
Adaptive posterior distributions for uncertainty analysis of
covariance matrices in Bayesian inversion problems for

multioutput signals

E. Curbelo∗, L. Martino†, F. Llorente∗∗, D. Delgado-Gomez∗,
∗ Universidad Carlos III de Madrid (UC3M), Madrid, Spain.
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Abstract

In this paper we address the problem of performing Bayesian inference for the parameters of
a nonlinear multioutput model and the covariance matrix of the different output signals. We pro-
pose an adaptive importance sampling (AIS) scheme for multivariate Bayesian inversion problems,
which is based in two main ideas: the variables of interest are split in two blocks and the infer-
ence takes advantage of known analytical optimization formulas. We estimate both the unknown
parameters of the multivariate non-linear model and the covariance matrix of the noise. In the first
part of the proposed inference scheme, a novel AIS technique called adaptive target adaptive im-
portance sampling (ATAIS) is designed, which alternates iteratively between an IS technique over
the parameters of the non-linear model and a frequentist approach for the covariance matrix of the
noise. In the second part of the proposed inference scheme, a prior density over the covariance
matrix is considered and the cloud of samples obtained by ATAIS are recycled and re-weighted to
obtain a complete Bayesian study over the model parameters and covariance matrix. ATAIS is the
main contribution of the work. Additionally, the inverted layered importance sampling (ILIS) is
presented as a possible compelling algorithm (but based on a conceptually simpler idea). Different
numerical examples show the benefits of the proposed approaches.
Keywords: Bayesian inversion; importance sampling; uncertainty analysis; covariance matrix;
tempering; sequence of posteriors

1 Introduction
The estimation of parameters from noisy observations is at the center of areas such as signal pro-
cessing, statistics and machine learning. Looking at this problem from a Bayesian perspective, the
inference problem becomes the construction and analysis of the posterior density over the unknown
parameters [1, 2]. The computation of complicated integrals involving these posterior distributions is
often needed (e.g., any moment of the random variable distributed as the posterior density). Monte
Carlo sampling methods are able to draw samples from the posterior probability density function
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(pdf) and hence those integrals can be approximated by stochastic quadrature formulas employing
the generated samples. The Monte Carlo techniques can be divided into four main families: direct
transformation methods, rejection sampling, importance sampling and Markov Chain Monte Carlo
(MCMC) algorithms [3, 4, 5, 6]. The last two classes are the most used by the users, since they are
universal methods, i.e., they can always be applied.

However, the Monte Carlo techniques find several difficulties that jeopardize their performance in
many scenarios, for instance, when working in high-dimensional spaces, and with narrow, tight pos-
teriors. Both issues are related to the problem of the exhaustive exploration of the state space. For
these reasons, many Monte Carlo algorithms try to work in sub-dimensional spaces (step by step,
with iterative or sequential procedures), such as the Gibbs sampling and the particle filtering schemes
[5, 7, 8, 9]. Furthermore, the inference on a positive definite matrix requires to fulfill certain restric-
tions about the entries of the matrix. This issue makes also difficult the use of gradient approaches
since many solutions can be outside the allowed support domain.

In this work, we focus on the problem of making a joint inference on a covariance matrix and a
vector of parameters [3, 10]. This is a particularly complex inference problem since bad choices of the
covariance matrix can jeopardize the sampling of the vector of interest [11, 12, 13]. This problem can
suffer both issues previously described: it is often high - dimensional (especially if the dimension ma-
trix is big) and the posterior is often tight. More specifically, we address a generic multidimensional
Bayesian inversion problem, where each vector observation yr is the output of a multidimensional,
nonlinear vectorial mapping f(θ) of the parameter of interest θ, perturbed by an error vector with
correlated components that, e.g., can be Gaussian vr ∼ N(vr|0,Σ).1 The goal is to make inference in
the joint space of θ and Σ. The dimension of the entire space grows linearly with the dimension of
the vector θ and quadratically with the dimension of the matrix Σ. We consider virtually no assump-
tions over the vectorial non-linearity f, and usually it represents some complex physical process. For
instance, f(θ) could also be non-differentiable. In this work, the unique requirement about f is to be
able to evaluate point-wise f(θ). Since, the inference task on the complete space {θ,Σ} is particularly
challenging, we introduce two different compelling Monte Carlo schemes based on the idea of split-
ting the inference space into two blocks, θ and Σ (as in a block Gibbs sampling [3, 7], and/or other
similar approaches [14]).

Main proposed scheme - ATAIS. Firstly, we extend and generalize the approach presented in [15, 16].
The proposed inference scheme is divided into two main parts. In the first part, we approximate the
conditional posterior of θ given the data and the maximum likelihood estimator ΣML of the matrix Σ.
This first part is called adaptive target adaptive importance sampling (ATAIS), since we perform an
adaptive importance sampling on a sequence of adaptive posteriors (due to the variation of Σ). The
ATAIS method is then completed by a second part which allows a complete Bayesian inference also
over Σ. Indeed, in this second inference part, we approximate the complete posterior of pair of vari-
ables of interest {θ,Σ}, without any additional generation of samples over θ. The resulting scheme
is a robust inference approach for Bayesian inversion, based on an adaptive importance sampler that

1We assume Gaussianity in the first part of the work, only for clarity and simplicity in the explanation.
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addresses a sequence of different conditional posteriors and a post-process that allows a Bayesian in-
ference over Σ as well. We refer to the overall scheme (first and second part) as complete ATAIS.
The conditional posteriors addressed by ATAIS differ in the use of different covariance matrices: this
procedure can resemble a tempering of the posterior distribution [17, 18, 19, 20].

Auxiliary competitive scheme - ILIS. As also remarked in different works [15, 21, 11], the ap-
plication of a Monte Carlo sampling method directly in the complete space {θ,Σ} is particularly
challenging and the resulting performance is quite poor. Hence, at least with our current knowledge
of the literature, it is also difficult to find a competitive alternative to ATAIS, which can provide errors
in estimation of the same magnitude. However, in our practical experience, we have designed an-
other Monte Carlo scheme (conceptually simpler than ATAIS) that can also obtain reasonable results.
We call this competitive scheme, inverse layered importance sampling (ILIS) since we adapt the idea
given [22, 23] for this inference context. With respect to the main algorithm in [22, 23], we switch
the positions of the importance sampling (IS) method and Markov Chain Monte Carlo (MCMC) tech-
niques [24, 25, 7, 10]: in ILIS the upper layer is formed by an IS procedure, and the lower layer
is formed by weighted MCMC chains. Conceptually speaking, ILIS can be considered simpler than
ATAIS, but the ILIS performance is more sensible on choice of certain proposal parameters (e.g., co-
variance reference matrix in the upper layer proposal), whereas the complete ATAIS procedure is able
to auto-tune some auxiliary parameters, reducing the number of parameters decided by the user. In
this sense, ATAIS is more automatic and robust than ILIS. As a final observation, we highlight that
ATAIS could also be combined and jointly employed.

A summary of the main contributions of the work and related important considerations are given
below:

• We propose a robust and efficient inference scheme for complex Bayesian inversion problems,
where a scale (covariance) matrix must also be estimated. The model considers a vectorial non-
linear function f(θ) to invert, that can represent complex dynamical systems, a set of time series
models, or a statistical spatial model for instance.

• The proposed method allows a complete Bayesian analysis of θ and Σ so that, we can perform
uncertainty analysis over θ and/or Σ, obtaining credible intervals. Moreover, we can perform
hypothesis testing or model selection approximating the marginal likelihood [3, 26, 27]. Hence,
we remark that the proposed scheme is much more than an optimizer: it is a sampler that allows
a complete Bayesian inference over θ and Σ. In its second inference part, ATAIS recycles all
the samples (w.r.t. θ) and the posterior evaluations from the first part. Thus, this second part
does not require any additional evaluation of the possibly complex and costly nonlinearity f(θ).

• ATAIS can be considered as an adaptive importance sampler where both proposal and target pdfs
are adapted. Indeed, in ATAIS, we consider a sequence of adaptive conditional posteriors. The
complete ATAIS method can be also interpreted as an IS version of the recycling Gibbs sampling
scheme in [7] (with two blocks). Indeed, the complete space is divided into two blocks, θ and
Σ, where different numbers of samples are considered for each block, denoted as NT for θ and
J for Σ.
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• We also introduce several extensions as addressing models with non-Gaussian noises, e.g., with
t-Student’s noise (or, more generally, with other elliptical distributions) and/or the possible use
of mini-batches (that is allowed by ATAIS). A discussion with practical suggestions regarding
the tuning of hyper-parameters of the prior densities is provided. Furthermore, a detailed discus-
sion about alternatives and improvements (for speeding up or reducing the computational cost)
is given as well.

