On Fermat’s Last Theorem

C. Villacres— carlosvillacresjr@outlook.com

October 25, 2023

Abstract

Here we approach the problem of FLT using the Binomial Theorem and two cases: n even or odd.

1 Fermat’s Last and the Binomial Theorem

\[a, b, c \in R^+ \]
and \(n \geq 2 \in Z^+ \)

\[(a + b - c)^n = \sum_{j=0}^{n-1} \binom{n}{j} (-c)^j (a+b)^{n-j} \]

1.1 n, even

Suppose \(n \) is even, we get that

\[= c^n + \sum_{j=1}^{n-1} \binom{n}{j} (-c)^j (a+b)^{n-j} + (a+b)^n \]

Now we expand the last term,

\[(a+b)^n = a^n + \sum_{j=1}^{n-1} \binom{n}{j} a^j b^{n-j} + b^n \]

So,

\[(a+b-c)^n = c^n + \sum_{j=1}^{n-1} \binom{n}{j} (-c)^j (a+b)^{n-j} + a^n + \sum_{j=1}^{n-1} \binom{n}{j} a^j b^{n-j} + b^n \]

\[a^n + b^n = c^n \implies \]

1
\[(a + b - c)^n = 2c^n + \sum_{j=1}^{n-1} \binom{n}{j} (-c)^j (a + b)^{n-j} + \sum_{j=1}^{n-1} \binom{n}{j} a^j b^{n-j} \]

\[= 2c^n + \sum_{j=1}^{n-1} \binom{n}{j} [(-c)^j (a + b)^{n-j} + a^j b^{n-j}] \tag{1} \]

If we can show that this polynomial is divisible by \((c - a)\), then it must also be divisible by \((c - b)\) since \(a\) and \(b\) are interchangeable. To do this, we will look at the same polynomial, but expanded differently.

\[(a + b - c)^n = (-1)^n (c - a - b)^n = (c - a - b)^n \implies \]

\[= b^n + \sum_{j=1}^{n-1} \binom{n}{j} (-b)^j (c - a)^{n-j} + a^n + \sum_{j=1}^{n-1} \binom{n}{j} (-a)^j (c)^{n-j} + c^n \]

\[= 2c^n + \sum_{j=1}^{n-1} \binom{n}{j} [(-b)^j (c - a)^{n-j} + (-a)^j e^{n-j}] \]

This shows that if \((c - a)\) is a factor of the polynomial, we only need to look at the second part of the sum along with the leading coefficient to check.

We must show that

\[(c - a) \mid 2c^n + \sum_{j=1}^{n-1} \binom{n}{j} (-a)^j e^{n-j}. \]

If we plug in \(c = a\) and get this equal to 0, then the original polynomial has a factor of \((c - a)\) (as well as \((c - b)\)) for all \(n\).

We get that \(c = a \implies \)

\[2a^n + \sum_{j=1}^{n-1} \binom{n}{j} (-a)^j a^{n-j} = 2a^n + \sum_{j=1}^{n-1} \binom{n}{j} (-1)^j a^j a^{n-j} = 2a^n + a^n \sum_{j=1}^{n-1} \binom{n}{j} (-1)^j \]

If we look at Pascals Triangle, we can clearly see why this alternating sum would be \(= -2\). Let’s look at the 5th and 6th row of Pascals’s Triangle as an example when \(n = 6\).

For \(n = 6\), the terms of the polynomial would be

\[2a^6 + a^6 (-6 + 15 - 20 + 15 - 6).\]
This can be rewritten with the 5th line of Pascals coefficients:

\[2a^n + a^n \left(-(1+5) + (5+10) - (10+10) + (10+5) - (5+1) \right). \]

So we can see that no matter what even n'th row we are in (without the 1's) we can use the (n-1)th row to rewrite the sum and show all middle coefficients cancel except the leading and last 1, so we get that

\[
\sum_{j=1}^{n-1} \binom{n}{j} (-1)^j = -2 \text{ for all even } n.
\]

This \(\implies 2a^n + a^n \sum_{j=1}^{n-1} \binom{n}{j} (-1)^j = 0 \text{ for all } n, \text{ even.} \)

This shows us that \((c - a)\) and \((c - b)\) are factors of the original equation.

