem. Before 

that, quantum effects predominated, which defy any statistics. 

 
Therefrom follows that it is generally sufficient to use the approximation formulas. Figure 23 
shows the photon- (90) and the exact nucleon-number density (94) as a function of Q. As you 
can see, there were initially more nucleons than photons. The parity was reached at the point 
of time 8.42·10

–67
s after BB.  

 
Today there are more photons than nucleons. So we live in a largely radiation-dominated 
universe. How do we get the time data? Very easy, it applies t = Q

2
t1. In the logarithmic pre-

sentation the x-axis has to be multiplied by 2 only. In contrast to the impressively high values, 
Figure 24 shows the actual number of CMBR photons and nucleons in the entire universe. 

 
So today there are 1.19674·10

80
 nucleons in the universe. This value corresponds almost 

exactly to the square of the value C (1038 [7]) described by EDDINGTON, which he already 
assumed to correspond to the total number of nucleons in the universe, see Section 7.5.1. of 
[7]. So it seems that the number of photons and nucleons is closely linked to the reference 
frame and thus to the age of the universe. So the universe requires the presence of a certain 
number of particles at a certain point of time. This is ensured by a certain number of particles 
decaying into several others, as well as by virtual pairing/annihilation processes. 
 

 
 
Figure 24 
Real number of CMBR-photons 
and nucleons in the whole universe 
 
 

These processes are triggered by entropy. For example, you can assign a certain entropy to an 
isotope. The larger the value, the shorter the half-life. Because of (708 [7]) entropy also 
depends on the velocity. Thus atoms at high velocities not only decay more slowly because 
time passes more slowly, but also because the entropy is lower. Both statements describe the 
same fact and are equivalent. 
 

21 12
3 32

0 0 2

t 2r v
Q Q 1 1

T R c
%

% %  (708 [7]) 
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Figure 25 
Dependence of the incoherent matter density  
considered from the time of in-coupling on 

 
The only thing missing is the density of the incoherent matter ρG, which is also a function of 
time and space. The course is shown in Figure 25 and 26. The density is defined as follows: 
 

11/2 72 23

3 3

1

G 0 0 0

1

M M

r
BRQ1[Q ] Q Q

r
      (95) 

 
In contrast to (91), the value M2 (fixed) is used here instead of M1, since M1 also depends on 
the reference frame and thus on time. It applies M1 = M2/Q0. 

 

 
 

Figure 26 
Spatial dependence of the incoherent matter 

 density to the point of time T (nowadays) 
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Since all previous values are dependent on Q0, one can also show the dependence on other 
quantities using (708 [7]). Figure 26 shows the dependency on the distance r using the 
example of incoherent matter density. The further away we observe, the older the condition 
we observe. However, it is relevant for us because even delayed effects are effects. 

 
Thus, most of the mass is located at the edge for each observer, evenly distributed over the 
particle horizon (repulsion!), so that the forces cancel each other. However, when accele-
rating, one leaves the center and must exert a force F = m·a. With it, the MACH mass M1 is the 
cause of the inertial mass, exactly as postulated by MACH. For antimatter a different 
equivalence principle applies mi = –mg, so that it is attracted by the particle horizon. 
 

 

8. Summary 

 
In the course of this article, according to the model in [7], we succeeded in approximating 

the envelope-curve of PLANCK„s radiation law as a function of a dynamic frequency response 
under application of a phase- and group-delay-correction with a residual deviation of  

+1,5
–0,5 dB. 

Furthermore it was shown, that the temperature calculated in [1] is in the proximity of the 
value measured by the COBE-satellite. With the help of the updated values of H0 and Q0, 
determined in [6] and [7] a more recent CMBR-temperature could be calculated, which well 
fits the accuracy limits of the radiation temperature, measured by the COBE/WMAP-satellite. 
The results of this work point out, that origin and progression of the CMBR have elapsed in a 
totally different manner than generally assumed. Because photons behaved like neutrinos at 
that time they did not interact with other matter shortly after BB. Thus, the model can be used 
to calculate back to Q0 = ½ exactly and we can confidently shelve the idea of the CMBR origin 
379,000 years after Big Bang. Otherwise it would be a discrete, very narrow spectral-line. 
 

9. Affidavit 
 

 
Herewith, I declare that I created this work off my own bat having used no other aids as 
stated. If this work is published in German, a transcription according to the rules of the new 
German orthography (from 1999 on) is not permitted. Inclusive language must not be used in 
this work, neither in any extracts or translations thereof. 
 

10. Notes on the Appendix 
 
 
With the help of the model in [7], it was possible to calculate a series of natural constants 

associated with the electron, the proton and the 
1
H atom via their relationship to the reference 

system Q0 and this exactly. The maximum deviation of ±1.0·10
–9

 for the THOMSON cross 
section ζe corresponds to the standard deviation of the numerical value given in Table 5.  

 
In fact, most values are not true constants. At the same time, the value of H0 could be 

specified more precisely, as well as the value of κ0, the specific conductivity of the vacuum, 
on which this model is based. Since we have uncovered the relations between the individual 
fundamental constants, it is appropriate to develop a program with which these are 
recalculated on the spot each time according to the reference system and to use it instead of a 
list of values determined independently of one another in different laboratories. With regard 
to the list, this would also have the advantage that the errors would not add up. 
 

The model is based on the fundamentals of subspace, which are fixed values and 
independent of the frame of reference. At this point it suffices to define only five genuine 
constants (0, c, 0, h1 and k) as fixed basic values plus a so-called magic value, here me, in 
order to identify the reference frame Q0. 
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The formulae and definitions used in this work, and the programs to the calculation of the 
values in column 3 of Table 5 as well as for rendering the graphics are shown in the 
Appendix. It‟s about the source code for Mathematica. If you dispose of a pdf-version of this 
article, you are able to convert the data into a text file (UTF8), which can be opened directly. 
The data is presented as a single cell then. However, it is not advantageous to evaluate the 
entire source code in one single cell. To split, use the Cell/Divide Cell function (Ctrl/Shift/d). 
However, with this procedure there may be problems with special characters, not correctly 
transferred (e.g. ε, ϵ) or even lead to the conversion being aborted. 

 
It is more advantageous to copy and paste data page by page into the text file via clipboard. 
However, then each line is present as a separate cell. With the command Cell/Merge 
(Ctrl/Shift/m) the cells belonging together can be merged, ideally in blocks between the 
headings. Expressions within (*…*) are comments for better understanding. 

 
If you want to calculate only some values and not the graphics, you can delete the notebook 

below the point “End of Metric System Definition”. Then, the values shown in column 3 are 
available for own calculations. The program to calculate the whole table can be found in [7]. 
 
