Mirror composite numbers. Their factorization and their relationship with Goldbag conjecture.

Ángeles Jimeno Yubero, Óscar E. Chamizo Sánchez,
Redonda Kingdom University, Faculty of Sciences, Department of Mathematics.

Abstract:

In this paper we present the concept of mirror composite numbers. Mirror composite numbers are composite numbers of the form 2n-p for some n positive natural number and p prime. We shall show that the factorization of these numbers have interesting properties in order to face the Goldbach conjecture [1][2] by the divide et impera method.

Definitions:
From now on, m and n are positive integer numbers, p and q are prime numbers.
All prime numbers p \(\geq 5 \) are of the form 6m+1 or 6m-1. A prime of the form 6m+1 is a right prime; a prime of the form 6m-1 is a left prime.
A mirror composite number is a composite number of the form 2n-p for some n and some prime p \(\geq 5 \).
Given a mirror composite 2n-p, if p=6m+1, i.e., if p is a right prime, 2n-p is a right mirror composite (r.m.c.)
Given a mirror composite 2n-p, if p=6m-1, i.e., if p is a left prime, 2n-p is a left mirror composite (l.m.c.).

Lemma 1.
Fixed n, if 3 is a factor of some l.m.c (respectively r.m.c.), 3 is a factor of every l.m.c. (r.m.c.) and 3 is not a factor of any r.m.c. (l.m.c)
Proof:
The difference between two l.m.c. (r.m.c.) is 6n. If 3 | m, 3 | m±6n. On the other hand, if 3 | 2n-(6m-1), then 3 \(\not| \) 2n-(6m+1) and viceversa.

Lemma 2.
Fixed n, if q≠3 is a prime factor of two different l.m.c. (respectively r.m.c.), the difference between them is a multiple of 6q so the minimum gap between two consecutive occurrences of factor q is 6q for all l.m.c. (r.m.c).
Proof:
If q | 2n-(6x-1) and q | 2n-(6y-1) exists z such that zq=6(x-y), so z is multiple of 6, given that q is a prime and q ≠ 2,3.
If q | 2n-(6x+1) and q | 2n-(6y+1) exists z such that zq=6(x-y), so z is
multiple of 6, given that q is a prime and q ≠ 2,3.

Goldbach conjecture states that for all n and all p such that 3≤p≤n, some 2n-p is a prime, i.e., not every 2n-p is composite.

Let’s assume for the sake of contradiction that exists n such that every 2n-p is composite. Then, 3 consecutive odd numbers, 2n-3, 2n-5 and 2n-7 are composite, so one and only one of them must be multiple of 3.

Case A: 3 | 2n-7:

3 | 2n-7 ⇒ 3 | 2n-(6m+1) for all m (**Lemma 1**). Every right mirror composite is a multiple of 3 and no left mirror composite is a multiple of 3. So all elements of the sequence:

2n-3, 2n-5, 2n-11, 2n-17, 2n-23, 2n-29, 2n-41, ..., 2n-q

where q ≥ 5 is a left prime, must be factorized. There are k consecutive primes p_i (i=1,2,3, ..., k) from p_1=5 to p_k, where p_k is the largest prime p_k ≤ √2n-5, available for that factorization.

Now, given the correlative sequence of odd numbers 2n-3, 2n-5, 2n-7, 2n-9, 2n-11, 2n-13, 2n-15, 2n-a..., let be 2n-a; the number containing the first occurrence of prime factor p_i in that sequence. Notice that:

For each p_i, a; is unique.

3≤a;≤2p_i+1.

For some i, a; = 3; for some i, a;=5; for some i, a;=11 MOD p_i; for some i, a;=17 MOD p_i; for some i, a;=23 MOD p_i; and so on.

2n-q, i.e., 2n-(6m-1), is composite if and only if exists i such that 6m-1≡a; mod p_i (**Lemma 2**).

Now, let’s state conditions in order to find some 2n-q with q=6m-1 and q inside the interval √2n-5 ≤ q ≤ n that can not be factorized:

1) q is a prime, i.e., q is not multiple of any p_i, so 6m-1≡ 0 mod p_i for all i.

2) There is no p_i factor available for 2n-q, so 6m-1 ≠ a; mod p_i for all i.

<table>
<thead>
<tr>
<th>Prime condition for 6m-1</th>
<th>No factor available condition for 2n-(6m-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6m ≡ 1 mod 5</td>
<td>6m ≡ (a_1+1) mod 5</td>
</tr>
<tr>
<td>6m ≡ 1 mod 7</td>
<td>6m ≡ (a_2+1) mod 7</td>
</tr>
</tbody>
</table>
6m \equiv 1 \mod 11 \\
6m \equiv 1 \mod 13 \\
………….. \\
6m \equiv 1 \mod p_k \\
6m \equiv (a_3+1) \mod 11 \\
6m \equiv (a_4+1) \mod 13 \\
………….. \\
6m \equiv (a_k+1) \mod p_k \\

Hence for each p, there are at least p_i-2 remainders moduli p_i that fullfill the conditions. That amounts up to a minimum of $(p_1-2)(p_2-2)(p_3-2)\ldots(p_k-2)$, id est, $3.5.9.11\ldots(p_k-2)$ different systems of linear congruences with prime moduli. The chinese remainder theorem ensures that each one of them has a different and unique solution moduli $5.7.11.13\ldots p_k$.