Finally, we get that for \(n, \text{ even:} \)

\[
(a + b - c)^n = (c - a)(c - b)g_1(n) \text{ where}
\]

\[
g_1(n) = \frac{2c^n + a^n \sum_{j=1}^{n-1} \binom{n}{j} \left[(-c)^j (a + b)^{n-j} + a^j b^{n-j} \right]}{(c - a)(c - b)}.
\]

We note here that \(c - a \) and \(c - b \) divide this polynomial just once each for any \(n \). In other words, \(g_1 \) is not a rational equation and each terms has integer coefficients.

1.2 n, odd

For \(n \text{ odd} \), we do something similar. We get that

\[
(a + b - c)^n = -c^n + \sum_{j=1}^{n-1} \binom{n}{j} (-c)^j (a + b)^{n-j} + a^n + \sum_{j=1}^{n-1} \binom{n}{j} a^j b^{n-j} + b^n
\]

And \(a^n + b^n = c^n \implies \)

\[
(a + b - c)^n = \sum_{j=1}^{n-1} \binom{n}{j} \left[(-c)^j (a + b)^{n-j} + a^j b^{n-j} \right]
\]
We can show that \((a + b) \mid \sum_{j=1}^{n-1} \binom{n}{j} a^j b^{n-j}\) by plugging in \(a=-b\). If the result is zero, then \((a+b)\) is a factor.

\[
\sum_{j=1}^{n-1} \binom{n}{j} (-b)^j b^{n-j} = b^n \sum_{j=1}^{n-1} \binom{n}{j} (-1)^j = b^n \cdot 0 = 0
\]

This is, again, because the odd rows of Pascal’s Triangle would cancel each other out as each term would have its negative in the same row.

Let’s define \(g(n)\) s.t.

\[
g(n) = \begin{cases} (c-a)(c-b)g_1(n), & \text{if } n \text{ is even} \\ (a+b)g_2(n), & \text{if } n \text{ is odd} \end{cases}
\]

Where \(g_1(n) = \)

\[
2c^n + \sum_{j=1}^{n-1} \binom{n}{j} [(-c)^j (a+b)^{n-j} + a^j b^{n-j}] \\
\frac{(c-a)(c-b)}{(c-a)(c-b)}
\]

and \(g_2(n) = \)

\[
\sum_{j=1}^{n-1} \binom{n}{j} [(-c)^j (a+b)^{n-j-1} + \frac{a^j b^{n-j}}{(a+b)}].
\]

1.3 Fermat’s Last Theorem, proof

We have that

\[(a + b - c)^n = g(n).\]

If \(a, b, c\) are integers, then \(a + b - c = k\) and \(k^n\) should also be integers. Since \(g(n)\) can be factored, this means that this integer would have to be a multiple of \((c-a)\) and \((c-b)\) for \(n\), even. And for \(n\), odd it would have to be a multiple of \((a+b)\).

Let \(k\) be some integer s.t. for \(n\) even,
\[k = (c - a)\hat{k} \implies k^n = (c - a)^n\hat{k}^n = g(n) \]
\[\implies \hat{k}^n = g(n)/(c - a)^n. \]

We'll show this works for all factors of \(g(2) \), where the factor of \('2' \) will be a general case.

For \(n = 2 \), we get that \(g(2) = 2(c - a)(c - b) \) and
\[k^2 = 2^2\hat{k}^2 \implies \hat{k}^2 = (c - a)(c - b)/2 \]

We can let
\[a = (c - b) + g(2)^{1/2}, \]
\[b = (c - a) + g(2)^{1/2}, \]
\[c = (a + b) - g(2)^{1/2} \]

and define \(r, s \) such that
\[r = (c - a)^{1/2}, s = [2(c - b)]^{1/2}. \]

So we get
\[a = s^2/2 + rs \]
\[b = r^2 + rs \]
\[c = s^2/2 + r^2 + rs \]

Finally we get
\[\hat{k}^2 = (c - a)(c - b)/2 = (r^2)(s^2/2)/2 = (rs/2)^2. \]

We let \(s \) be the even integers (since \(s \) is integer factors of \(\sqrt{2} \)), we get that \(\hat{k} \) is always an integer.