 

Symbol Variable Calculated (CA) 

S
ou

rc
e 

 

CODATA2018 (CD) 
© COBE Data       

± Accuracy Δy (CA/CD–1)        Unit 

c c 2.99792458              ·108 S 2.99792458              ·108 defined defined m s–1 

ε0 ep0 8.854187817620390·10–12 S 8.854187817620390·10–12 defined defined As V–1m–1 

κ0 ka0 1.369777663190222·1093 S n.a. n.a. defined A V–1m–1 

μ0 my0 1.256637061435917·10–6 S 1.256637061435917·10–6 exactly exactly Vs A–1m–1 

k k 1.3806485279          ·10–23 S 1.380649                  ·10–23 statistic +3.41941·10–7   J K–1 

ħ1 hb1 8.795625796565460·1026 S n.a. n.a. defined J s 

ħ hb0 1.054571817000010·10–34 C 1.054571817·10–34 defined +8.88178·10–15 J s 

Q0 Q0 8.340471132242850·1060 C 8.3415·1060                    © 3.3742·10–2 –1.23343·10–4   1 

Z0 Z0  376.7303134617700 F 376.73031366857 1.5·10–10 –5.48932·10–10 Ω 

G G0  6.674301499999827·10–11 C 6.674301499999999·10–11 2.2·10–5   –5.48932·10–10 m3kg–1s–2 

G1 G1  9.594550966819210·10–133 C n.a. n.a. unusual m3kg–1s–2 

G2 G2  1.150360790738584·10–193 F n.a. n.a. unusual m3kg–1s–2 

M2 M2 1.514002834704114·10114 F n.a. n.a. unusual kg 

M1 M1 1.815248576128075·1053 C n.a. n.a. unusual kg 

mp mp 1.6726219236951    ·10–27 C 1.6726219236951    ·10–27 1.1·10–5   –2.22045·10–16 kg 

me me 9.109383701528      ·10–31 M 9.109383701528      ·10–31 3.0·10–10 magic ±0 kg 

m0 m0 2.176434097482374·10–8 C 2.176434097482336·10–8 calculated +1.70974·10–14 kg 

MH MH 2.609485798792167·10–69 C n.a. n.a. unusual kg 

me/mp mep 5.446170214846793·10–4 F 5.4461702148733     ·10–4 6.0·10–11 –4.867·10–12 1 

Tp2 Tp2 9.855642915740690·10153 C n.a. n.a. unusual K 

Tp1 Tp1 1.181665011421291·1093 C n.a. n.a. unusual K 

Tp0 Tp0 1.416784486973613·1032 C 1.416784486973588 ·1032 1.1·10–5   +1.75415·10–14 K 

Tk1 Tk1 5.475357175411492·10152 C n.a. n.a. unusual K 

Tk0 Tk0 2.725436049425770 C 2.72548                          © 4.3951∙10−5   –1.61258·10–5   K 

r1 r1 1.937846411698606·10–96 F n.a. n.a. unusual m 

r0 r0 1.616255205549261·10–35 C 1.616255205549274·10–35 calculated –8.21565·10–15 m 

re re 2.817940324662071·10–15 C 2.817940326213      ·10–15 4.5·10–10 –5.50377·10–10 m 

DC ΛbarC 3.861592677230890·10–13 C 3.861592679612      ·10–13 3.0·10–10 –6.16614·10–10 m 

C ΛC 2.426310237188940·10–12 C 2.4263102386773    ·10–12 3.0·10–10 –6.13425·10–10 m 

a0 a0 5.291772105440689·10–11 C 5.291772109038      ·10–11 1.5·10–10 –6.79793·10–10 m 

R R 1.348032988422084·1026 C n.a. at issue at issue m 

R RR 4.368617335409830 C n.a. at issue at issue Gpc 

t1 2 t1 6.463959849512312·10–105 F n.a. n.a. unusual s 

t0 2 t0 5.391247052483426·10–44 C 5.391247052483470·10–44 calculated –8.43769·10–15 s 

T 2 T 4.496554040802734·1017 C 4.497663485280829·1017 1.1385·10–3   –2.46671·10–4   s 

T 2 T 1.424902426903056·1010 C 1.425253996152531·1010 1.1385·10–3   –2.46671·10–4   a 

R∞ R∞  1.097373157632934·107 C 1.097373156816021·107 1.9·10–12 +7.44426·10–10 m–1 

ω1 Om1 1.547039312249824·10104 F n.a. n.a. unusual s–1 
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Symbol Variable Calculated (CA) 

S
ou

rc
e 

 

CODATA2018 (CD) 
© COBE Data       

± Accuracy Δy (CA/CD–1)        Unit 

ω0 Om0 1.854858421929227·1043 C 1.854858421929212·1043 calculated +8.65974·10–15 s–1 

ωR∞ OmR∞  2.067068668297942·1016 C 2.067068666759112·1016 1.9·10–12 +7.44451·10–10 s–1 

cR∞ cR∞  3.289841962699988·1015 C 3.289841960250864·1015 1.9·10–12 +7.44450·10–10 Hz 

H0 H0 2.223925234581364·10–18 C 2.223376656062923·10–18 1.1385·10–3   +2.46732·10–4   s–1 

H0 HPC[Q0] 68.62410574852400 C 68.6071781514648←↑© 1.1385·10–3   +2.46732·10–4   km s–1Mpc–1 

q1 q1 1.527981474087040·1012 F n.a. n.a. unusual As 

q0 q0 5.290817689717126·10–19 C 5.2908176897171    ·10–19 calculated +4.44089·10–15 As 

e qe 1.602176634000007·10–19 C 1.602176634            ·10–19 exactly +4.44089·10–15 As 

U1 U1 8.698608435529670·1087 F n.a. n.a. unusual V 

U0 U0 1.042939697003725·1027 C 1.042939697286845·1027 calculated –2.71463·10–10 V 

W1 W1 1.360717888312544·10131 F n.a. n.a. unusual J 

W0 W0 1.956081416291675·109 C 1.956081416291641·109 calculated +1.73195·10–14 J 

Wk1 Wk1 6.301953910302633·10126 C n.a.                  k→CMBR n.a. unusual J 

S1 S1 5.605711433987692·10426 F n.a. n.a. unusual W m–2 

S0 S0 1.388921881877266·10122 C n.a. n.a. unusual W m–2 

Sk1 Sk1 2.596200130940090·10422 C n.a.                  k→CMBR n.a. unusual W m–2 

Sk0 Sk0 1.251454657497949·10–5 C 1.25013                    ·10–5 +1.0596·10–3   calculated [59] W m–2 

ζe ζe 6.652458724888907·10–29 C 6.6524587321600    ·10–29 9.1·10–10 –1.09299·10–9   m2 

ae ae 1.159652181281556·10–3 C 1.1596521812818    ·10–3 1.5·10–10 –2.10054·10–13 1 

ge ge –2.00231930436256 C –2.00231930436256 1.7·10–13 –2.22045·10–16 1 

γe γe 1.760859630228709·1011 C 1.7608596302353    ·1011 3.0·10–10 –3.74278·10–12 s–1T–1 

µe µe –9.28476469866128·10–24 C –9.284764704328    ·10–24 3.0·10–10 –6.10325·10–10 J T–1 

µB µB –9.27401007265130·10–24 C –9.274010078328    ·10–24 3.0·10–10 –6.12109·10–10 J T–1 

µN µN 5.050783742986264·10–27 C 5.0507837461150    ·10–27 3.1·10–10 –6.19456·10–10 J T–1 

Φ0 Φ0 2.067833847194937·10–15 C 2.067833848 ……..  ·10–15 exactly –3.89327·10–10 Wb 

G0 GQ0 7.748091734611053·10–5 C 7.748091729000002·10–5 exactly +7.24185·10–10 S 

KJ KJ 4.835978487132911·1014 C 4.835978484 ……..   ·1014 exactly +6.47834·10–10 Hz V–1 

RK RK 2.581280744348851·104 C 2.581280745 ……..   ·104 exactly –2.52258·10–10 Ω 

α  alpha 7.297352569776440·10–3 F 7.297352569311       ·10–3 1.5·10–10 +6.37821·10–11 1 