• We also designed a competitive sampling scheme, denoted as ILIS, for comparing the perfor-
mance of ATAIS. Several comparisons with other benchmark techniques are also provided.

The range of applications includes the inference of any temporal and spatial dataset such as: systems
of differential equations explaining the behavior of a disease (for instance, SIR models for COVID)
or time series in different cities, weather prediction in different regions, medical signals with multiple
sensors, topology graph estimation and, more generally, any inference problem with time-varying
signals defined in different spatial locations [28, 29, 30, 31].
The paper is structured as follows. We start with the description of the problem statement in Section
2. The first part of the main proposed inference scheme is introduced in Sections 3 and 3.1. Section
4 provides a detailed discussion about possible alternatives and improvements. The second part of the
main proposed inference scheme is described in Section 5. The alternative scheme, inverted layered
importance sampling (ILIS), is given in Section 6. Finally, Section 7 contains several numerical
experiments and Section 8 provides some final conclusions.

2 Problem Statement
Let us denote as θ = [θ1, ..., θM]⊤ ∈ Θ ⊆ RM, a variable of interest that we desire to infer. Moreover,
related to θ, we observe

• R values in different time instants (or spatial points) of

• K different signals (time series), i.e.,

yr = [yr,1, ..., yr,K] ∈ RK×1 for r = 1, ...,R. Hence, all received data can be stored in a matrix Y =
[y1, ..., yR] ∈ RK×R. Furthermore, let us consider the observation model

yr = fr(θ) + vr, r = 1, ...,R, (1)
Y = F(θ) + V, (2)

where we have a nonlinear mapping for each time instant and each time series,

fr(θ) = [ fr,1(θ), ..., fr,K(θ)]⊤ : Θ ⊆ RM → RK×1, (3)

F(θ) = [f1(θ), ..., fR(θ)] : Θ ⊆ RM → RK×R, (4)

and a K × 1 vector of Gaussian noise perturbation for each time instant,

vr = [vr,1, ..., vr,K]⊤ ∼ N(vr|0,Σ) ∈ RK×1, (5)

V = [v1, ..., vR] ∈ RK×R, (6)
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where Σ is K × K covariance matrix, which generally is unknown. The mapping fr(θ) could be
analytically unknown, the only assumption is that we are able to evaluate it pointwise.2 The likelihood
function is

ℓ(Y|θ,Σ) =
(︄

1
(2π)K/2det(Σ)1/2

)︄R

exp

⎛⎜⎜⎜⎜⎜⎝−1
2

⎡⎢⎢⎢⎢⎢⎣ R∑︂
r=1

(yr − fr(θ))⊤Σ−1 (yr − fr(θ))

⎤⎥⎥⎥⎥⎥⎦⎞⎟⎟⎟⎟⎟⎠ , (7)

Note that we have two types of variables of interest for an inference point of view:

• the vector θ contains the parameters of the nonlinear mapping fr(θ), for r = 1, ...,R,

• and Σ is a scale matrix of the likelihood function.

Given the complete matrix of measurements Y, we desire to make inferences regarding the hidden
parameters θ and the noise matrix Σ, obtaining at least some point estimators ˆ︁θ and ˆ︁Σ. We are
also interested in performing uncertainty and correlation analysis among the components of θ. Fur-
thermore, we aim to perform model selection, i.e., to compare, select or properly average different
models.

2.1 Application to time series and spatial processes
The range of applications of the considered model is very broad. For instance, in the case of having K
different time series (in continuous or discrete time), or K spatial processes we can have more explicit
notation, where there is a one-to-one correspondence between each index r ∈ {1, ...,R} and a real time
instant τk,r ∈ R or a point xk,r ∈ R

d×1, i.e.,

r ∈ {1, ...,R} ←→ {τk,r ∈ R}
K
k=1, r ∈ {1, ...,R} ←→ {xk,r ∈ R

d}Kk=1.

Each vector yr (of dimension K × 1) contains the measurements at time instants τ1,r, ..., τK,r (or
x1,r, ..., xK,r) each one corresponding to a different time series. Generally, an alternative notation is

y = f(θ, τ ) + v, y = f(θ,X) + v, (8)

where τ = [τ1, ..., τK] and X = [x1, ..., xK] is d×K matrix.3 More specifically, recalling the observation
equation yr = fr(θ) + vr, we could use a more explicit notation, instead of fr(θ), i.e.,

yr = f(θ, τ1,r, ..., τK,r) + vr, (9)
yr = f(θ, x1,r, ..., xK,r) + vr, r = 1, ...,R, (10)

where τ1,r, ..., τK,r, or x1,r, ..., xK,r play the role of auxiliary known parameters (or vectors of parame-
ters). A graphical representation is given in Figure 1.
Remark. Note that the vector θ = [θ1, ..., θM]⊤ contains the parameters that are possibly shared from
the models representing the K different time series (or K spatial processes), or all the parameters that
only affect one series (or just a subset of time series).

2Each component fr,k, for k = 1, ...K, can be a function of the complete vector θ or only a subset of components of this
vector. See for instance the simulation experiment in Section 7.2.

3 Note that in the isotopic scenario, where τ1 = τ2... = τK = τ, the notation can be simplified as f(θ, τ) where τ is a
scalar.

5



Figure 1: Graphical representation of the considered multioutput model with K = 3 output signals and
R = 4 time instants for each signal. One can suppose that Σ represents a 3 × 3 covariance matrix of
three possible nodes in a graph.

2.2 Bayesian inference in the complete space
The full Bayesian solution considers the study of the complete posterior density

p(θ,Σ|Y) =
1

p(Y)
p(θ,Σ,Y) =

1
p(Y)
ℓ(Y|θ,Σ)gθ(θ)gΣ(Σ), (11)

where gθ(θ) and gΣ(Σ) represent the prior densities over the vector θ and the matrix Σ. Usually,
complex integrals involving p(θ,Σ|Y) should be computed in order to perform the inference.

Main observation. Generally, generating random samples from a complicated posterior in Eq. (11)
and computing efficiently the integrals involving p(θ,Σ|Y) is a hard task. Note that the complete
dimension of the inference problem D is

D = M +
K(K + 1)

2
,

i.e., the number of parameters to infer is exactly D. With M = 2 and K = 5, we have D = 17 and
with M = 2, K = 10 we have D = 57. The dimension D grows linearly with M and quadratic with
respect to K. Moreover, we also have the constraints regarding Σ, since it must be a covariance matrix.
This task becomes even more difficult when we try to perform a joint inference, learning jointly the
covariance matrix Σ and parameters of the nonlinearity θ. Indeed, “wrong choices” of Σ can easily
jeopardize the sampling of θ. Note also that the inference of a covariance matrix requires to fulfill
certain constraints on the entries of the matrix.

Proposed approach. Below, we describe an inference scheme formed by two main parts. First,
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we tackle the problem of drawing from the conditional posterior of θ, conditioned to the data and the
maximum likelihood (ML) estimator of Σ (that is generally unknown and must be approximated as
well). Therefore, in this first part, we apply a Bayesian inference over θ and a frequentist approach
over Σ (obtaining an approximation of the ML estimator). In the second part, we assume also a prior
density over the covariance matrix Σ, and perform a Bayesian inference over Σ as well, recycling the
outputs (weighted samples and other information) obtained in the first part.

3 First part of the proposed inference scheme
The main idea underlying the proposed inference scheme is to take advantage of the split of the in-
ference space (working firstly in smaller portions of the entire space). In the first part, described in
this section, we search for high probability regions in the complete space, sampling from a sequence
of adaptive conditional posterior distributions with respect to θ (given a covariance matrix ΣML). An
analytic formula is employed for obtaining a sequence of optimized matrices ΣML. In the second part,
described in Section 5, we generate random matrices from a tuned prior pdf (or possibly other proposal
density) and we re-weight all the previously generated samples w.r.t. θ, in order to allow a complete
Bayesian inference (hence including uncertainty analysis, etc.) for both θ and Σ.

