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Abstract

We study the mathematical foundations of quantum optics. We consider the case that the un-
certainty principle exists because we think both of commutativeness and non-commutativeness and
then we derive natural value. On the other hand, we consider the case that the uncertainty prin-
ciple does not exist because we think only commutativeness and then we derive unnatural value.
We propose an experimental accessible inconsistency within quantum optical phenomena in terms
of imperfect sources and detectors. In more detail, we encounter an imperfect quantum state, the
dark count, and the quantum efficiency, which cannot be avoidable in a real experimental situation.
Such an error of the number of particles becomes less and less important as we increase trials more
and more by using the strong law of large numbers. As a result of our study, a perfect mathematical
model for quantum optical phenomena does not exist, at this stage.
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I. INTRODUCTION

Quantum mechanics (cf. [1—7]) gives explanations for
the microscopic behaviors of the nature. We see re-
searches concerning the mathematical formulations of
quantum mechanics. For example, the mathematical
foundations of quantum mechanics are discussed by
Mackey [8]. On the quantum logic approach to quantum
mechanics is also discussed by Gudder [9]. Conditional
probability and the axiomatic structure of quantum me-
chanics are also reported by Guz [10].

On the other hand, the incompleteness argument to
quantum mechanics itself is discussed by Einstein, Podol-
sky, and Rosen [11]. A hidden-variable interpretation of
quantum mechanics is a topic of research [2, 3] and the
no-hidden-variable theorem is discussed by Bell, Kochen,
and Specker [12, 13].

Recently, Nagata, Diep, and Nakamura discuss a novel
inconsistency within quantum mechanics without extra
assumptions about the reality of observables, using two
symmetric measurements. They are free from the order
of measurements themselves [14]. As the aim of this pa-
per, we propose an experimental accessible inconsistency
within quantum optical phenomena in terms of imper-
fect sources and detectors based on the argumentations
[14]. We hope not only theoretical physicists but also
experimental physicists can easily understand our claim.

In more detail, we encounter an imperfect quantum
state, the dark count, and the quantum efficiency, which
cannot be avoidable in a real experimental situation. If
we use the quantum predictions by even number 2N tri-
als, then the inconsistency increases by an amount that
grows linearly with N . In fact, such an error of the num-

ber of particles becomes less and less important as we
increase trials more and more by using the strong law of
large numbers.

II. EXPLANATIONS FOR THE

INCONSISTENCY USING COMMUTING

OBSERVABLES

The contradiction in this paper is explained this: If
we allow to take both of commutativeness and non-
commutativeness in consideration, there is the uncer-
tainty principle, which fact seems to be likely to be quan-
tum theory. And that seems to be natural to have the
value of “zero”.

On the other hand, we would discuss that the sum rule
is equivalent to the product rule for commuting observ-
ables. First, we define the functional rule as follows:

f(g(O)) = g(f(O)), (1)

where O is a Hermitian operator and f, g are appropriate
functions. Second, the sum rule is defined as follows:

f(A1 +A2) = f(A1) + f(A2), (2)

where A1, A2 are Hermitian operators. Finally, the prod-
uct rule is defined as follows:

f(A1 ·A2) = f(A1) · f(A2). (3)

This fact above (the sum rule is equivalent to the product
rule) is based on the property of these two Hermitian
operators themselves. This leads to the propositions that
they are valid even for the real numbers of the diagonal
elements of the two Hermitian operators.
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We may have [3, 14] the following relation between the
three rules:

The functional rule

⇔ The sum rule

⇔ The product rule (4)

In fact, the sum rule is equivalent to the product rule for
commuting observables.

And then, we can create a novel algebra that might be
called commuting observable algebra. The space for com-
muting observable algebra is different from our common
space in which Newton’s mechanics is created. In the
space holding commuting observable algebra, the oper-
ation Addition and the operation Multiplication are the
same as each other. In the normal space where New-
ton’s mechanics is held, the operation Addition and the
operation Multiplication are different from each other.

