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Abstract

It happens that Nagata and Nakamura discuss a novel inconsistency within quantum mechanics
when accepting we use the property of the Kronecker delta notation without extra assumptions about
the reality of observables. Here, we discuss a further strong novel inconsistency within quantum
mechanics without the property of the Kronecker delta notation. Based on the argumentations, we
propose an experimental accessible inconsistency in terms of imperfect sources and detectors. In
more detail, we encounter an imperfect quantum state, the dark count, and the quantum efficiency,
which cannot be avoidable from a real experimental situation. Such an error of the number of
particles becomes less and less important as we increase trials more and more by using the strong
law of large numbers. Our discussion gives in some sense the limitation of von Neumann’s model
for quantum measurement theories.

PACS numbers: 03.65.Ta, 42.50.-p, 03.65.Ca

Keywords: Quantum measurement theory, Quantum optics, Formalism

I. INTRODUCTION

Quantum mechanics (cf. [1—7]) gives explanations for
the microscopic behaviors of the nature. We see re-
searches concerning the mathematical formulations of
quantum mechanics. For example, the mathemati-
cal foundations of quantum mechanics is discussed by
Mackey [8]. On the quantum logic approach to quantum
mechanics is also discussed by Gudder [9]. Conditional
probability and the axiomatic structure of quantum me-
chanics are also reported by Guz [10].

von Neumann’s mathematical model for quantum me-
chanics is logically successful [4]. The axiomatic system
for the mathematical model is a consistent one. Thus, we
cannot say that von Neumann’s mathematical model has
an inconsistency. What is the inconsistency to be dis-
cussed in this paper? We cannot expand von Neumann’s
mathematical model more in handling real experimen-
tal data [11, 12]. Mathematically, von Neumann’s model
is logically consistent, which fact is true. However, von
Neumann’s theory is questionable in the sense that the
mathematical model does not always expand to real ex-
perimental data. And there is the inconsistency if we
apply von Neumann’s model to expanding even a simple
physical situation. In short, von Neumann’s mathemati-
cal model might not be useful in that case.

The inconsistency to be discussed in this paper is sig-
nificant. von Neumann’s mathematical model has the
qualification to be true axiomatic system for quantum
mechanics. Therefore, we cannot modify the axioms
based on the nature of Matrix theory. Nevertheless, we
encounter an inconsistency, probably due to the nature of
Matrix theory, within von Neumann’s theory, that is, his
mathematical model is perfect but his physical thought
might be a little bit questionable today.

Of course our analyses rely on von Neumann’s model
and the possible positions of the inconsistencies lie out-
side von Neumann’s model. Thus we cannot sometimes
expand von Neumann’s model to experimental situations.
In short, we might have to limit in some sense his model
for quantum measurement theories.

On the other hand, the incompleteness argument to
quantum mechanics itself is discussed by Einstein, Podol-
sky, and Rosen [13]. A hidden-variable interpretation of
quantum mechanics is a topic of research [2, 3] and the
no-hidden-variable theorem is discussed by Bell, Kochen,
and Specker [14, 15]. The Kochen-Specker theorem based
on the Kronecker delta notation is also discussed by Na-
gata, Patro, and Nakamura [16]. The Kronecker delta
notation seems to be necessary for quantum mechanics
when using Matrices and Vectors.

Recently, Nagata and Nakamura discuss a novel incon-
sistency within quantum mechanics when accepting we
use the property of the Kronecker delta notation with-
out extra assumptions about the reality of observables
[17]. Here, we discuss a further strong novel inconsistency
within quantum mechanics without the property of the
Kronecker delta notation. Based on the argumentations,
we propose an experimental accessible inconsistency in
terms of imperfect sources and detectors.

In more detail, we encounter an imperfect quantum
state, the dark count, and the quantum efficiency, which
cannot be avoidable from a real experimental situation.
If we use the quantum predictions by 2N trials, then the
inconsistency increases by an amount that grows linearly
with 4N2. In fact, such an error of the number of parti-
cles becomes less and less important as we increase trials
more and more by using the strong law of large numbers.
Our discussion gives in some sense the limitation of von
Neumann’s model for quantum measurement theories.
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II. REMARKABLE PHENOMENON IN

QUANTUM MECHANICS

Let σz be z-component Pauli observable. It could be
defined as follows:

σz ≡

�
1 0
0 −1

�
. (1)

Let | ↑� and | ↓� be eigenstates of σz such that σz| ↑� =
+1| ↑� and σz | ↓� = −1| ↓�. The measured results of
trials are either +1 or −1 in the ideal case.
When we consider a quantum optical experiment, we

have the following relation with the photon polarization
states:

| ↑� ↔ |H�,

| ↓� ↔ |V �, (2)

where |H� is a quantum state interpreted by a horizon-
tally polarized photon and |V � is a quantum state inter-
preted by a vertically polarized photon.
Let us introduce the random noise admixture ρnoise(=

1

2
I) into the quantum states, where I is the two-

dimensional identity operator. We consider the noisy
quantum states emerged from an imperfect source as fol-
lows:

ρ1 = (1− ǫ)| ↑��↑ |+ ǫ× ρnoise,

ρ2 = (1− ǫ)| ↓��↓ |+ ǫ× ρnoise. (3)