More specifically, in the first stage, we consider a sub-optimal (in Bayesian sense) but substantially
more efficient inference scheme (since we work in a reduced - much smaller - dimensional space),
studying only a sequence of conditional posterior distributions. More precisely, we study the follow-
ing conditional posterior

p(θ|Y,ΣML) =
ℓ(Y|ΣML,θ)gθ(θ)

p(Y|ΣML)
∝ ℓ(Y|ΣML,θ)gθ(θ). (12)

Furthermore, we have denoted the conditioned maximum likelihood estimator of Σ as

ΣML = arg max
Σ
ℓ(Y|Σ,θMAP), (13)

where θMAP denotes the global maximum of p(θ|Y,ΣML), i.e.,

θMAP = arg max
θ

log p(θ|Y,ΣML),

= arg min
θ

⎡⎢⎢⎢⎢⎢⎣ R∑︂
r=1

(yr − fr(θ))⊤Σ−1
ML (yr − fr(θ)) + log gθ(θ)

⎤⎥⎥⎥⎥⎥⎦ . (14)

It is important to observe that, given θMAP, we have the analytic form of ΣML, i.e.,

ΣML =
1
R

R∑︂
r=1

(yr − fr(θMAP)) (yr − fr(θMAP))⊤ . (15)

Note that ΣML depends on θMAP, and θMAP depends on ΣML. For high dimensional estimators of ΣML,
see the procedure described in [32]. Moreover, in case of heavy-tailed distributions and presence of
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outliers, see the relevant survey [33]. Finally, similar approaches for dealing with unknown covariance
can be found in [21, 11].

Remark. The key idea to implement this inference scheme is to perform an alternating optimization
procedure where, at each iteration t, we produce two estimations ˆ︁θ(t)

MAP, ˆ︁Σ(t)
ML of θMAP, ΣML, respectively

[12, 13]. Clearly, we desire the convergence as the number of iterations grows, t → ∞, i.e.,

ˆ︁θ(t)
MAP −→ θMAP, (16)ˆ︁Σ(t)
ML −→ ΣML. (17)

The suggested iterative approach is summarized briefly in two steps. Starting with an initial matrix
Σ

(0)
ML , that is as a rough approximation of ˆ︁ΣML, the alternating optimization procedure is given in Table

1.

Table 1: Alternating optimization.

For t = 1, . . . ,T :

1 Estimate, by Monte Carlo,

θ(t)
MAP = arg min

θ

⎡⎢⎢⎢⎢⎢⎣ R∑︂
r=1

(yr − fr(θ))⊤
[︂ˆ︁Σ(t−1)
ML

]︂−1
(yr − fr(θ)) − log gθ(θ)

⎤⎥⎥⎥⎥⎥⎦ , (18)

obtaining ˆ︁θ(t)
MAP, e.g., using an importance sampling (IS) scheme with respect to

p(θ|Y, ˆ︁Σ(t−1)
ML ).

2 Compute

ˆ︁Σ(t)
ML =

1
R

R∑︂
r=1

(︂
yr − fr(ˆ︁θ(t)

MAP)
)︂ (︂

yr − fr(ˆ︁θ(t)
MAP)

)︂⊤
. (19)

Since, we employ IS scheme for obtaining ˆ︁θ(t)
MAP, at each t-th iteration, we have also a cloud of particles

{θ(n)
t )}Nn=1 that can be used for performing Bayesian inference over θ. Namely, after T iterations, we

can build a particle approximation of p(θ|Y, ˆ︁Σ(T )
ML ), i.e.,

ˆ︁p(θ|Y, ˆ︁Σ(T )
ML ) =

T∑︂
t=1

N∑︂
n=1

˜︁w(n)
t δ(θ − θ

(n)
t ),

T∑︂
t=1

N∑︂
n=1

˜︁w(n)
t = 1. (20)

By Eq. (20), we can approximate all the moments associated with the conditional posterior p(θ|Y, ˆ︁Σ(T )
ML )

hence, for instance, we can also provide an uncertainty estimation over the vector of θ.
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On the convergence of the alternating optimization. Due to the error in step 1 of the alternat-
ing optimization (described above) can be controlled by the number of particles N (i.e., the error in
the approximation of θMAP can be bounded by increasing N, i.e., even with a bad choice of ˆ︁Σ(t−1)

ML we
can obtain a reasonable vector ˆ︁θ(t)

MAP, and the estimator ˆ︁Σ(t)
ML in Eq. (19) approaches the matrix ΣML in

Eq. (15), as t → ∞. Moreover, as the number of realizations R grows the matrix ΣML in Eq. (15)
converges to the true covariance matrix of the data.
Note that the pair θMAP and ΣML are fixed points of the iterative (dynamical) system formed by Eqs.
(18)-(19). Namely, the key point of the convergence is to be able to find a good approximation of θMAP
(placing us close to the fixed point). This is possible since we are working in a reduced portion of the
complete space, and more efficient Monte Carlo scheme can be applied [34, 35, 36, 37]. It has the
same convergence rate of a Monte Carlo method for stochastic optimization, as a standard simulated
annealing [17]. The rate of convergence of an optimizer driven by sampling has been also recently
studied in [38, 39]. The authors in [38] show that, in a specific sampler (that iteratively optimizes a
posterior pdf), the error bound is O

(︂
N−

1
2(M+1)

)︂
, where M is the dimension of the θ-space.

Accelerating the convergence of the global optimization problem. In other to find a good region of
the space for starting the alternating optimization, we can use some iterations (let’s say T0 < T ) of the
algorithm considering

θ(t)
MAP = arg min

θ

⎡⎢⎢⎢⎢⎢⎣ R∑︂
r=1

||yr − fr(θ)||2 − log gθ(θ)

⎤⎥⎥⎥⎥⎥⎦ , t = 1, ...,T0, (21)

that is equivalent to set ˆ︁Σ(t)
ML = IK for t = 0, ...,T0 − 1 in Eq. (18), where IK is a K × K unit ma-

trix. Thus, in the first T0 iterations, we focus only on finding a good point θ(T0)
MAP . Indeed, note

that if there exists a point θ∗ such that
∑︁R

r=1 ||yr − fr(θ∗)||2 = 0, then this point θ∗ is also a root for∑︁R
r=1 (yr − fr(θ∗))⊤ ˆ︁Σ−1 (yr − fr(θ∗)) = 0 for any possible covariance matrix ˆ︁Σ.

Outputs of this first part of the inference scheme. With the procedure above, we perform a
Bayesian inference over the vector θ, but only analyzing and approximating the conditional poste-
rior p(θ|Y, ˆ︁Σ(T )

ML ). In this first part, with respect to Σ, we only provide a frequentist estimator ˆ︁Σ(T )
ML .

Note that, in the iterative procedure, we have a sequence conditional posteriors p(θ|Y, ˆ︁Σ(t)
ML). For

this reason, we call the algorithm as adaptive target adaptive importance sampling (ATAIS).4 The
details of the ATAIS algorithm which performs this scheme are given in the next section.

3.1 Adaptive Target Adaptive Importance Sampling (ATAIS)
This section provides more details about Step 1 of the alternating procedure described above. More
generally, we will provide all the details of the ATAIS algorithm. To simplify the notation, we denote
the unnormalized conditional posterior at the t-th iteration,

πt(θ) = ℓ(Y|ˆ︁Σ(t−1)
ML ,θ)gθ(θ) ∝ p(θ|Y, ˆ︁Σ(t−1)

ML ). (22)

4Another reason is that it is also an extension of the techniques in [15, 16], that use the acronym ATAIS as well.
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At each iteration, we consider πt(θ) as the target distribution. Finally, we are able to approximate
πT+1(θ) ∝ p(θ|Y, ˆ︁Σ(T )

ML ), without any additional evaluation of the likelihood function. The dependence
on the iteration t is due to ˆ︁Σ(t)

ML varies with t. The ATAIS algorithm is outlined in Table 8, whereas the
main features of ATAIS are described below.

IS steps. A set of N samples {θ(n)
t }

N
n=1 are drawn from a (normalized) proposal density q(θ|µt,Λt)

with mean µt and a covariance matrix Λt. An importance weight

w(n)
t =

πt(θ
(n)
t )

q(θ(n)
t |µt,Λt)

,

is assigned to each sample θ(n)
t , for all n and t. Note that we assume that q(θ|µt,Λt) normalized, i.e.,∫︁

Θ
q(θ|µt,Λt)dθ = 1 and with heavier tails than πt.

Proposal adaptation. The location parameter of the proposal density is moved to ˆ︁θ(t)
MAP, i.e.,

µt+1 = ˆ︁θ(t)
MAP. (23)

Note that, we set µt+1 = ˆ︁θ(t)
MAP instead of using the empirical mean of the samples (as in other classi-

cal AIS schemes). This is because we have noticed that this choice provides better and more robust
results, especially as the dimension of the problem grows. Indeed, this choice helps in the search for
the global maximum (since the next cloud of particles will be around the current MAP estimation)
and, as a consequence, helps also the estimation of ˆ︁ΣML due to (19). Regarding the adaptation of the
covariance matrix Λt of the proposal density, see Section 4.