δ  delta 9.378551014802563·10–1 F 9.378551009654370·10–1 1.5·10–10 +5.48932·10–10 1 

x~ xtilde 2.821439372122070` F 2.821439372 ……..  mathematical real number 1 

ζ1  ζ1  9.773258655978905·10–191 F n.a. calculated unusual W m–2
 K –4 

ζ  ζ  5.670366673885496·10–8 C 5.670366673885496·10–8 exactly exactly W m–2
 K –4 

 
S   Subspace value (const) M   Magic value                      MachinePrecision  →  ±2.22045·10–16 
F   Fixed value (invariable) C   Calculated (calculated)                
 
Table 5: 
Universal natural constants 
Concerted International System of Units 
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" Envelope Curve Approximation " 
" 

" Declarations" 
 
Off[General::spell] 
Off[General::spell1] 
Off[InterpolatingFunction::dmval] 
Off[FindMaximum::lstol] 
Off[FindRoot::nlnum] 
 

" Units " 
 
km = 1000; 

pc = 3.08572*10^16; 

Mpc = 3.08572*10^19 km; 

minute = 60; 

hour = 60 minute; 

day = 24*hour; 

year = 365.24219879*day; 

Mo = 1.98840*10^30  (*Sun mass kg*); 

Ro = 6.96342*10^8  (*Sun radius m*); 

ME = 5.9722*10^24  (*Earth mass kg*); 

RE = 6.371000785*10^6  (*Earth radius m*); 

F0 = 2.51*10^-8  (*Zero flux brightness Wm^-2*); 

L0 = 3.09*10^28  (*Zero luminosity W*); 

L1a= 6.40949*10^35  (*Standard candle SNIa W*); 

 

" Basic Values " 
 
c=2.99792458*10^8;  (*Speed of light*); 

my0=4 Pi 10^-7;    (*Permeability of vacuum*);  

ka0=1.3697776631902217*10^93;    (*Conductivity of vacuum*);  

hb1=8.795625796565464*10^26;    (*Planck constant slashed init*);  

k=1.3806485279*10^-23;    (*Boltzmann constant*);  

me=9.109383701528*10^-31;    (*Electron rest mass with Q0 Magic value 1*);  

mp=1.6726219236951*10^-27;    (*Proton rest mass Magic value 2*); 

 

" Auxilliary Values " 
 
mep=SetPrecision[me/mp,20];  (*Mass ratio e/p*); 

ma=1822.8884862171988 me;  (*Atomic mass unit*); 

ϵ=ArcSin[0.3028221208819742993334500624769134447]-3Pi/4;  (*RnB angle ϵ null(fix)*); 

γ=Pi/4-ϵ; (*RnB angle γ nullvector*); 

ζ=1/(36Pi^3)(3Sqrt[2])^(-1/3)/mep; (*re-correction factor*); 

xtilde=xtilde=3+N[ProductLog[-3E^-3]]; (*Wien displacement law constant (ν)*); 

alpha=Sin[Pi/4-\[Epsilon]]^2/(4Pi); (*Correction factor QED \[Alpha](Q0)*); 

delta=4Pi/alpha*mep; (*Correction factor QED \[Delta](Q0)*); 

(*Q0=(9Pi^2 Sqrt[2]delta me/my0/ka0/hb0SI)^(-3/4) (*Phase Q0=2ω0t during calibration*);*) 

Q0=(9 Pi^2 Sqrt[2]delta me/my0/ka0/hb1)^(-3/7); (*Phase Q0=2ω0t after calibration*); 

 

" Composed Expressions " 
 
Z0=my0 c;  (*Field wave impedance of vacuum*); 

ep0=1/(my0 c^2)  (* Permittivity of vacuum*); 

R∞=1/(72 Pi^3)/r1 Sqrt[2] alpha^2 /delta Q0^(-4/3);  (*Rydberg constant*); 

Om1=ka0/ep0;  (*Cutoff frequency of subspace*); 

Om0=Om1/Q0;  (*Planck’s frequency*); 

OmR∞=2 Pi c R∞;  (*Rydberg angular frequency*); 

cR∞=c R∞;  (*Rydberg frequency*); 

H0=Om1/Q0^2;  (*Hubble parameter local*); 

H1=3/2*H0;  (*Hubble parameter whole universe*); 

r1=1/(ka0 Z0);  (*Planck’s length subspace*); 

a0=9Pi^2 r1 Sqrt[2] delta/alpha Q0^(4/3);  (*Bohr radius*); 

ΛbarC=a0 alpha;  (*Reduced Compton wavelength*); 

ΛC=2 Pi ΛbarC;  (*Compton wavelength electron*); 

re= r1 (2/3)^(1/3)/ζ Q0^(4/3);  (*Classic electron radius*); 

r0= r1 Q0;  (*Planck’s length vac*); 

R= r1 Q0^2;  (*World radius*); 

RR=R/Mpc/1000;  (*World radius Gpc*); 
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t1=1/(2 Om1);  (*Planck time subspace*); 

t0=1/(2 Om0);  (*Planck time vacuum*); 

T=1/(2 H0);  (*World time constant*); 

TT=2T/year;  (*The Age*); 

hb0=hb1/Q0;  (*Planck constant slashed*); 

h0=2Pi*hb0;  (*Planck constant unslashed*); 

q1=Sqrt[hb1/Z0];  (*Universe charge*); 

q0=Sqrt[hb1/Q0/Z0];  (*or qe/Sin[π/4-ε] Planck charge*); 

qe=q0 Sin[Pi/4-ε];  (*Elementary charge e*); 

M2=my0 ka0 hb1;  (*Total mass with Q=1*); 

M1=M2/Q0;  (*Mach mass*); 

m0=M2/Q0^2;  (*Planck mass downwardly*); 

(*m0=(9Pi^2Sqrt[2]*delta*me)^.75*(my0*ka0*hb0SI)^.25;  (*Planck mass upwardly*);*) 

mp=4Pi me/alpha/delta;  (*Proton rest mass with Q0*); 

(*me=Sqrt[hb1/Q0/Z0]*Sin[Pi/4-ε];  (*if using Q0 as Magic value*);*) 

MH=M2/Q0^3;  (*Hubble mass*); 

G0=c^2*r0/m0; (*hb0*c/m0^2*)  (*Gravity constant local*); 

G1=G0/Q0^2;  (*Gravity constant Mach*); 

G2=G0/Q0^3;  (*Gravity constant Init*); 

U0=Sqrt[c^4/4/Pi/ep0/G0];  (*Planck voltage generic*); 

U1=U0*Q0;  (*Planck voltage Mach*); 

W1=Sqrt[hb1 c^5/G2];  (*Energy with Q=1*); 

W0=W1/Q0^2;  (*Planck energy*); 

S1=hb1 Om1^2/r1^2;  (*Poynting vector metric with Q=1*); 

S0=S1/Q0^5;  (*Poynting vector metric actual*); 

Sk1=4Pi^2*E^2/18^4/60*hb1*Om1^2/r1^2;                   (*Poyntingvec CMBR 

initial*); 

Sk0=Sk1/Q0^4/Q0^3/E^2;                                   (*Poyntingvec CMBR 

actual*); 

wk1=Sk1/c ;                                          (*Energy density CMBR 

initial*); 

wk0=Sk0/c ;                                           (*Energy density CMBR 

actual*); 