The value of ǫ(< 1) is interpreted as the reduction factor
of the contrast observed in the single-particle experiment.
Then we have tr[ρ1σz] = +1− ǫ and tr[ρ2σz ] = −1 + ǫ.
We introduce a value V which is the sum of two data in

an experiment. The measured results of trials are either
+1− ǫ or −1+ ǫ. We suppose the number of trials of ob-
taining the result −1 + ǫ is equal to the number of trials
of obtaining the result +1− ǫ. We can depict experimen-
tal data r1, r2 as follows: r1 = +1 − ǫ and r2 = −1 + ǫ.
Let us write V as follows:

V =

2�

l=1

rl. (4)

Note the following inequality:

(V × V ) ≤ 0. (5)

Hence we have

(V × V )max = 0. (6)

On the other hand, we evaluate the value (V × V )
and derive logically the other necessary condition. We
suppose that the two operations Sum rule and Product
rule commute with each other [18]. We have

(V × V ) ≤

2�

l=1

2�

l′=1

|rlrl′ | = 4, (7)

where we use |rlrl′ | = 1. The above inequality is logically
saturated when

rl = rl′ , (8)

because the following holds:

|rlrl′ | = rlrl′ . (9)

And it is possible since we have

�{l|rl = +1}� = �{l′|rl′ = +1}�,

�{l|rl = −1}� = �{l
′|rl′ = −1}�. (10)

Thus the above inequality is logically saturated. Clearly,
we have the maximum for the value as

(V × V )max = 4. (11)

We cannot assign simultaneously the same two values
(“1” and “1”) or (“0” and “0”) for the two suppositions
(6) and (11). Thus, we are in the inconsistency.
In summary, we have been in the inconsistency when

the first result is +1−ǫ by measuring the Pauli observable
σz in the quantum state ρ1, the second result is −1+ǫ by
measuring the same Pauli observable σz in the quantum
state ρ2, and then [σz , σz ] = 0.

III. THE INCOMPLETENESS OF A REAL

EXPERIMENT

In a real experiment, a perfect detector is not feasible.
There is an unforeseen effect that an imperfect detector
does not count even though the particle indeed passes
through the detector (the quantum efficiency). There
is also an unforeseen effect that an imperfect detector
counts even though the particle does not pass through
the detector (the dark count). In this case, we increase
measurement outcomes to 2N(≫ 1) and then we change
such errors into trivial things. If we use the quantum
predictions by 2N trials, then the inconsistency increases
by an amount that grows linearly with 4N2. In fact, such
an error of the number of particles becomes less and less
important as we increase trials more and more by using
the strong law of large numbers.
We introduce a value V which is the sum of 2N data in

an experiment. The measured results of trials are either
+1 − ǫ or −1 + ǫ. We suppose the number of trials of
obtaining the result −1 + ǫ is N that is equal to the
number (N) of trials of obtaining the result +1− ǫ. We
can depict experimental data r1, r2, r3, ... as follows: r1 =
+1− ǫ, r2 = −1+ ǫ, r3 = +1− ǫ and so on. Let us write
V as follows:

V =

2N�

l=1

rl. (12)

Note the following inequality:

(V × V ) ≤ 0. (13)
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Hence we have

(V × V )max = 0. (14)

In the following, we evaluate the value of (V × V ) and
derive the other necessary condition. We suppose that
the two operations Sum rule and Product rule commute
with each other [18]. We have

(V × V ) ≤
2N�

l=1

2N�

l′=1

|rlrl′ | = 4N2(+1− ǫ)2, (15)

where we use |rlrl′ | = (+1− ǫ)2. The above inequality is
logically saturated when

rl = rl′ , (16)

because the following holds:

|rlrl′ | = rlrl′ . (17)

And it is possible since we have

�{l|rl = +1− ǫ}� = �{l′|rl′ = +1− ǫ}�,

�{l|rl = −1 + ǫ}� = �{l
′|rl′ = −1 + ǫ}�. (18)

Thus the above inequality is logically saturated. Clearly,
we have the calculation result as

(V × V )max = 4N2(+1− ǫ)2. (19)

We cannot assign simultaneously the same two values
(“1” and “1”) or (“0” and “0”) for the two suppositions
(14) and (19). Thus, we are in the inconsistency.
If we use the quantum predictions by 2N trials, then

the inconsistency increases by an amount that grows lin-
early with 4N2. In fact, such an error of the number of
particles becomes less and less important as we increase
trials more and more by using the strong law of large
numbers.
In summary, we have been in the inconsistency when

the odd number results are +1−ǫ by measuring the Pauli
observable σz in the quantum state ρ1, the even number
results are −1+ǫ by measuring the same Pauli observable
σz in the quantum state ρ2, and then [σz , σz ] = 0.

IV. CONCLUSIONS

In conclusions, recently, Nagata and Nakamura have
discussed a novel inconsistency within quantum mechan-
ics when accepting we use the property of the Kronecker
delta notation without extra assumptions about the re-
ality of observables. Here, we have discussed a further
strong novel inconsistency within quantum mechanics
without the property of the Kronecker delta notation.

Based on the argumentations, we have proposed an ex-
perimental accessible inconsistency in terms of imperfect
sources and detectors.
In more detail, we have encountered an imperfect

quantum state, the dark count, and the quantum effi-
ciency, which cannot be avoidable from a real experi-
mental situation. However, such an error of the number
of particles has become less and less important as we in-
crease trials more and more by using the strong law of
large numbers. Our discussion has given in some sense
the limitation of von Neumann’s model for quantum mea-
surement theories.
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