ATAIS outputs. After T iterations, a final correction of the weights is needed, i.e.,

˜︁w(n)
t = w(n)

t
πT+1(θ(n)

t )

πt(θ
(n)
t )
, for all n, t, (24)

in order to obtain a particle approximation of the measure of the final conditional posterior πT+1(θ) ∝
p(θ|Y, ˆ︁Σ(T )

ML ). Thus, the algorithm returns the final estimators ˆ︁θ(T )
MAP, ˆ︁Σ(T )

ML , and all the weighted samples
{θ(n)

t ,˜︁w(n)
t }, for all n = 1, ...,N and t = 1, ...,T . Other outputs can be obtained with a post-processing of

the weighted samples, as shown below. Note that Eq. (24) does not require any additional evaluations
of the model, if we save the computation of the error vectors e(n)

t,r = yr− fr(θ
(n)
t ). Moreover, we can also

use {e(n)
t,r } and {θ(n)

t } for building a particle approximation of any other conditional posterior p(θ|Y,Σ),
as proposed in the second part of the inference. Note that ATAIS is an adaptive importance sampler.
Alternatively, if we would like to employ an adaptive MCMC algorithm in Table 8 (instead of an
importance sampler), - assuming we use a sufficiently large T - we should set w(n)

t = 1 in Eq. (24). In

any case, the weights would be ˜︁w(n)
t =

πT+1(θ(n)
t )

πt(θ
(n)
t )

in Eq. (24), keeping still the IS nature.

3.2 Elliptically contoured distributions in the observation models
The ATAIS algorithm described above (including the alternating optimization above) can be also ap-
plied for more general models. When the noise has an elliptically contoured distribution [40, 41, 42],
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i.e.,

vr ∼ p(v), with p(v) =
kp

|Σ|1/2
h
(︂
v⊤Σ−1v

)︂
, (25)

where kp > 0 is a constant, h(s) : R → R+is a one-dimensional positive function. The K × K matrix
Σ is a scale matrix related to the corresponding covariance matrix. An example is the multivariate
t-distribution:

p(v) ∝
1
|Σ|1/2

[︄
1 +

1
ν

v⊤Σ−1v
]︄−(ν+K)/2

,

where ν > 0 represents the degrees of freedom. However, unlike in the Gaussian case, in this scenario
the empirical covariance matrix is not an estimator of the scale matrix Σ, but of a scaled version of
the scale matrix, i.e., αΣ where α > 0. Generally, the estimator depends on the specific function h(s)
[43].5 Let us consider the problem of estimating only the scale parameter keeping fixed f(θ), as in step
2(b)ii of ATAIS. When the conditions expressed in [43] are satisfied (which are satisfied for absolutely
continuous distributions such as Student’s-t densities), the scaling matrix Σ can be estimated by a

fixed-point method as follows. Let define an initialization ˆ︁Σ0 > 0, the function η(s) = −2
h′(s)
h(s)

and

er = yr − fr(θ), with r = 1, . . . ,R. We estimate Σ by the iterative formula:

ˆ︁Σk =
1
R

R∑︂
r=1

η
(︃
e⊤r

[︂ˆ︁Σk−1

]︂−1
er

)︃
ere⊤r ,

where k represents the index of this iterative process. Note that η(s) depends on h(s). More so-
phisticated procedures for estimating Σ can be found in [44, 33]. Finally, we remark that an ATAIS
scheme could be also designed when the noise has a generalized Gaussian density. In one dimen-
sion, this pdf has the form p(v) = β

2sΓ(1/β) exp
(︂
−
|v−µ|β

sβ

)︂
where, fixing µ, β, we know the estimatorˆ︁s = (︂

β

N

∑︁N
i=1 |xi − µ|

β
)︂1/β

.

4 Speeding up, robustness and possible alternatives

4.1 About the choice of the type of proposal density, N and T

Regarding the choice of the proposal, we need to be able to evaluate it pointwise (it must be nor-
malized) and be able to draw samples from it. The other additional requirement is that the proposal
density must have heavier tails than the target pdf, i.e., the conditional posterior πt(θ). The presence
of multimodality in the target pdf is not an issue, especially if the cyclic adaptation of the covariance
matrix of the proposal is employed (see Section 4.2). Moreover, multiple proposal schemes can be
used, to deal with multimodality (see Section 4.5).
The consistency of the ATAIS estimators is ensured when N → ∞ (with finite T ) or T → ∞ (with

5In [43, Chapter 13], the interested reader can find the properties that the elliptical distribution must satisfy for the
existence and uniqueness of the estimators of the location and scale parameters.
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finite N). However, at least theoretically, in any adaptive importance sampler the choice of the value of
N is more critical than T , since the adaptation of the proposal pdf is driven by the N samples for each
iteration. In ATAIS, the value N is even more important, since the conditional posterior is also adapted
(due to the estimation and update of ˆ︁Σ(t)

ML). Namely, the N weighted samples per iteration affect (a)
the proposal adaptation and also (b) the first step of the alternating optimization in Table 1 i.e., more
specifically, in step 2(b)i of Table 8. However, the simulations in Section 7.2 and Figure 8(a) show the
importance of the adaptation in ATAIS and as a consequence of the number of iterations T .

4.2 Adaptation of the covariance matrix of the proposal density
The adaptation of the parameters of the proposal density is described in Eqs. (23)-(77) and (78) of
Table 8. Regarding the covariance matrix Λt we consider Eq. (78) that is formed by two parts as
follows:

Λt+1 =

N∑︂
n=1

w̄(n)
t (θ(n)

t − θ̄t)⊤(θ(n)
t − θ̄t)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

empirical

+ δtIM⏞⏟⏟⏞
cyclic

, δt > 0. (26)

The first term is the empirical covariance of the weighted samples at the t-th iteration. However, this
term can be harmful to the performance, especially at the beginning of the adaptation, often yielding
to empirical covariance matrices with very small traces (depending on the degeneracy of the weighted
samples). Robust alternatives to this first term are discussed in [45].
The second term is a diagonal matrix controlled by a positive parameter δt > 0 which determines the
elements in the diagonal. This term helps the IS performance (see , e.g., [26, Numerical Example 1])
and avoids catastrophic scenarios. Moreover, this second term always ensures to have positive definite
matrices Λt and avoid numerical issues. Generally, one should use a greater value of δt especially in
the first iterations, and the value of δt could be decreased as the iterations grow. Generally, one should
use a large value of δt in the initial iterations, and gradually decrease the value of δt as the iterations
progress. For a robust implementation, here we suggest to apply a cyclic/periodic strategy, i.e.,

δt+1 =

{︄
a δt, if δt ≥ δmin,

δ0, if δt < δmin,
(27)

with 0 < a < 1, where δ0 is the maximum value that the user desires to use for exploration (that is also
an initial value) and δmin > 0 is the minimum possible value that can be employed avoiding numerical
problems. The goal is to combine iterations devoted to the exploration (associated with greater values
of δt, close to δ0) and other iterations devoted to the exploitation (associated with smaller values of
δt, close to δmin). The coefficient a determines the speed of decrease of δt and, as a consequence,
the number of cycles/periods. Note that, in any case, the first term which depends on the weighted
samples can drive the final covariance matrix Λt.

4.3 Saving and re-weighting only few particles
The first part of ATAIS yields NT weighted samples. These NT samples must be re-weighted in the
last step as in Eq. (24) or (79). At each iteration, we should save N weighted particles. This can

12



produce an important computational load. However, most of these samples have a negligible weight,
especially in the first iterations, when ATAIS is still looking for the regions of high probability. The
use of the resampling procedure (i.e., bootstrap) over N samples at each iteration or NT final samples
is not advisable, since (if N large) it can be very slow.
We suggest to save, at each iteration t, only the (extremely) relevant samples with a normalized weight
w̄(n)

t ≥
1
N . This criterion is also connected with a possible effective sample size (ESS) measure pro-

posed and discussed in [46]. Note that if only a few samples have a non-negligible weight (i.e., the -
very frequent - degenerate case), we just save the relevant ones. On the other hand, if all samples have
similar weights (and, as a consequence, all the normalized weights w̄(n)

t are around 1/N), this is owing
to two possible scenarios:

• All the samples are located in a tail of distribution (an almost-flat region that yields similar
weights). In this case, most of the samples are not relevant, and we do not lose information if
saving only some of them.

• The samples are all relevant, and located in high probability regions. In this case, we lose some
information (saving only some of them) but, since the proposal density is already well-adapted
(i.e., well-located), in the next iterations we will draw more and more relevant samples around
these high probability regions.