Wk1=wk1*r1^3;                                                (*Energy CMBR 

initial*);  

µB=-9/2Pi^2 Sqrt[2 hb1/Z0]delta Sin[γ]/my0/ka0 Q0^(5/6);  (*Bohr magneton*); 

µN=-µB*mep;  (*Nuclear magneton*); 

µe=1.0011596521812818 µB  (*Electron magnetic moment*); 

Tk1=hb1 Om1/18/k;  (*CMBR-temperature Q=1*); 

Tk0=Tk1/Q0^(5/2);  (*CMBR-temperature*); 

Tp0=Sqrt[hb0 c^5/G0]/k; Tp1=Tp0*Q0; Tp2=Tp0*Q0^2; (*Planck-temperature*); 

Φ0=Pi Sqrt[hb1 Z0/Q0 ]/Sin[Pi/4-ε];  (*Magnetic flux quantum Pi ħ/e)*); 

GQ0=1/Pi/Z0*Sin[Pi/4-ε]^2;  (*Conductance quantum e^2/Pi ħ*); 

KJ=2q0 Sin[Pi/4-ε]/h0;  (*Josephson constant 2e/h*); 

RK=.5 my0 c/alpha;  (*von Klitzing constant µ0c/2α*); 

σe=8Pi/3 re^2;  (*Thomson cross section (8Pi/3)re^2*); 

ae=SetPrecision[µe/µB,20]-1;  (*Electron magnetic moment anomaly*); 

ge=-2(1+ae);  (*electron g-factor*); 

γe=2 Q0 Abs[µe]/hb1;  (*electron gyromagnetic ratio*); 

σ1= SetPrecision[Pi^2/60 k^4/c^2/hb1^3, 16];  (*Stefan-Boltzmann constant initial*); 
σ=σ1*Q0^3;   (*Stefan-Boltzmann constant*); 
 

" Basic Functions " 
 
cMc=Function[-2 I/#/Sqrt[1-(HankelH1[2,#]/HankelH1[0,#])^2]]; 

Qr=Function[#1/Q0/2/#2]; 

PhiQ=Function[If[#>10^4,-Pi/4-3/4/#,                                                       

Arg[1/Sqrt[1-(HankelH1[2,#]/HankelH1[0,#])^2]]-Pi/2]];  (*Angle of c arg θ(Q)*); 

PhiR=Function[PhiQ[Qr[#1,#2]]]; 

RhoQ=Function[If[#<10^4,N[2/#/Abs[Sqrt[1-

(HankelH1[2,#]/HankelH1[0,#])^2]]],1/Sqrt[#]]];  

RhoR=Function[RhoQ[Qr[#1,#2]]]; 

AlphaQ=Function[Pi/4-PhiQ[#]];  (*Angle α*); 

AlphaR=Function[N[Pi/4-PhiR[#1,#2]]]; 

BetaQ=Function[Sqrt[#1]*((#2)^2+#1^2*(1-(#2)^2)^2)^(-.25)]; 

GammaPQ=Function[N[PhiQ[#]+ArcCos[RhoQ[#]*Sin[AlphaQ[#]]]+Pi/4]]; 

HPC=Function[Om1/#^2/km*Mpc]; (*H0=ƒ(Q0)[km*s-1*Mpc-1]*); 
rq={{0,0}}; 

For[x=-8;i=0,x<4,++i,x+=.01;AppendTo[rq,{10^x,N[10^x*RhoQ[10^x]]}]]; 

RhoQ1=Interpolation[rq]; 

RhoQQ1=Function[If[#<10^3,RhoQ1[#],Sqrt[#]]];  (*Interpolation RhoQ*); 
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Rk=Function[If[#<10^5,3/2*Sqrt[#]*NIntegrate[RhoQQ1[x],{x,0,#}],6#]]; 

Rn=Function[Abs[3/2*Sqrt[#]*NIntegrate[RhoQQ1[x]*Exp[I*(PhiQ[x])],{x,0,#}]]]; 

RnB=Function[Arg[NIntegrate[RhoQQ1[x]*Exp[I*(PhiQ[x])],{x,0,#}]]];  
alphaF=Function[Sin[Pi/2+ϵ-(*RNBP*)RnB[#]]^2 /(4Pi)];  (*RNBP def further below*); 
deltaF=Function[4Pi/alphaF[#]*mep];     (*Correction factor QED ΔQ)*); 
 

" End of Metric System Definition " 
____________________________________________________________________________________________________ 
 

" Functions Used for Calculations in Articles " 
 
GV=Function[Graphics[Line[{{#1,#2},{#1,#3}}]]];         (*Graphics help function*); 

GH=Function[Graphics[Line[{{#2,#1},{#3,#1}}]]];      (*Graphics help function*); 

Xline=Function[10^33*(#1-#2)]; (*Value_x vertical line*); 

Expp=Function[If[#<0,1/Exp[-#],Exp[#]]];    (*To avoid calculation errors*); 

FG = Function[.5/(1 + I*#)*(1 + 1/(1 + I*#))]; 

Pom = Function[Print[StringJoin["x = ",  

     ToString[10^Chop[First[xx /. Rest[%]], 10^-7]], " Om1", 

     "  (", ToString[.5*10^Chop[First[xx /. Rest[#]], 10^-7]],  

     " OmU)"]]]; 

Pol = Function[Print["y = " <> ToString[First[#]] <> " dB   (" <> 

          If[First[#] - zzz > 0, "+", ""] <> ToString[First[#] - zzz] <>  

     " dB)"]]; 

 

BRQP = Function[Rk[#]  Sqrt[(Sin [AlphaQ[#]]/Sin[GammaPQ[#]])^4 - 1]];  

BGN  = Sqrt[2]*BRQP[.5]/3;  

BRQ0 = Function[BRQP[#]/BGN/(2.5070314770581117*#)];  (*Faster redefinition later*); 

BRQ1 = If[#1 < 8*10^4, BRQ0[#1], Sqrt[#1]] & ;  

 

gdc = Function[10^(Log10[E]*(-1) (1*#)^2/(1 + 1*#^2)^2)]; (*Group Delay Correction*); 

cc = xtilde^2;  

b = xtilde; 

s1 = 8*(#1/(2*((#1/2)^2 + 1)))^2 & ;   

s2 =  (b*(#1/2))^3/(Expp [b*(#1/2)] - 1) & ;  

Psi1 = NIntegrate[(1/2)*Log[1 +  (#1/(cc*Sqrt[Q]))^2] -   

             ((#1/(cc*Sqrt[Q]))^2)/(1 +  (#1/(cc*Sqrt[Q]))^2) -   

            Log[Cos[-ArcTan[#1/(cc*Sqrt[Q])] +   

                  #1/(cc*Sqrt[Q])/(1 +  (#1/(cc*Sqrt[Q]))^2)]],   

          {Q, 0.5, 3000}] & ;   (*Approximation*);  

Psi2 = NIntegrate[(1/2)*Log[1 +  (#1/(cc*BRQ1[Q]))^2] -   

             ((#1/(cc*BRQ1[Q]))^2)/(1 +  (#1/(cc*BRQ1[Q]))^2) -   

            Log[Cos[-ArcTan[#1/(cc*BRQ1[Q])] +   

                  #1/(cc*BRQ1[Q])/(1 +  (#1/(cc*BRQ1[Q]))^2)]],   

          {Q, 0.5, 3000}] & ;  (*Exact ξ*);  

HPC = Function[Om1/#^2/km*Mpc];               (*H0=ƒ(Q0)[km*s-1*Mpc-1]*); 

ff = 4/3/18^3/9/15/Sqrt[2]/delta ma/me;  

fff = 4/3/18^3/9/15/Sqrt[2] ma/me; 

gg = N[1.48 Pi^2/60/18^3]; 

ngN = Function[gg/r1^3/#^4.5]; 

nmN = Function[3.7 (gg/r1^3/#^4.5)/(fff*#^(1/6))]; 

Gmin = qqq /.  