The space holding commuting observable algebra in
considering only commutativeness is opposite to quan-
tum theory. The reason of the inconsistency is because
there is not the uncertainty principle because of not being
noncommutative. Besides, holding commuting observ-
able algebra allows unnatural value to be “2”. Therefore,
we have a contradiction. The point of the contradiction
is based on our consideration that we have noncommuta-
tive property in quantum operations. This fact is based
on the uncertainty principle. Here we must notice theo-
retically that the space holding commuting observable al-
gebra thinking of only commutativeness is different from
the normal space holding Newton’s mechanics.

The scenario of this paper tells us that Newton’s me-
chanics is not held when thinking of only commutative-
ness. The other case is in the space holding commuting
observable algebra. On the other hand, in case of hold-
ing both of commutativeness and non-commutativeness,
the space not permitting commuting observable algebra
is allowed, and quantum theory is permitted, and then
the uncertainty principle exists.

III. AN OPTICAL EFFECT IN TWO

SYMMETRIC AND FINITE PRECISION

MEASUREMENTS

Let σz be the z-component Pauli observable. It could
be defined as follows:

σz ≡

�
1 0
0 −1

�
. (5)

Let | ↑� and | ↓� be eigenstates of σz such that σz| ↑� =
+1| ↑� and σz | ↓� = −1| ↓�. The measured results of
trials are either +1 or −1 in the ideal case.

When we consider a quantum optical experiment, we
have the following relations with the photon polarization
states:

| ↑� ↔ |H�,

| ↓� ↔ |V �, (6)

where |H� is a quantum state interpreted by a horizon-
tally polarized photon and |V � is a quantum state inter-
preted by a vertically polarized photon.

Let us introduce the random noise admixture ρnoise(=
1

2
I) into the quantum states, where I is the two-

dimensional identity operator. We consider the noisy
quantum states emerged from an imperfect source as fol-
lows:

ρ1 = (1− ǫ)| ↑�
↑ |+ ǫ× ρnoise,

ρ2 = (1− ǫ)| ↓�
↓ |+ ǫ× ρnoise. (7)

The value of ǫ(< 1) is interpreted as the reduction factor
of the contrast observed in the single-particle experiment.
Then we have tr[ρ1σz ] = +1− ǫ and tr[ρ2σz] = −1 + ǫ.

We might be in an inconsistency when the first result is
+1− ǫ by the measured observable σz, the second result
is −1 + ǫ by the measured observable σz , and then we
consider the existence of only the following proposition
[σz , σz] = 0 and we assign the value “1” for it. This
means the uncertainty principle does not exist because
we think only commutativeness.

In general, the physical situation is either [σz, σz ] �= 0
or [σz , σz ] = 0. This means the uncertainty principle
exists because we think both of commutativeness and
non-commutativeness.

We consider a value V which is the sum of two data
in an optical experiment. The measured results of trials
are either +1 − ǫ or −1 + ǫ. We suppose the number of
−1 + ǫ is equal to the number of +1 − ǫ. If the number
of trials is 2, then we have

V = (+1− ǫ) + (−1 + ǫ) = 0. (8)

We derive a general and natural necessary condition
of the product V × V of the value V . In this gen-
eral and natural case, the uncertainty principle exists
because we think both of commutativeness and non-
commutativeness, and we have

V × V = 0. (9)

This is the general and natural necessary condition when
we consider both the propositions [σz, σz] �= 0 and
[σz , σz] = 0 and we assign simultaneously the different
two values (“0” and “1”) for the propositions [σz, σz ] �= 0
and [σz, σz] = 0. We assign the value “0” for the propo-
sition [σz , σz] �= 0.

On the other hand, we can depict the optical experi-
mental data r1, r2 as follows: r1 = +1−ǫ and r2 = −1+ǫ.
Let us write V as follows:

V = r1 + r2. (10)

In the following, we evaluate a value (V × V ) and de-
rive a specific and unnatural necessary condition under
the supposition that the two measured observables are
commuting (that is, [σz, σz ] = 0 and we assign the value
“1” for it) and we do not consider the existence of the
following proposition [σz , σz ] �= 0. In this specific and
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unnatural case, the uncertainty principle does not exist
because we think only commutativeness.