Moreover, for the second part of the inference in Section 5, we need to save only the computation of
the error vectors e(n)

t,r = yr − fr(θ
(n)
t ), e.g., see Eq. (45). Thus, no additional evaluation of the model are

required in this second part. Hence, at each iteration, we suggest just to save the error vectors e(n)
t,r of

the particles with a normalized weight such that w̄(n)
t ≥

1
N .

4.4 Optimal denominator in the IS weights
Since we adapt the proposal density during the iterations, we are actually in a multiple IS scenario
[47, 23]. It is well-known that the standard IS denominator (using just the unique proposal q(θ|µt,Λt))
provides instability and high variance in the final IS estimators. The correct way of avoiding this
behavior is to employ a mixture of all proposals used during the iterations, i.e.,

w(n)
t =

πt(θ
(n)
t )

1
t

∑︁t
i=1 q(θ(n)

t |µi,Λi)
. (28)

This procedure provides the lowest variance of the final IS estimators but requires a high computational
cost. Indeed, for each sample θ(n)

t , we have to evaluate a mixture where the number of components
grows with the iterations. Moreover, at least in the final iteration T decided by the user, all the previous
weights must be updated recomputing a new denominator for each sample. Alternatives for reducing
the computational cost have been proposed [48]. The simplest solution among the proposed ones
is to build a compressed denominator [49, 23]. To avoid instabilities in the results, we can discard
the samples and the proposals in the first iterations (hence, we do not use the means µt = ˆ︁θ(t)

MAP),
when the parameters of the proposal density change substantially. For instance, one can discard the

corresponding means µt = ˆ︁θ(t)
MAP in the first iterations t such that ||ˆ︁θ(t)

MAP−
ˆ︁θ(t−1)
MAP ||

max
[︂
||ˆ︁θ(t)
MAP ||,||

ˆ︁θ(t−1)
MAP ||

]︂ > ϵ where ϵ ∈ (0, 1].
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By our empirical experience, we suggest the use of ϵ = 0.3. However, we remark that the use of the
weights of type (28) is not mandatory. ATAIS provides very good performance also with the standard
IS weights, as shown by the numerical experiments in Section 7.

4.5 Possible use of multiple proposal densities
In order to foster the robustness of the algorithm, one possibility is to use more than one proposal den-
sity at each iteration. The simplest way for extending ATAIS with H multiple proposals is described
next. Denoting each proposal as qh(θ|µt,h,Λt,h) with h = 1, ...,H, the idea is to draw N samples for
each proposal pdf,

θ(1)
t,h , ...,θ

(N)
t,h ∼ qh(θ|µt,h,Λt,h), h = 1, ...,H,

and weigh them keeping a unique (adaptive) posterior distribution πt(θ) = ℓ(Y|ˆ︁Σ(t−1)
ML ,θ)gθ(θ), as

w(n)
t,h =

πt(θ
(n)
t,h )

qh(θ(n)
t,h |µt,h,Λt,h)

, or w(n)
t,h =

πt(θ
(n)
t,h )

1
H

∑︁H
j=1 q j(θ

(n)
t, j |µt, j,Λt, j)

, (29)

where, in the second option, we have employed the multiple IS approach [47, 23], similarly as in Eq.
(28). Then, the idea is to perform an independent adaptation of the mean (as in [50]) considering the
local MAP estimations, i.e.,

µt+1,h = ˆ︁θ(t,h)
MAP , (30)

where we consider only the samples generated by the m-th proposal. The same approach can be
employed for adapting Λt,m, i.e., independently to each other (see Section 4.2). Hence, in this sense,
the steps described so far could be parallelized. Now, denoting as

θ
(t)
MAP = arg max

h
πt(ˆ︁θ(t,h)

MAP ), (31)

the best MAP estimator at the t-th iteration, we can obtain a unique estimation of the covariance
matrix,

ˆ︁Σ(t)
ML =

1
R

R∑︂
r=1

(︃
yr − fr(θ

(t)
MAP)

)︃ (︃
yr − fr(θ

(t)
MAP)

)︃⊤
, (32)

so that we can have a unique posterior πt+1(θ) = ℓ(Y|ˆ︁Σ(t)
ML,θ)gθ(θ) for the next iteration of the algo-

rithm. In summary, all the proposal pdfs are adapted independently but they face the same posterior.
The rest of the algorithm remains unaltered as in Table 8. More sophisticated adaptive strategies could
include a “repulsion” among the proposals, as suggested in [51, 52].

4.6 Possible use of mini-batches
When the number of vectors yr of data R grows, different issues appear:
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• the calculation of the likelihood becomes costly/slow;

• numerical problems due to the finite precision of the employed machine;

• the exploration of the high probability regions becomes more difficult since the posterior is
extremely tight.

All these issues are mitigated by using mini-batches of data. ATAIS allows the direct use of mini-
batches (see [53, 54]). Namely, we can use a sub-set of data (e.g., formed by L < R vectors yi of data)
to create sub-posteriors,

˜︁πt(θ) ∝

⎡⎢⎢⎢⎢⎢⎣ L∏︂
i=1

ℓ(yki |Σ
(t−1)
ML ,θ)

⎤⎥⎥⎥⎥⎥⎦ gθ(θ), (33)

where yki ∈ {y1, ..., yR}, i.e., ki ∈ {1, ...,R} with i = 1, ..., L, are L < R vectors that can be selected
randomly over the R possible vectors [53, 54]. ATAIS can use the subposteriors, defined as in Eq.
(33), in each step 2(b)i of Table 8, i.e.,

θ(t)
max = arg max

n
˜︁πt(θ

(n)
t ), ˆ︁rt = fr(θ(t)

max), ˆ︁Σt =
1
L

L∑︂
j=1

(y j −ˆ︁rt)(y j −ˆ︁rt)⊤, (34)

using only the L selected data vectors. Below, we describe two possible schemes for modifying ATAIS
with mini-batches.

First possible strategy. In the standard ATAIS, we can perform the check in step 2c, obtaining a
sequence of ˆ︁θ(t)

MAP and ˆ︁Σ(t)
ML. Clearly, the proposal density q(θ|θ(t)

MAP,Λt) is adapted as in Eqs. (77)-(78).
After all the T iterations, we consider the computation of the complete conditional posterior in Eq.
(22) (with all the data) is feasible (at least for a few points). We can compute

πt(ˆ︁θ(t)
MAP) ∝ p(θ(t)

MAP|
ˆ︁Σ(t)
ML,Y),

and

θMAP = arg max
{︂
πt

(︂ˆ︁θ(t)
MAP

)︂
, for all t = 1, ...,T

}︂
. (35)

The final estimation of the matrix can be done

ΣML =
1
R

R∑︂
r=1

(︂
yr − fr(θMAP)

)︂ (︂
yr − fr(θMAP)

)︂⊤
, (36)

considering all the R data vectors. Moreover, in the second part of the proposed inference scheme (see
below in the next section), the final re-weighting step must be made according to the full posterior,
so that the final estimations are performed considering all the dataset. Hence, in this strategy, the
complete ATAIS method can consider the use of mini-batches only in the T iterations of the first part,
whereas, after the T iterations for computing above and in the second part, the full-posterior must be
evaluated.
Second possible strategy. Otherwise, if the computation of the complete conditional posteriors is
too costly even for a few points, we can follow the approach suggested in [55]. Let us consider the
following assumptions:
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• Assume that all the data are divided into R
L disjoint subsets (so that the union of these subsets

includes all the data) so that the complete posterior can be expressed as the product of the R
L

sub-posteriors, and to select the total number of iterations as T = R
L .

• Assume that, at least after a certain iteration, the variations in ˆ︁Σ(t)
ML are small, so that ˆ︁πt−1(θ) ≈ˆ︁πt(θ) ≈ ˆ︁πt+1(θ)... and so on, i.e., the conditional full-posterior is virtually not changing. This

assumption is verified when ˆ︁θ(t)
MAP is close to the true vector θMAP.

• Assume as prior in each sub-posterior, gsub(θ) = g(θ)1/T .