   FindRoot[ 

    N[ngN[qqq]]*N[r1^3 (qqq)^4.5 BRQ1[qqq]^3] - 32 == 0, {qqq, 1, 100}]; 

 

Helpful Interpolations " 
 
"Not really needed. Evaluate only once the lines below the upper lines, then store data in e.g. rs={data} and close the cells. Evaluation can take a while.  
 Don’ t delete but always evaluate them. Disable evaluation for the lines below the upper line until Interpolation line then. Save notebook." 

____________________________________________________________________________________________________ 
 

brq={"Insert output from below"}; 

brq={{0,0}};  

For[x=(-8);i=0,x<50,++i,x+=0.05;  

AppendTo[brq,{10^x, N[BRQP[10^x]/BGN/(2.5070314770581117*10^x)]}]] 

brq 

BRQ0 = Interpolation[brq]; (*Faster redefinition*); 

 
 

rs={"Insert output from below"}; 

rs={}; 
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For[x=(-3); i=0,x<3,(++i),x+=.025; 

AppendTo[rs,{10^x,NIntegrate[RhoQQ1[z],{z,0,10^x}]/Abs[NIntegrate[RhoQQ1[z]* 

Exp[I/2*ArgThetaQ[z]],{z,0,10^x}]]}]] 

rs  

RS=Interpolation[rs];   (*Relation rk/rn*); 

RS1=Function[1/RS[#]]; 

 
 
rnb={"Insert output from below"}; 

rnb={}; 

For[d=-6.01; i=0,d<6.01,(++i),d+=.05; AppendTo[rnb,{d,RnB[10^d]/Pi}]] 

rnb 

RNB1=Interpolation[rnb];  (*RnB angle ϵ nullvector from Q*); 

RNB=Function[If[#<10^-8,Null,If[#<10^6,RNB1[Log10[#]],-.25]]]; 

RNBP=Function[If[#<10^-8,Null,If[#<10^6,Pi RNB1[Log10[#]],-Pi/4]]]; 

alphaF=Function[Sin[Pi/2+ϵ-RNBP[#]]^2/(4 Pi)]; (* Faster redefinition *); 

 
 
qq1={"Insert output from below"}; 

qq1={}; 

For[xy=(-17); i=0,xy<5,(++i),xy+=.05; AppendTo[qq1,{10^xy,N[Sin[(Pi/2-

RnB[10^xy]+ϵ)]]}]] 

qq1 

QQ0=Interpolation[qq1];  (*Relation qe/q0*); 

QQ=Function[If[#<10^5,QQ0[#],0.3028223504900885]]; 

QQ1=Function[If[#<10^5,1/QQ0[#],3.3022661582990733]]; 

 
 
inb={"Insert output from below"}; 

inb={}; 

For[d=-6.01; i=0,d<6.01,(++i),d+=.05; AppendTo[inb,{RnB[10^d]/Pi,d}]] 

inb 

INB1=Interpolation[inb];   (*InvRnB Q from angle ϵ nullvector*); 

INB=Function[Which[-1<#<0,INB1[#],#==0,3/2Pi Q0^.25,#>0,Null]]; 

INBP=Function[Which[-Pi<#<0,INB1[#/Pi],#==0,3/2 Q0^.25,#>0,Null]]; 

 
" 
" Approximation" 
 

(*b = xtilde; Figure3 *) 

Plot[{ 

Log10[(b*.5*10^y)^3/(Expp[b*.5*10^y]-1)], 

Log10[ 8*(.5*10^y/((.5*10^y)^2+1))^2], 

Xline[y,Log10[2]]},{y, -5, 3},PlotRange->{-10.1,.45}] 

 

" Expansion" 
 

Plot[{(*Log10[BRQP[10^qqq]/BGN/(2.5070314770581117×10^qqq)], Figure4a *) 

Log10[BRQ1[10^qqq]], Log10[Sqrt[10^qqq]]}, {qqq, -1, 10}] 

Plot[{(*BRQP[qqq]/BGN/(2.5070314770581117×qqq), Figure4b *) 

BRQ1[qqq], Sqrt[qqq]}, {qqq, 0, 10}, PlotRange -> {-0.3, 9.6}] 

 

" Integral" 
 

cc=8; (*Factor 8 approx ξ Figure5 *) 

Plot[{Psi1[y],Psi2[y]},{y,0.001,10}, 

PlotStyle->RGBColor[0.91,0.15,0.25], 

PlotLabel->None,LabelStyle->{FontFamily->"Chicago",10,Black}] 

 

cc=8; (*Factor 8 approx ξ Figure6 *) 

b3=Plot[{10Log10[Expp[Psi1[10^y]]],10 Log10[Expp[Psi2[10^y]]]},{y,-3,2}, 

PlotRange->{-88,2},LabelStyle->{FontFamily->"Chicago",12,Black}]; 

 

b4=Plot[{10 Log10[Abs[FG[10^y]]]},{y,-3,2},PlotRange->{-88,2},PlotLabel->None, 

PlotStyle->RGBColor[0,0,0],LabelStyle->{FontFamily-

>"Chicago",10,Black,PlotRangeClipping->True}]; 

 

Show[b3,b4] 
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" Approximation 1" 
 

cc=8; (* Factor 8 approximated BGN exact Figure7 *) 

Plot[{10 Log10[s2[10^y]],10 (Log10[s1[10^y]*Expp[Psi1[10^y]]]),Xline[y,Log10[2]]}, 

{y,-3,3},PlotRange->{-51,10.5},ImageSize->Full,LabelStyle->{FontFamily-

>"Chicago",10,Black}] (* Exact exact exact error max +1.3dB *) 

 

cc=7.519884824; (* Sqrt[π] exact ξ Figure8 *) 

Plot[{10 Log10[s2[10^y]],10 

(Log10[s1[10^y]]+Log10[E]*Psi2[10^y]),Xline[y,Log10[2]]},{y,-3,3}, 

PlotRange->{-51,4.5},ImageSize->Full,LabelStyle->{FontFamily->"Chicago",10, 

Black}] (* Exact exact exact error max +1.3dB *) 

 

" Extrema 1" 
 

u=FindMaximum[10 Log10[s2[10^xx]],{xx, 0}]; 

(* Planck's curve *) 

Print[StringJoin["x = ",ToString[(10^First[xx/.Rest[u]])]," Om1        (1.000000 

OmU)"]] 

Print[StringJoin["y = ",ToString[zzz = First[u]]," dB    (±0.000000 dB)"]] 

 

FindMaximum[10 (Log10[s1[10^xx]*Expp[Psi1[10^xx]]])-10Log10[s2[10^xx]],{xx,0}] ; 

(* Maximum deviation 1 Psi1 *) 

Pom[%] 

Pol[%%]  

 

FindMinimum[10 (Log10[s1[10^xx]*Expp[Psi1[10^xx]]/s2[10^xx]]),{xx,2}] ; 