We will show this also works for \(k = (c - a)\hat{k} \) and \(k = (c - b)\hat{k} \). We get that
\[k^2 = (c - a)^2\hat{k}^2 \implies \hat{k}^2 = 2(c - b)/(c - a) = 2(s^2/2)/r^2 = (s/r)^2. \]
And,
\[\hat{k}^2 = 2(c - a)/(c - b) = (2r/s)^2 \]
\(\hat{k} \) are integers if \(s/r \) and \(2r/s \) are integers respectively.
For $n \geq 4$, $g_1(n)/(c - a)^{n-1}$ has only nonzero remainders, so we get a contradiction that \hat{k} is an integer so k is also not an integer.

For example, for $n = 4$ we get that

$$\hat{k}^4 = (c - b)g_1(4)/(c - a)^3$$

Where $g_1(4) = 2(c - a)(c - b) + 4(a^2 + ab + b^2)$.

\hat{k} clearly will not be an integer if we are dividing by $(c - a)^3$.

We have shown that only when $n = 2$ can we have integer solutions to $a^n + b^n = c^n$.

The proof for n, odd is the same except we use the fact that for any odd n, $g(n)$ can be factored by $(a+b)$.

End proof.

Note: We could also show that for n odd, $g(n)$ is also factorable by $(c-a)(c-b)$ for all n odd (and thus all n). This would generalize the proof further. However, for n odd, given that it was divisible by $(a+b)$ was easier to show and enough.

2 n=2

\[
(a + b - c)^2 = g(2) = 2(c - a)(c - b) \tag{3}
\]

2.1 Pythagorean Triples and $\sqrt{2}$

\[
(a + b - c)^2 = g(2) = 2(c - a)(c - b) \implies
\]

We have the Pythagorean Triple generator where s is any even integer, r any integer using the substitution from before:

\[
a = \frac{s^2}{2} + rs
\]

\[
b = r^2 + rs
\]

\[
c = \frac{s^2}{2} + r^2 + rs
\]
Because of the relevance of right triangles, we get trigonometry.

\[a = k(\cos\theta), \quad b = k(\sin\theta), \quad c = k \]

\[\Rightarrow \]

\[(\cos\theta + \sin\theta - 1)^2 = 2(1 - \cos\theta)(1 - \sin\theta) \]

Figure 1: This shows the identity as a function of theta. Notice the identity is \(\geq 0 \). It also has an interesting rhythm to it.
Figure 2: The derivative resembles the rhythm of a heartbeat.

\[y' = 2(\cos \theta + \sin \theta - 1)(\cos \theta - \sin \theta) \]
A special case if \(r = s \):

This gives us,

\[
\begin{align*}
 a &= 3s^2 \\
 b &= 4s^2 \\
 c &= 5s^2
\end{align*}
\]

Which is the famous 3,4,5 triple and its multiples.

We can see this when we let \(s = \sqrt{2k_1} \) where \(k_1 = (c - b) \).

Finally, we also get a form of \(\sqrt{2} \) and a form of \(\sqrt[3]{3} \).

\[
\begin{align*}
 \sqrt{2} &= \frac{a+b-c}{\sqrt{(c-a)(c-b)}} \\
 \sqrt[3]{3} &= \frac{(a+b-c)}{\sqrt[3]{(a+b)(c-a)(c-b)}}
\end{align*}
\]

Which could also be written in an infinite power form since \(2 = \frac{(a+b-c)^2}{(c-a)(c-b)} \) and \(2^{-1} = \frac{(c-a)(c-b)}{(a+b-c)^2} \).

Let \(A = a + b - c \) and \(B = (c - a)(c - b) \)

\[
\sqrt{2} = \frac{A}{B^{z-1}} = \frac{A}{B^{3/2}} = ...
\]

References

None

2020 Mathematics Subject Classification: 11D41