Then, the conditional full-posterior (that virtually is not changing) can be expressed as the product
of the T = R

L (conditional) sub-posteriors. At each iteration of ATAIS, we can consider a Gaussian
approximation of each sub-posterior, ˆ︁pt(θ) = N(θ|θ(t)

max,Λt) (with δt in Section 4.2 is small, close to
zero), with mean θ(t)

max and covariance matrix Λt, both computed according to the sub-posterior ˜︁πt(θ)
in Eq. (33) considering the current mini-batch. Hence an approximation of conditional full-posterior
can be also a Gaussian distribution,

ˆ︁πt(θ) =
t∏︂
τ

ˆ︁pt(θ) ∝ N
(︂
θ | ˆ︁θ(t)

MAP,Λ
(t)
tot

)︂
, (37)

with covariance matrix

Λ(t)
tot =

⎛⎜⎜⎜⎜⎜⎝ t∑︂
τ=1

Λ−1
τ

⎞⎟⎟⎟⎟⎟⎠−1

, (38)

and mean

ˆ︁θ(t)
MAP = Λtot

t∑︂
τ=1

Λ−1
τ θ(τ)

max. (39)

Note that, we can also have

ˆ︁Σ(t)
ML =

1
R

R∑︂
r=1

(︂
yr − fr(ˆ︁θ(t)

MAP)
)︂ (︂

yr − fr(ˆ︁θ(t)
MAP)

)︂⊤
. (40)

Therefore, we can replace the check in step 2c of Table 8 with the computation of ˆ︁θ(t)
MAP above ˆ︁Σ(t)

ML.
Note that, unlike the proposal q(θ|θ(t)

MAP,Λt) is still adapted as in Eqs. (77)-(78). The final Gaussian
approximation with ˆ︁θ(T )

MAP, Λ
(T )
tot and the final estimation ˆ︁Σ(T )

ML , can be also employed in the second part
of the inference scheme instead of evaluating the true full-posterior. Thus, in this second approach,
we never need the evaluation of the (true) full-posterior.
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4.7 Possible use of the gradient information if the likelihood is differentiable
The current version of ATAIS can be applied even when the model f(θ) is not differentiable. Moreover,
the Monte Carlo approach ensures the convergence to the global maximum as N → ∞ or T → ∞.
However, if f(θ) is differentiable and the practitioner desires to incorporate the gradient information
several alternatives strategies can be employed. The simplest idea is to replace the step 2(b)i of Table
8, by a gradient descent step over the function

C(θ) = − log πt(θ) = − log ℓ(Y|ˆ︁Σ(t−1)
ML ,θ)gθ(θ),

i.e.,
θ(t)
max = θ(t−1)

MAP − γ∇C
(︂
θ(t−1)
MAP

)︂
+ et,

with γ > 0 and et is a noise perturbation, avoiding to remain stuck in a local minimum. Thus,
θ(t+1)
max would be a candidate as a possible new mean of the proposal pdf at step 2c of Table 8, i.e.,

µt = ˆ︁θ(t)
MAP = θ(t)

max, if πt
(︁
θ(t)
max

)︁
> πMAP, (where πMAP is the greatest value so far obtained in Eq. (22),

considering also the corresponding estimated covariance matrix ˆ︁Σ is also changing). See [56], for
all the formulas required in the case of Gaussian noise perturbation, as in Eq. (5). Clearly, it is also
possible to use a stochastic gradient descent using mini-batches [57]. More sophisticated gradient-
based IS schemes have been discussed in literature [51], also involving multiple proposal densities
and repulsion [51, 58, 59, 56].

5 Second part of the proposed inference scheme
Here, we describe the second part of the ATAIS procedure, which allows a complete Bayesian analysis
of θ and Σ. It is important to remark that this second part of ATAIS does not require any additional
sample generation and likelihood evaluation. Indeed, ATAIS recycles and reweights the samples θ(n)

t
obtained in the first part by Table 8.

5.1 Approximating different conditional posteriors
The idea here is to re-use all the generated samples since if we have saved the computation of the
error vectors e(n)

t,r = yr − fr(θ
(n)
t ) no additional evaluation of the model are required. Note that the cloud

of particles {θ(n)
t } is well-located since ATAIS works to generate samples around the MAP and ML

estimators of θ and Σ. Moreover, we can also use {e(n)
t,r } and {θ(n)

t } for building a particle approximation
of any other conditional posterior p(θ|Y,Σ), i.e.,

ˆ︁p(θ|Y,Σ) =
T∑︂

t=1

N∑︂
n=1

ρ̄(n)
t (Σ) · δ(θ − θ(n)

t ),
T∑︂

t=1

N∑︂
n=1

ρ̄(n)
t (Σ) = 1, (41)
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where

ρ(n)
t (Σ) =

ℓ(Y|θ(n)
t ,Σ)gθ(θ

(n)
t )

q(θ(n)
t |µt,Λt)

, and (42)

ρ̄(n)
t (Σ) =

ρ(n)
t (Σ)∑︁T

τ=1
∑︁N

i=1 ρ
(i)
τ (Σ)

. (43)

Given a new matrix Σ, to compute the likelihood

ℓ(Y|θ(n)
t ,Σ) =

(︄
1

(2π)K/2det(Σ)1/2

)︄R

exp

⎛⎜⎜⎜⎜⎜⎝−1
2

R∑︂
r=1

(︂
yr − fr

(︂
θ(n)

t

)︂)︂⊤
Σ−1

(︂
yr − fr

(︂
θ(n)

t

)︂)︂⎞⎟⎟⎟⎟⎟⎠ , (44)

=

(︄
1

(2π)K/2det(Σ)1/2

)︄R

exp

⎛⎜⎜⎜⎜⎜⎝−1
2

R∑︂
r=1

(︂
e(n)

t,r

)︂⊤
Σ−1

(︂
e(n)

t,r

)︂
,

⎞⎟⎟⎟⎟⎟⎠ (45)

we need the vectors e(n)
t,r , the inverse matrix of Σ and the determinant of Σ.

5.2 Approximation of the complete posterior distribution and marginal likeli-
hood

We can apply an IS scheme with the complete target pdf,

p(θ,Σ|Y) =
p(θ,Σ,Y)

p(Y)
=
ℓ(Y|θ,Σ)gθ(θ)gΣ(Σ)

p(Y)
, (46)

∝ ℓ(Y|θ,Σ)gθ(θ)gΣ(Σ), (47)

and employing a proposal density that can be factorized as q(θ|µt,Λt)qΣ(Σ) where the piece of pro-
posal q(θ|µt,Λt) is the same used in ATAIS at the t-th iteration. Recycling the NT samples produced
by ATAIS, i.e., θ(n)

t ∼ q(θ|µt,Λt) and drawing J random matrices from the proposal qΣ(Σ), i.e.,
Σ( j) ∼ qΣ(Σ), the complete IS weights are

β(n)
t, j =

ℓ(Y|θ(n)
t ,Σ

( j))gθ(θ
(n)
t )gΣ(Σ( j))

q(θ(n)
t |µt,Λt)qΣ(Σ( j))

, (48)

= ρ(n)
t (Σ( j))

gΣ(Σ( j))
qΣ(Σ( j))

= ρ(n)
t (Σ( j))γ j = ρ

(n)
t, j γ j, (49)

where we have set γ j =
gΣ(Σ( j))
qΣ(Σ( j)) and ρ(n)

t, j = ρ
(n)
t (Σ( j)) are given in Eq. (42). Clearly, if qΣ(Σ) = gΣ(Σ)

then γ j = 1. The complete posterior approximation is given by

ˆ︁p(θ,Σ|Y) =
J∑︂

j=1

T∑︂
t=1

N∑︂
n=1

β̄
(n)
t, j · δ(θ − θ

(n)
t )δ

(︂
Σ −Σ( j)

)︂
, (50)
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where β̄(n)
t, j =

β(n)
t, j∑︁J

i=1
∑︁T

v=1
∑︁N

m=1 β
(m)
v,i

. Note that we have different numbers of samples about θ (i.e., NT ) and Σ

(i.e., J). This recalls the recycling Gibbs sampling idea in [7], where the space is divided into blocks,
and different numbers of samples are considered for each block.
The marginal likelihood p(Y) can be approximated as

p(Y) ≈ ˆ︁p(Y) =
1

JNT

J∑︂
j=1

T∑︂
t=1

N∑︂
n=1

β(n)
t, j . (51)

5.3 Approximation of the marginal posteriors
An approximation of the marginal posterior distribution of θ can be obtained

p(θ|Y) =
∫︂
Σ

p(θ,Σ|Y)dΣ ≈ ˆ︁p(θ|Y) =
T∑︂

t=1

N∑︂
n=1

ᾱ(n)
t · δ(θ − θ

(n)
t ), (52)

where

ᾱ(n)
t =

∑︁J
j=1 β

(n)
t, j∑︁J

i=1
∑︁T

v=1
∑︁N

m=1 β
(m)
v,i

. (53)

Moreover, we can assign a weight to each drawn matrix above Σ( j), approximating the marginal pos-
terior of the covariance matrix

p(Σ( j)|Y) =
∫︂
Θ

p(θ,Σ( j)|Y)dθ ≈

∑︁T
t=1

∑︁N
n=1 β

(n)
t, j∑︁J

i=1
∑︁T

v=1
∑︁N

m=1 β
(m)
v,i

δ
(︂
Σ −Σ( j)