(* Maximum deviation 2 Psi1 *) 

Pom[%] 

Pol[%%]  

 

FindMaximum[10 (Log10[s1[10^xx]*Expp[Psi2[10^xx]]])-10Log10[s2[10^xx]],{xx,0}]; 

(* Maximum deviation 1 Psi2 *) 

Pom[%] 

Pol[%%] 

 

FindMaximum[10 (Log10[s1[10^xx]*Expp[Psi2[10^xx]]])-10Log10[s2[10^xx]],{xx,1}]; 

(* Maximum deviation 2 Psi2 *) 

Pom[%] 

Pol[%%]  

FindMaximum[10 (Log10[s1[10^xx]]+Log10[E]*Psi1[10^xx]),{xx,0}]; 

(* Deviation between maxima Psi1*) 

Pom[%] 

Pol[%%] 

 

FindMaximum[10 (Log10[s1[10^xx]]+Log10[E]*Psi2[10^xx]),{xx,0}]; 

(* Deviation between maxima Psi2 *) 

Pom[%] 

Pol[%%]  

 

" Deviation 1" 
 

cc=8; (*Factor 8 approx ξ Figure9 *) 

b71=Plot[{10 Log10[s1[10^y]*Expp[Psi1[10^y]]/s2[10^y]],Xline[y,Log10[2]]}, 

{y,-3,2},PlotRange->{-3.02,1.42},ImageSize->Full,LabelStyle->{FontFamily-> 

"Chicago",10,Black}]; 

 

cc=7.519884824; (* Sqrt[π] exact ξ *) 

b72=Plot[{10 Log10[s1[10^y]*Expp[Psi2[10^y]]/s2[10^y]]},{y,-3,2},ImageSize->Full, 

LabelStyle->{FontFamily->"Chicago",10,Black}]; 

b73=Plot[{-10 Log10[gdc[10^x]]},{x,-3,2.2},PlotRange->{-3.02,1.42}, 

PlotStyle->RGBColor[0.06,0.52,0.]]; 

 

Show[b71,b72,b73,ImageSize->Full,LabelStyle->{FontFamily->"Chicago",12,Black}] 

 

" Approximation 2" 
 

cc=8; (* Factor 8 approximated BGN exact Figure10 *) 

Plot[{10 Log10[s2[10^y]],10 (Log10[s1[10^y]*Expp[Psi1[10^y]]])+ 
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10Log10[gdc[10^y]],Xline[y,Log10[2]]},{y,-3,3},PlotRange->{-51,4.5}, 

ImageSize->Full,LabelStyle->{FontFamily->"Chicago",10,Black}]  

(* Exact exact exact error max +1.3dB *) 

 

cc=7.519884824; (* Sqrt[π] exact ξ Figure11 *) 

Plot[{10 Log10[s2[10^y]],10 (Log10[s1[10^y]]+Log10[E]*Psi2[10^y])+ 

10Log10[gdc[10^y]],Xline[y,Log10[2]]},{y,-3,3},PlotRange->{-51,4.5}, 

ImageSize->Full,LabelStyle->{FontFamily->"Chicago",10,Black}]  

(* Exact exact exact deviation max +1dB *) 

 

" Extrema 2" 
 

v=FindMaximum[10 Log10[s2[10^xx]],{xx, 0}]; 

(* Planck's curve *) 

Print[StringJoin["x = ",ToString[(10^First[xx/.Rest[v]])]," Om1        (1.000000 

OmU)"]] 

Print[StringJoin["y = ",ToString[zzz = First[v]]," dB    (±0.000000 dB)"]] 

 

FindMaximum[10 Log10[(s1[10^xx]*Expp[Psi1[10^xx]]*gdc[10^xx])/s2[10^xx]],{xx,0}]; 

(* Maximum deviation 1 Psi1 *) 

Pom[%] 

Pol[%%]  

 

FindMaximum[10 Log10[(s1[10^xx]*Expp[Psi2[10^xx]]*gdc[10^xx])/s2[10^xx]],{xx,0}]; 

(* Maximum deviation 1 Psi2 *) 

Pom[%] 

Pol[%%]  

 FindMinimum[10 Log10[(s1[10^xx]*Expp[Psi2[10^xx]]*gdc[10^xx])/s2[10^xx]],{xx,.5}]; 

(* Maximum deviation 2 Psi2 *) 

Pom[%] 

Pol[%%] 

 

FindMaximum[10 Log10[(s1[10^xx]*Expp[Psi2[10^xx]]*gdc[10^xx])/s2[10^xx]],{xx,1}]; 

(* Maximum deviation 3 Psi2 *) 

Pom[%] 

Pol[%%]  

 

FindMaximum[10 Log10[s1[10^xx]*Expp[Psi1[10^xx]]*gdc[10^xx]],{xx,0}]; 

(* Deviation between maxima Psi1 *) 

Pom[%] 

Pol[%%] 

 

FindMaximum[10 Log10[s1[10^xx]*Expp[Psi2[10^xx]]*gdc[10^xx]],{xx,0}]; 

(* Deviation between maxima Psi2 *) 

Pom[%] 

Pol[%%] 

 

Plot[{(* Figure12 *) 

  10 Log10[s1[10^y]], 

  10 Log10[s2[10^y]], 

  10(Log10[s1[10^y]]+Log10[E]*Psi2[10^y]), 

  10 (Log10[s1[10^y]]+Log10[E]*Psi2[10^y]+Log10[gdc[10^y]]), 

  Xline[y,Log10[2]] 

},{y,-0.8,1.4},PlotRange->{-11,4.5},PlotLabel->None,ImageSize->Full,LabelStyle-

>{FontFamily->"Chicago",10,Black}] 

 

" Deviation 2" 
 

cc=7.519884824; (* Sqrt[π] exact ξ Figure13 *) 

b11= 

 Plot[{10 Log10[s1[10^y]*Expp[Psi1[10^y]]/s2[10^y]]+10Log10[gdc[10^y]], 

    10 Log10[s1[10^y]*Expp[Psi2[10^y]]/s2[10^y]]+10Log10[gdc[10^y]]},{y, 

    -3,2},ImageSize->Full,LabelStyle->{FontFamily->"Chicago",10,Black}]; 

Show[b11,b71,b72,b4,PlotRange->{-3.02,1.42}] 

 

" Nulls" 
 

n1=y/.FindRoot[10 (Log10[s1[10^y]]+Log10[E]*Psi2[10^y])+ 

   10Log10[gdc[10^y]]-10Log10[s2[10^y]]==0,{y,0}] 
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n2=y/.FindRoot[10 (Log10[s1[10^y]]+Log10[E]*Psi2[10^y])+ 

   10Log10[gdc[10^y]]-10Log10[s2[10^y]]==0,{y,.75}] 

 

n3=y/.FindRoot[10 (Log10[s1[10^y]]+Log10[E]*Psi2[10^y])+ 

   10Log10[gdc[10^y]]-10Log10[s2[10^y]]==0,{y,1.1}] 

 

N[10^n1]    (* Level at 1st null *) 

ToString[10 Log10[s2[%]]]<>" dB" 

 

N[10^n2]    (* Level at 2nd null *) 

ToString[10 Log10[s2[%]]]<>" dB" 

 

N[10^n3]    (* Level at 3rd null *) 

ToString[10 Log10[s2[%]]]<>" dB" 

 

N[10^1.4142]    (* Level after 3rd null *) 