We may introduce a supposition that the sum rule is
equivalent to the product rule [14]. The supposition that
the sum rule is equivalent to the product rule means a
supposition that the operation Addition is equivalent to
the operation Multiplication. Then, we have using com-
muting observable algebra,

V × V

= (r1 + r2)× (r1 + r2)

= (r1 × r1) + (r1 × r2) + (r2 × r1) + (r2 × r2)

= (r1 × r1) + (r1 + r2) + (r2 + r1) + (r2 × r2)

= (r1)
2 + (r1 + r2) + (r2 + r1) + (r2)

2

= (+1− ǫ)2 + (−1 + ǫ)2 = 2(+1− ǫ)2. (11)

Thus, we have

V × V = 2(+1− ǫ)2. (12)

This is possible for the specific and unnatural case that
we consider the existence of only the following proposi-
tion [σz, σz] = 0 and we assign the value “1” for it. In
this specific and unnatural case, the uncertainty principle
does not exist because we think only commutativeness.

We cannot assign simultaneously the same two values
(“1” and “1”) or (“0” and “0”) for the two propositions
(9) and (12) when we consider only the following propo-
sition [σz , σz ] = 0 and we assign the value “1” for it.
We derive the inconsistency when we consider the exis-
tence of only the following proposition [σz , σz ] = 0 and
we assign the value “1” for it.

In summary, we have been in the inconsistency when
the first result is +1−ǫ by measuring the Pauli observable
σz in the quantum state ρ1, the second result is −1+ǫ by
measuring the same Pauli observable σz in the quantum
state ρ2, and then we consider the existence of only the
following proposition [σz, σz] = 0 and we assign the value
“1” for it. This has meant the uncertainty principle does
not exist because we think only commutativeness and
then we derive unnatural value to be “2”.

IV. THE INCOMPLETENESS IN A REAL

EXPERIMENT

In a real experiment, there are no perfect detectors,
but the good ones with some errors. There is an un-
foreseen effect that an imperfect detector does not count
even though the particle indeed passes through the detec-
tor (the quantum efficiency). There is also an unforeseen
effect that an imperfect detector counts even though the
particle does not pass through the detector (the dark
count). In this case, we increase measurement outcomes
to even number 2N(≫ 1) and then we change such errors
into trivial things. If we use the quantum predictions by
even number 2N trials, then the inconsistency increases
by an amount that grows linearly with N . In fact, such

an error of the number of particles becomes less and less
important as we increase trials more and more by using
the strong law of large numbers.

Again, we consider the noisy quantum states emerged
from an imperfect source as follows:

ρ1 = (1− ǫ)| ↑�
↑ |+ ǫ× ρnoise,

ρ2 = (1− ǫ)| ↓�
↓ |+ ǫ× ρnoise. (13)

The value of ǫ(< 1) is interpreted as the reduction factor
of the contrast observed in the single-particle experiment.
Then we have tr[ρ1σz] = +1 − ǫ and tr[ρ2σz] = −1 + ǫ.
Thus the measured results of trials are either +1 − ǫ or
−1 + ǫ.

The odd number results are +1 − ǫ by measuring the
Pauli observable σz in the quantum state ρ1 and the even
number results are −1 + ǫ by measuring the same Pauli
observable σz in the quantum state ρ2. We suppose the
number of trials of obtaining the result −1+ǫ is N that is
equal to the number (N) of trials of obtaining the result
+1− ǫ. That is, the number of trials is even number 2N .

We consider a following value Vi(i = 1, 2, ..., N) which
is the sum of two data in an optical experiment:

Vi = (+1− ǫ) + (−1 + ǫ) = 0. (14)

We introduce the following function S(N) of even num-
ber 2N data in an optical experiment:

S(N) = (V1 × V1) + (V2 × V2) + ...+ (VN × VN ).(15)

If the number of trials is even number 2N , then we
have

S(N) = (V1 × V1) + (V2 × V2) + ...+ (VN × VN )

= N
��

(+1− ǫ) + (−1 + ǫ)
�
×
�
(+1− ǫ) + (−1 + ǫ)

��

= N
�
0× 0

�
= 0, (16)

where we use Vi = (+1− ǫ) + (−1 + ǫ) = 0. We derive a
general and natural necessary condition of the function
value S(N). In this general and natural case, the uncer-
tainty principle exists because we think both of commu-
tativeness and non-commutativeness, and we have

S(N) = 0. (17)

This is the general and natural necessary condition
when we consider both the proposition [σz, σz] �= 0 and
[σz , σz] = 0 and we assign simultaneously the different
two values (“0” and “1”) for the two propositions. We
assign the value “0” for the proposition [σz, σz] �= 0.