)︂
, (54)

= λ̄ j · δ
(︂
Σ −Σ( j)

)︂
, (55)

where

λ̄ j =

∑︁T
t=1

∑︁N
n=1 β

(n)
t, j∑︁J

i=1
∑︁T

v=1
∑︁N

m=1 β
(m)
v,i

. (56)

Then, the marginal posterior of the covariance matrix is approximated as

p(Σ|Y) ≈ ˆ︁p(Σ|Y) =
J∑︂

j=1

λ̄ j · δ
(︂
Σ −Σ( j)

)︂
. (57)

For instance, a minimum mean square error estimator of Σ can be approximated as

ˆ︁Σ = J∑︂
j=1

λ̄ jΣ
( j),

and approximations of high-order moments p(Σ|Y) can also be obtained. Table 2 summarizes all the
weights and the corresponding distributions.
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Table 2: Summary of the weights and the corresponding distributions.
Distribution to approximate Normalized weights Additional information

β(n)
t, j =

ℓ(Y|θ(n)
t ,Σ

( j))gθ(θ
(n)
t )

q(θ(n)
t |µt ,Λt)

·
gΣ(Σ( j))
qΣ(Σ( j))

p(θ|Y, ˆ︁Σ(T )
ML ) ˜︁w(n)

t – See Eqs. (20) and (24)

p(θ|Y,Σ) ρ̄(n)
t (Σ) = ℓ(Y|θ

(n)
t ,Σ)gθ(θ

(n)
t )

q(θ(n)
t |µt ,Λt)

β(n)
t, j = ρ

(n)
t (Σ( j)) · γ j

p(θ,Σ|Y) β̄
(n)
t, j =

β(n)
t, j∑︁J

i=1
∑︁T

v=1
∑︁N

m=1 β
(m)
v,i

p(θ|Y) ᾱ(n)
t =

∑︁J
j=1 β

(n)
t, j∑︁J

i=1
∑︁T

v=1
∑︁N

m=1 β
(m)
v,i

p(Σ|Y) λ̄ j =

∑︁T
t=1

∑︁N
n=1 β

(n)
t, j∑︁J

i=1
∑︁T

v=1
∑︁N

m=1 β
(m)
v,i

p(Y)
∑︁J

j=1
∑︁T

t=1
∑︁N

n=1 β
(n)
t, j

5.4 Prior and proposal densities over covariance matrices
Consider a positive definite K ×K matrix Σ. The Wishart distribution is defined on the space RK ×RK

of positive definite matrices. The corresponding pdf is

gΣ(Σ) = gΣ(Σ|Φ, ν) ∝ |Σ|
ν−K−1

2 exp
(︄
−

1
2

trace(Φ−1Σ)
)︄
, (58)

where |Σ| denotes the determinant of the matrix Σ, ν ≥ K−1 is the number of degrees of freedom and
Φ is a K × K reference covariance matrix. It is possible to see Eg[Σ] = νΦ. The Wishart distribution
is often interpreted as a multivariate extension of the χ2 distribution.

Choice of Φ and ν. We choose

Φ =
1
ν
ˆ︁Σ(T )
ML . (59)

Recall that Eg[Σ] = νΦ. In this sense, our approach is an empirical Bayes scheme since this parame-
ter of the prior is chosen after looking at the data by ATAIS (see also data-based priors in [27]). The
parameter ν represents the degrees of freedom of the distribution. This value must be ν ≥ K − 1, but
for the generated matrices to be non-singular with probability 1 we need ν ≥ K. For learning ν, we
can use again an empirical Bayes approach maximizing the marginal likelihood p(Y) = p(Y|ν) in Eq.
(51), i.e., we can find the ν∗ such that ν∗ = arg max p(Y|ν).

Choice of the proposal pdf. For simplicity, we assume qΣ(Σ) = gΣ(Σ), i.e., we choose a pro-
posal density equal to the prior density. As a consequence, with this choice, we have γ j = 1 in (49).
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Generation of random matrices according to a Wishart density. When ν is an integer, the Wishart
distribution represents the sums of squares (and cross-products) of ν vectors drawn from a multivariate
Gaussian distribution. Specifically, given ν random vectors of dimension K × 1, i.e. si ∼ N(0,Φ),
i = 1, . . . , ν, the generated matrix

Σ′ =
ν∑︂

i=1

sis⊤i ,

is distributed as a Wishart density with ν degrees of freedom and K × K scale matrix Φ. Then, we can
employ the following sampling method:

1. Draw ν multivariate Gaussian samples si = [si,1, . . . , si,K]⊤ ∼ N(0,Φ), with i = 1, . . . , ν.

2. Set Σ′ =
∑︁ν

i=1 sis⊤i .

6 Inverted layered importance sampling (ILIS)
The direct application of Monte Carlo methods in the complete space of θ and Σ generally does not
provide good results. This is the reason why we propose the ATAIS algorithm where the inference is
carried out in two phases, first a set of weighted samples θ(n)

t and ˆ︁ΣML are obtained. Then the samples
θ(n)

t are re-weighted and other weighted samples of matrices Σ( j) are generated to perform a complete
Bayesian inference.
In this section, we introduce an alternative method, conceptually simpler than ATAIS, called inverted
layered importance sampling (ILIS), based also on the division of the space, θ and Σ. ILIS can per-
form better than other Monte Carlo methods working in the complete space, but also presents some
clear difficulties: this also emphasizes the relevance of ATAIS. See Table 3 for a detailed descrip-
tion. ILIS starts by generating N covariance matrices Σ(n) and then it runs N different (parallel and
independent) MCMC chains with target density p(θ|Σ(n),Y), i.e., the conditional posterior of θ given
Σ(n). The underlying idea is to apply an IS scheme on the complete space {θ,Σ}, i.e., considering the
complete posterior p(θ,Σ|Y) in Eq. (46), that is

p(θ,Σ|Y) =
1

p(Y)
ℓ(Y|θ,Σ)gθ(θ)gΣ(Σ) ∝ ℓ(Y|θ,Σ)gθ(θ)gΣ(Σ).

Moreover, we assume to employ a proposal density of type q(θ,Σ) = qθ(θ|Σ)qΣ(Σ), Recall that q, qθ
and qΣ must be normalized. The corresponding importance weight function in the full space is

w(θ,Σ) =
ℓ(Y|θ,Σ)g(θ)g(Σ)

qθ(θ|Σ)qΣ(Σ)
. (60)

One good choice for qθ would be

qθ(θ|Σ) = p(θ|Σ,Y) =
1

Z(Σ)
ℓ(Y|θ,Σ)gθ(θ) ∝ π(θ) = ℓ(Y|θ,Σ)gθ(θ),

where Z(Σ) =
∫︁
Θ
ℓ(Y|θ,Σ)gθ(θ)dθ. This proposal is suggested and inspired by the success of the

ATAIS approach. However, the choice above presents two issues:
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• We need to be able to draw from. We can use an MCMC chain for generating samples distributed
as p(θ|Σ,Y), after a burn-in period [3, 60, 61];

• We need to be able to evaluate Z(Σ), which is generally unknown. Thus, an estimation of this
normalizing constant, ˆ︁Z(Σ) ≈ Z(Σ), is required [62, 26].

Indeed, in this case, the importance weight would be:

w(θ,Σ) =
ℓ(Y|θ,Σ)g(θ)g(Σ)

1
Z(Σ)ℓ(Y|θ,Σ)gθ(θ)qΣ(Σ)

, (61)

= Z(Σ)
g(Σ)

qΣ(Σ)
, (62)

and the evaluation of Z(Σ) is required. Other important considerations are remarked below:

• For each Σ(n) ∼ qΣ(Σ), we need an MCMC chain to draw from qθ(θ|Σ) = p(θ|Σ,Y). Each
MCMC algorithm produces a chain of T vectors, i.e., θ(n)

1 , ....θ
(n)
T . All these vector are weighted

with the same weight γn = Z(Σ(n))
gΣ(Σ(n))
qΣ(Σ(n))

.

• ILIS can be seen as a Monte Carlo scheme that combines IS and MCMC techniques, based
on two layers (a global IS scheme that employs internally MCMC chains). With respect to
the techniques in [22, 23], we can interpret that the IS part forms the upper layer (deciding the
parameter Σ(n) to be used in qθ(θ|Σ(n)) = p(θ|Σ(n),Y)), whereas the MCMC chains are generated
in the lower layer of ILIS with target/invariant densities p(θ|Σ(n),Y) (note that this pdf plays the
role of a proposal qθ in the global IS scheme). All the states of one chain are weighted with the

weight γn = Z(Σ(n))
gΣ(Σ(n))
qΣ(Σ(n))

(i.e., the layers are switched with respect to [22, 23]).