ToString[10 Log10[s2[%]]]<>" dB" 

 

" Correlation" 
 

FindRoot[10 Log10[s2[10^yy]]+50==0,{yy,1.15,1.18}] 

cc=8; (* Factor 8 approximated BGN exact Figure7 *) 

cc=7.519884824; (* Sqrt[π] exact ξ Figure8 *) 

F2={}; 

For[y=-3; 

  i=0,y<1.16415,++i,y+=.001; 

  AppendTo[F2,N[10 Log10[s2[10^y]]]]]; 

cc=8; (* Factor 8 approximated BGN exact Figure7 *) 

F5={}; 

For[y=-3; 

  i=0,y<1.16415,++i,y+=.001; 

  AppendTo[F5,N[10 (Log10[s1[10^y]*Expp[Psi1[10^y]]])]]]; 

cc=7.519884824; (* Sqrt[π] exact ξ Figure8 *) 

F6={}; 

For[y=-3; 

  i=0,y<1.16415,++i,y+=.001; 

  AppendTo[F6,N[10 (Log10[s1[10^y]]+Log10[E]*Psi2[10^y])]]]; 

cc=8; (* Factor 8 approximated BGN exact Figure10 *) 

F8={}; 

For[y=-3; 

  i=0,y<1.16415,++i,y+=.001; 

  AppendTo[F8, 

  N[10 (Log10[s1[10^y]*Expp[Psi1[10^y]]])+10Log10[gdc[10^y]]]]]; 

cc=7.519884824; (* Sqrt[π] exact ξ Figure11 *) 

F9={}; 

For[y=-3; 

  i=0,y<1.16415,++i,y+=.001; 

  AppendTo[F9,N[10 (Log10[s1[10^y]]+Log10[E]*Psi2[10^y])+10Log10[gdc[10^y]]]]]; 

{Correlation[F5,F2],Correlation[F6,F2],Correlation[F8,F2],Correlation[F9,F2]} 

 

" Displacement line" 
 

b = xtilde;  

b14=Plot[{(* Figure14 *) 

Log10[s2[10^y]], Log10[s1[10^y]],Xline[y,Log10[2]],  

  2*y + Log10[2], 2*y - Log10[xtilde]}, {y, -3.05, 3.05},  

  PlotRange -> {0.55, -5.05}, ImageSize -> Full,  

  LabelStyle -> {FontFamily -> "Chicago", 10, Black}] 

 

 Temperature CMBR" 
 

krz0 = qqq/.FindRoot[N[3.7ngN[qqq]]/ 

  N[fff*N[qqq]^(-4/3)*BRQ1[qqq]^3/deltaF[qqq]]* 

N[r1 (qqq)^1.5 BRQ1[qqq]]^3-32==0,{qqq,1,1.1}]; 

krz1 = qqq /.  

  FindRoot[Log10[3.7 ngN[10^qqq]] - Log10[fff*N[10^qqq]^(-4/3)* 

  BRQ1[10^qqq]^3/deltaF[10^qqq]] - Log10[ngN[10^qqq]] == 0, {qqq, 10, 20}]; 

krz2 = Log10[ngN[10^krz1]]; 
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krz3 = Log10[nmN[10^krz1]] + 6 Log10[Sqrt[r1] N[10^krz1]]; 

krz4 = Log10[nmN[Q0]] + 6 Log10[Sqrt[r1] N[Q0]]; 

krz5 = Log10[ngN[Q0]] + 6 Log10[Sqrt[r1] N[Q0]]; 

xmin=Log10[krz0]; 

ymin=N[Log10[32]]; 

 

b15 = Plot[(* Figure15 *) {hb1 Om1/18/k/(2 T (1 + y) ka0/ep0)^1.25},  

  {y, -0.52, 2},PlotRange -> {0.4, 7.18}, AxesOrigin -> {0, 0.6903},  

  ImageSize -> Full, PlotStyle -> Thickness[0.0038],  

  LabelStyle -> {FontFamily -> "Chicago", 10, Black}] 

b16 = Plot[(* Figure16 *) {Log10[hb1 Om1/18/k/(2*10^y ka0/ep0)^1.25]},  

  {y, -107.5, 30}, PlotStyle -> {Thickness[0.004],  

  RGBColor[0.5, 0.68, 0.37]}, PlotRange -> {-10, 168},  

  ImageSize -> Full, AxesOrigin -> {0, 03},  

  LabelStyle -> {FontFamily -> "Chicago", 10, Black}]; 

Show[b16, 

  GH[Log10[1.41678] + 32, -107.5, 30], 

  GV[Log10[9.53138*10^-9], -10, 168], 

  GV[Log10[T], -10, 168], 

  GV[Log10[t1/4], -10, 168]] 

 

" Exact world radius" 
 

b17a=Plot[{(* Figure17 *) 

  qqq^1.5 BRQ1[qqq]},{qqq, 0, 3}, 

  LabelStyle->{FontFamily->"Chicago",13,Black},ImageSize->Full, 

  PlotStyle->{RGBColor[0.27,0.39,0.54],Thickness[0.0035]}]; 

b17b=Plot[{(* Figure17 *) 

  qqq^2},{qqq, 0, 3}, 

  LabelStyle->{FontFamily->"Chicago",13,Black},ImageSize->Full, 

  PlotStyle->{RGBColor[1,0,.4],Thickness[0.0035]}]; 

Show[b17a,b17b,GV[0.5,-2,19]] 

 

b18a=Plot[{(* Figure18 *) 

  Log10[(10^qqq)^1.5 BRQ1[10^qqq]]},{qqq,-1,3}, 

  LabelStyle->{FontFamily->"Chicago",14,Black},ImageSize->Full,PlotRange->{-

4.2,6.6}, 

  PlotStyle->{RGBColor[0.27,0.39,0.54],Thickness[0.0035]}]; 

b18b=Plot[{(* Figure18 *) 

  Log10[N[10^qqq]^2]},{qqq,-1,3}, 

  LabelStyle->{FontFamily->"Chicago",14,Black},ImageSize->Full,PlotRange->{-

4.2,6.6}, 

  PlotStyle->{RGBColor[1,0,.4],Thickness[0.0035]}]; 

Show[b18a,b18b,GV[Log10[.5],-4.2,6.6]] 

 

" Maximum possible number of Line elements" 
 

b19a=Plot[{(* Figure19 *) 

  (qqq^0.5 BRQ1[qqq])^3}, {qqq, 0, 1.3}, PlotRange->{0,2.04}, 

  PlotStyle->{RGBColor[0.77,0.27,0.5],Thickness[0.0036]}]; 

b19b=Plot[{(* Figure19 *) 

  (qqq^-1 N[qqq]^2)^3}, {qqq, 0, 1.3}, PlotRange->{0,2.04}, 

  PlotStyle->{RGBColor[0.45,0.58,0.27],Thickness[0.0036]}]; 

Show[b19a,b19b,GV[N[.5],-6,18],GV[N[1],-6,18], 

  GH[N[1],-6,18],GH[N[1.71454],-6,18], 

  LabelStyle->{FontFamily->"Chicago",14,Black},ImageSize->Full] 

 