On the other hand, we can depict experimental data
r1, r2, r3, ..., r2N as follows: r1 = +1 − ǫ, r2 = −1 + ǫ,
r3 = +1− ǫ,..., r2N = −1+ ǫ. We can write Vi as follows:

Vi = r2i−1 + r2i, (18)

where

r2i−1 = +1− ǫ, r2i = −1 + ǫ. (19)
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Thus, we have

Vi = (+1− ǫ) + (−1 + ǫ). (20)

In the following, using commuting observable algebra,
we evaluate another value to Vi × Vi and derive a spe-
cific and unnatural necessary condition for the function
value S(N) under the supposition that the two measured
observables are commuting (that is, [σz , σz] = 0 and we
assign the value “1” for it) and we do not consider the
existence of the following proposition [σz , σz ] �= 0. In
this specific and unnatural case, the uncertainty principle
does not exist because we think only commutativeness.

We may introduce a supposition that the sum rule is
equivalent to the product rule [14]. The supposition that
the sum rule is equivalent to the product rule means a
supposition that the operation Addition is equivalent to
the operation Multiplication. Then, we have, after com-
muting observable algebra, (See (11)),

Vi × Vi = 2(+1− ǫ)2. (21)

Thus, we have

S(N)= (V1 × V1) + (V2 × V2) + ...+ (VN × VN )

= 2(+1− ǫ)2 + 2(+1− ǫ)2 + ...+ 2(+1− ǫ)2

= 2N(+1− ǫ)2. (22)

This is possible for the specific and unnatural case that
we consider the existence of only the following proposi-
tion [σz, σz] = 0 and we assign the value “1” for it. In
this specific case, the uncertainty principle does not exist
because we think only commutativeness.

We cannot assign simultaneously the same two values
(“1” and “1”) or (“0” and “0”) for the two propositions
(17) and (22) when we consider the existence of only
the following proposition [σz, σz] = 0 and we assign the
value “1” for it. We derive the inconsistency when we
consider the existence of only the following proposition
[σz , σz ] = 0 and we assign the value “1” for it.

If we use the quantum predictions by even number 2N
trials, then the inconsistency increases by an amount that
grows linearly with N . In fact, such an error of the num-
ber of particles becomes less and less important as we
increase trials more and more by using the strong law of
large numbers.

We note our argumentations here agree with the dis-
cussions in Section III when N = 1. From the relation
(17), we have the following general and natural value:

S(1) = 0. (23)

From the relation (22), using commuting observable alge-
bra, we have the following specific and unnatural value:

S(1) = V1 × V1 = 2(+1− ǫ)2. (24)

Thus, our discussions here are a natural expansion of
Section III.

In summary, we have been in the inconsistency when
measurement outcomes are even number 2N(≫ 1), the

odd number results are +1 − ǫ by measuring the Pauli
observable σz in the quantum state ρ1, the even number
results are −1+ǫ by measuring the same Pauli observable
σz in the quantum state ρ2, and then we consider the ex-
istence of only the following proposition [σz , σz] = 0 and
we assign the value “1” for it. This has meant the un-
certainty principle does not exist because we think only
commutativeness and then we derive unnatural value to
be “2”.

V. CONCLUSIONS

In conclusions, we have studied the mathematical foun-
dations of quantum optics. We have considered the case
that the uncertainty principle exists because we think
both of commutativeness and non-commutativeness and
then we derive natural value. On the other hand, we
have considered the case that the uncertainty principle
does not exist because we think only commutativeness
and then we derive unnatural value. We have proposed
an experimental accessible inconsistency within quantum
optical phenomena in terms of imperfect sources and de-
tectors. In more detail, we have encountered an imperfect
quantum state, the dark count, and the quantum effi-
ciency, which cannot be avoidable in a real experimental
situation. Such an error of the number of particles has
become less and less important as we increase trials more
and more by using the strong law of large numbers. As
a result of our study, a perfect mathematical model for
quantum optical phenomena does not have existed, at
this stage.
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