It’s necessary then to prove that exists at least a multiple of 6 that fullfills the preceding conditions inside the interval:

$$\sqrt{2n-5} < 6m < n$$

So let’s prove that at least one in $3.5.9.11\ldots(p_k-2)$ solutions from $5.7.11.13\ldots p_k$ systems lies inside the aforementioned interval.

Let be M the highest number of consecutive occurrences of $6m$ that do not fullfill the conditions. Is not easy to figure out the value of M, given the unpredictable nature of prime number distribution. But we can prove that exists an upper bound S for M such that for sufficient large n:

$$S < \left\lfloor \frac{n-\sqrt{2n-5}}{6} \right\rfloor$$

(1)

Given p_k, an upper bound for the total number of occurrences of each one of the two remainders moduli p are $2 \left\lceil \frac{p_k}{p} \right\rceil$. So

$$S = 2\left(\left\lceil \frac{p_k}{5} \right\rceil + \left\lceil \frac{p_k}{7} \right\rceil + \left\lceil \frac{p_k}{11} \right\rceil + \left\lceil \frac{p_k}{13} \right\rceil + \ldots + \left\lceil \frac{p_k}{p_{k-1}} \right\rceil + 1 \right)$$

is an upper bound for M:

<table>
<thead>
<tr>
<th>k</th>
<th>p_k</th>
<th>M</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>13</td>
<td>16</td>
</tr>
</tbody>
</table>

1 For all those who, like myself, enjoy practical questions that sometimes shed light on some more abstract matter of discussion, the problem to determine an accurate value for M is the same as the following: Suppose you may not work on 2 predetermined days in five, 2 predetermined days in seven, 2 days in 11, 2 in 13 and so on until 2 days in p_k days. What is the maximum number, as a function of p_k, of consecutive days off?
In turn:

\[
\left\lfloor \frac{p_k}{5} \right\rfloor + \left\lfloor \frac{p_k}{7} \right\rfloor + \left\lfloor \frac{p_k}{11} \right\rfloor + \left\lfloor \frac{p_k}{13} \right\rfloor + \ldots + \left\lfloor \frac{p_k}{p_{k-1}} \right\rfloor + 1 < \]

\[
\frac{p_k}{2} + \frac{p_k}{3} + \frac{p_k}{5} + \frac{p_k}{7} + \frac{p_k}{11} + \ldots + \frac{p_k}{p_{k-1}} + 1 =
\]

\[
p_k \left\{ \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \ldots + \frac{1}{p_{k-1}} + \frac{1}{p_k} \right\}
\]

The series between brackets is the well known partial summation of the reciprocal of the primes whose divergence was proved by Euler in 1737 together with the relationship:

\[
\sum_{p \leq x} \frac{1}{p} \approx \log\log(x)
\]

Taking \(x = p_k\) and given that an upper bound for all \(x > e^4\) in (2) is \(\log\log x + 6\) [3] allows us to state:

\[
S < 2p_k(\log\log p_k + 6)
\]

Now it’s immediate to conclude, since \(p_k \leq \sqrt{2n-5}\), that (1) holds for, let’s say, every \(2n \geq 10^6\).

For every \(2n < 10^6\) the verification of the conjecture have already been settled.

That completes the demonstration.

Hence, for all \(2n\) such that \(3 \mid 2n-7\), i.e., for all \(2n \equiv 1 \mod 3\), exists some \(2n-q\) that can not be factorized, so \(2n-q\) is prime and the conjecture holds for all \(2n \equiv 1 \mod 3\).

Case B: \(3 \mid 2n-5\):

\(3 \mid 2n-5 \Rightarrow 3 \mid 2n-(6m-1)\) for all \(m\) (Lemma 1). So every left mirror composite is a multiple of 3 and no right mirror composite is a multiple of 3...

Following the same thought process than before, with \(q\) a right prime
of the form $6m+1$, it’s straightforward to conclude that the conjecture holds for all $2n$ such that $3|2n-5$, i.e., for all $2n \equiv 2 \mod 3$.

Case C: $3|2n-3$:

Interesting matter of forward research.

November, 6, 2023.
Ángeles Jimeno Yubero & Óscar E. Chamizo Sánchez.
ajedrezjrodrigo@gmail.com
PA³.

References:

1. Christian Goldbach, *Letter to L. Euler, June 7 (1742).*