" alphaF(Q,T) and deltaF(Q,T) immediately after BB" 
 

b20a=Plot[(* Figure20 *){deltaF[(10^(t10)/t1)^.5]}, 

  {t10,(Log10[t1]-16),(Log10[t1]+16)},ImageSize->Full, 

  PlotLabel->None,LabelStyle->{FontFamily->"Chicago",12,Black}, 

  AxesOrigin->{(Log10[t1]-15),1}, PlotRange->{0,1.03}, 

  PlotStyle->{RGBColor[0.51,0.25,0.5],Thickness[0.0035]}]; 

b20b=Plot[{1/alphaF[10^t10]},{t10,-8,8},ImageSize->Full, 

  PlotLabel->None,LabelStyle->{FontFamily->"Chicago",12,Black}, 

  AxesOrigin->{8,0}, PlotRange->{0,150.4}, 

  PlotStyle->{RGBColor[0.51,0.25,0.5],Thickness[0.0035]}]; 

b20c=Show[b20b,GV[-0.18257004098843227,-8,145],GV[0,-8,145], 
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  GH[12.566378870075917,-8,8],GH[137.0357912660098,-8,8], 

  GH[59.15105929915021,-8,8]]; 

Overlay[{b20a,b20c}] 

 

b21a=Plot[(* Figure21 *) Log10[fff*N[10^qqq]^(-4/3)*BRQ1[10^qqq]^3/deltaF[10^qqq]], 

  {qqq,-.4,Log10[100Q0]},PlotStyle->{RGBColor[0.27,0.4,0.51],Thickness[0.0035]}, 

  LabelStyle->{FontFamily->"Chicago",12,Black},ImageSize->Full]; 

b21b=Plot[(* Figure21 *) 

Log10[ff*N[10^qqq]^(1/6)],{qqq,-.4,Log10[100Q0]}, 

  PlotStyle->{RGBColor[1,0.21,0.38],Thickness[0.0035]}, 

  LabelStyle->{FontFamily->"Chicago",12,Black},ImageSize->Full]; 

Show[b21a,b21b,GV[Log10[Q0],-8,80],GV[xmin,-5,10], 

  GH[Log10[ff Q0^(1/6)],-3,70],GH[Log10[ff (2/3)^(1/6)],-3,70]] 

b22a=Plot[{(* Figure22 *) Log10[fff*N[10^qqq]^(-

4/3)*BRQ1[10^qqq]^3/deltaF[10^qqq]]}, 

  {qqq,-1,5.05},PlotRange->{-4.05,1.85},PlotStyle->{RGBColor[0.27,0.39,0.54], 

  Thickness[0.0038]}]; 

b22b=Plot[{(* Figure22 *) Log10[ff*N[10^qqq]^(1/6)]},{qqq,-1,5.05}, 

  PlotRange->{-4.05,1.85},PlotStyle->{RGBColor[1,0.21,0.38],Thickness[0.0038]}]; 

Show[b22a,b22b,GV[Log10[1/2],-5,2],GV[Log10[2/3],-5,2],GV[xmin,-5,2], 

  GH[Log10[fff*N[2/3]^(-4/3)*BRQ1[2/3]^3/deltaF[2/3]],-3,70], 

  GH[Log10[ff (1)^(1/6)],-3,70],GV[Log10[8238],-5,2], 

  LabelStyle->{FontFamily->"Chicago",12,Black},ImageSize->Full] 

 

" Photon - Nucleon - ratio/m³" 
 

b23a=Plot[{(* Figure23 *)  

  Log10[3.7ngN[10^qqq]]-Log10[fff*N[10^qqq]^(-4/3)* 

  BRQ1[10^qqq]^3/deltaF[10^qqq]]},{qqq,-1,Log10[100Q0]}, 

  PlotStyle->{RGBColor[0.23,0.74,0.63],Thickness[0.0045]}]; 
b23b=Plot[{(* Figure23 *)  

  Log10[ngN[10^qqq]]},{qqq,-1,Log10[100Q0]}, 

  PlotStyle->{RGBColor[0.91,0.43,0.5],Thickness[0.0045]}]; 

Show[b23a,b23b,GV[Log10[Q0],-30,350],GV[krz1,-30,350],GV[xmin,-30,350], 

  GH[Log10[ngN[Q0]],-3,70],GH[krz2,-30,350],AxesOrigin->{0,0}, 

  LabelStyle->{FontFamily->"Chicago",12,Black},ImageSize->Full] 

 

" Real number of CMBR-photons and nucleons" 
 

krz1 "Equality x" 

krz3 "Equality 10^x" 

krz4 " Fermions nowadays" 

krz5 "Bosons nowadays" 

b24=Plot[{(* Figure24 *) 

  Log10[ngN[10^qqq]]+3Log10[r1 (10^qqq)^1.5 BRQ1[10^qqq]], 

  Log10[ngN[10^qqq]]+6Log10[Sqrt[r1] N[10^qqq]], 

  Log10[3.7ngN[10^qqq]]- 

  Log10[fff*N[10^qqq]^(-4/3)*BRQ1[10^qqq]^3/deltaF[10^qqq]]+3* 

  Log10[r1 (10^qqq)^1.5 BRQ1[10^qqq]], 

  Log10[nmN[10^qqq]]+6Log10[Sqrt[r1] N[10^qqq]]},{qqq,-.35,Log10[1000Q0]}]; 

Show[b24,GV[N[krz1],-20,100],GV[Log10[Q0],-20,100],GV[xmin,-20,100], 

  GV[3.91,-20,100],GH[ymin,-.5,70], 

  GH[krz3,-.5,70],GH[krz4,-.5,70],GH[krz5,-.5,70], 

  LabelStyle->{FontFamily->"Chicago",12,Black},ImageSize->Full] 

 

""Incoherent matter density" 
 

b25a=Plot[{(* Figure25 *) 

  Log10[M2/(10^qqq)]-3 Log10[r1 (10^qqq)^1.5 BRQ1[10^qqq]]-3}, 

  {qqq,-1,Log10[100 Q0]},PlotRange->{-45,435}, 

  PlotStyle->{RGBColor[0.5,0.31,0.62],Thickness[0.0045]}]; 

b25b=Plot[{(* Figure25 *) 

  Log10[M2/r1^3/(10^qqq)^7]-3},{qqq,-1,Log10[100 Q0]},PlotRange->{-45,435}, 

  PlotStyle->{RGBColor[0.5,0.68,0.37],Thickness[0.0045]}]; 

Show[b25b,b25a, 

  GV[Log10[Q0],-45,440],GV[Log10[10^krz1],-45,440], 

  GH[Log10[7.00663*10^397],-3,70],GH[Log10[7.30066*10^263]-3,-3,70], 

  GH[Log10[7.41027*10^-26]-3,-3,70],LabelStyle->{FontFamily->"Chicago",12, 

  Black},ImageSize->Full,AxesOrigin->{0,0}] 
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""Spatial dependence of incoherent matter density" 
 

q11=Function[Q0(1-(2#)^(2/3))]; 

b26=Plot[{(* Figure26 *) 

  Log10[N[M2/q11[qqq]]/N[r1 q11[qqq]^1.5 BRQ1[q11[qqq]]]^3/10^3], 

  Log10[N[M2/r1^3/q11[qqq]^7]/10^3]},{qqq,0,0.5}, 

  PlotRange->{-29.5,11},PlotStyle->RGBColor[0.333333, 0, 1]]; 

Show[b26,GV[0.5,-29.5,11],LabelStyle->{FontFamily->"Chicago",12,Black}, 

  ImageSize->Full,AxesOrigin->{0,Log10[M1/R^3]-3}] 

M1/R^3/10^3 

 
    