• Note that again, as in ATAIS, we have a different number of samples with respect to θ (i.e., NT ),
and with respect to Σ (i.e., N), which recalls the recycling Gibbs scheme in [7].

The complete posterior approximation by ILIS is given by

ˆ︁p(θ,Σ|Y) =
1
T

T∑︂
t=1

N∑︂
n=1

γ̄n · δ(θ − θ
(n)
t )δ

(︂
Σ −Σ(n)

)︂
, with γ̄n =

γn∑︁N
i=1 γi
. (63)

Even if ILIS seems at least theoretically simpler than ATAIS, we need to compute the approximations
of Z(Σ(n)) and its performance is not particularly good compared to ATAIS, as we show in the numer-
ical simulations. The main reason is that ATAIS, in the first part of the inference, finds the regions of
high probability and also uses this information to tune the proposal qΣ(Σ) for the matrix generation,
in the second part.

Joint use of ATAIS and ILIS. One interested practitioner could use the first part of ATAIS in Ta-
ble 8 “to feed” with good parameters the proposal density qΣ(Σ) and the proposals used inside the N
parallel MCMC chains (i.e., design good proposals for ILIS). However, with respect to the complete
ATAIS, this scheme has a higher computational cost in terms of generated samples and likelihood eval-
uation. Indeed, recall that the second part of ATAIS does not require any additional sample generation
and likelihood evaluation.
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Table 3: Inverted layered importance sampling (ILIS)

1. Choose N, T , µ0 and qΣ(Σ) as well as the the proposal densities and structure of M possi-
bly different MCMC methods.

2. For j = 1, . . . , J:

(a) Generate Σ( j) ∼ qΣ(Σ).

(b) Generate N different MCMC chains of length T obtaining {θ(n)
t }

T
t=1, with the condi-

tional distribution
π̄(θ|Σ( j),Y) ∝ ℓ(Y|θ,Σ( j))gθ(θ),

as a target density.

(c) Approximate Z(Σ( j)), using some procedure for estimation normalizing constants [62,
26], i.e., obtain ˆ︁Z(Σ( j)) ≈ Z(Σ( j)) =

∫︁
Θ
ℓ(Y|θ,Σ( j))gθ(θ)dθ.

(d) Assign to each pair {θ(n)
t ,Σ

(n)} the weight γ j = ˆ︁Z(Σ( j))
gΣ(Σ( j))
qΣ(Σ( j))

, for all j = 1, ..., J

and t = 1, ...,T .

7 Simulations
We test the proposed scheme in numerous different numerical examples, comparing it with different
benchmark schemes. We have also tested several possible scenarios and variants, such as different
noise perturbations in the observation model and the use of mini-batches. The dimension of the space
is:

• D = 8 for the model in Section 7.1,

• D = 12 for the model in Section 7.2,

• D = 7 for the model in Section 7.5,

• and D = 59 for the model in Section 7.6.

We recall that, when a Monte Carlo method is tested, we should know some groundtruths of the
target density, i.e., some true features of the posterior distribution (such as modes, expected values,
variances, and any other moments). However, they are generally unknown even in experiments with
artificial data. Hence, in many cases, the only possibility for the authors/practitioners is to consider
as groundtruths the true values used for generating the data, i.e., θtrue and Σtrue here. Clearly, if the
number of data is not enough θtrue and Σtrue can be quite different from the true groundtruth values
(i.e., features of the posterior). When the example is low-dimensional, an alternative is to employ an
expensive grid (or another determinist approach) for approximating the true features of the posterior
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(modes, expected values etc.), and use those approximated values as groundtruths. In this work, for
Σ, we have another possible groundtruth for the ML estimation which is the following:

ΣML ≈
1
R

R∑︂
r=1

(yr − fr(θtrue)) (yr − fr(θtrue))⊤ , (64)

where θtrue are the true values used for generating the data, according to the model considered in the
specific example (recall that we do not know the true values of θMAP). Clearly, as stated before, Σtrue
can be also employed as groundtruth, and the difference between ΣML and Σtrue is minimal, if we are
analyzing enough data.
We average all the results over different independent runs. At each run, the initializations of the ATAIS
parameters (and other schemes) are chosen randomly around a vector of zeros for θ and an identity
matrix for Σ (with a standard deviation of 4; for the covariance matrix Σ, we always consider an
initial diagonal matrix with the same random element in the diagonal).

7.1 Localization in wireless sensor network - dimension of the space D = 8

In this experiment, we aim to determine the location of a target based on wireless sensor measure-
ments. We can represent the target position as a random vector θ ∈ R2. We have a wireless network of
K = 3 sensors, whose positions are known and labeled as s1, ..., sK . We collect R measurements from
each sensor, and these measurements follow a certain distribution. Let’s recall that each observation
has the following form:

yr = fr(θ) + vr, (65)

with fr : R2 → R3 given by:

fr(θ) =
[︂
− A log(∥ θ − s1 ∥

2), −A log(∥ θ − s2 ∥
2), −A log(∥ θ − s3 ∥

2)
]︂
, (66)

i.e.,
fr,i(θ) = −A log(∥ θ − si ∥

2),

for i = 1, 2, 3. The error term is vr ∼ N(0,Σtrue), with Σtrue ∈ R
3×3 being a diagonal matrix with

diagonal elements 1, 2 and 3. The parameter A is a constant that determines the rate at which the signal
strength decreases with distance and is fixed at 10. This value can be influenced by various factors,
such as environmental conditions or manufacturing processes. The values of variance of the sensors,
as stated before, is unknown for each sensor.
We consider a scenario with K = 3 sensors, which makes the complete dimension of the problem to
be

D = M +
K(K + 1)

2
= 2 +

3(3 + 1)
2

= 8.

The positions of these sensors are given by: s1 = [0.5, 1], s1 = [3.5, 1] and s3 = [2, 3]. The positions
of the target (and parameter we want to estimate) is θtrue = [2.5, 2]. In this scenario, 50 observation
vectors were generated. For comparison purposes, the prior over θ was set as uniform, i.e., g(θ) ∝ 1.
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Testing ATAIS. In ATAIS, we set T = 40 iterations and N = 50 particles per iteration. We con-
sider a Gaussian proposal density for the θ-space with initial mean [0, 0]⊤, with a diagonal initial
covariance matrix of 6I2. The initial covariance matrix ˆ︁Σ(0)

ML is set to the identity matrix I3. All the
results are averaged over 103 independent runs. First, in Figure 2(a), we provide the mean absolute
error (MAE) versus N with T = 50 and T = 100 (two curves), obtained by ATAIS in estimating in
the estimation of θMAP (using θtrue as the groundtruth). The error decreases as we increase the number
of samples for both values of T = 50 and T = 100. In Figure 2(b), we give the MAE versus T with
N = 50 and N = 100. Again, we obtain the expected behavior: the error decreases as T grows and/or
N increases. Additionally, other MAE values (also in estimating the covariance matrix Σ) obtained
by ATAIS are given in Table 4. Recall that we consider θtrue and ΣML - computed as in Eq (64) - as
the groundtruths of this experiment. In this table, we show the two partial MAEs for θtrue and ΣML,
and the MAE in the complete space, as well. Figure 3 illustrates the evolution of the components ofˆ︁θMAP and ˆ︁ΣML with the iterations, in one run of ATAIS.

Comparison with ILIS and a “helped” MH. We compare the ATAIS results with (a) ILIS using
Metropolis Hastings (MH) chains and (b) a unique MH chain working only in the θ-space, keeping
fixed the covariance matrix to the maximum likelihood estimation ˆ︁Σ(T )

ML obtained by ATAIS in its first
part. Namely, this MH is helped by using and keeping ˆ︁Σ(T )

ML given by ATAIS and works only in the
θ-space. For ILIS, we consider as prior and proposal density for the covariance matrices a Wishart
distribution with ν = 4 degrees of freedom and a reference matrix Φ = 3I3. Then, for θ-space, we use
MH chains with random walk Gaussian proposal density (starting in [0, 0] and diagonal covariance
0.05I2) and with length T = 200. We set J = 10, i.e., we generate J = 10 possible matrices and we
have J = 10 parallel chains considering different target densities (i.e., different conditional posterior
pdfs, each one considering a different covariance matrix). Finally, for the unique/single MH chain ad-
dressing the conditional posterior keeping fixedˆ︁Σ(T )

ML (obtained by ATAIS), we consider again a random
walk Gaussian proposal density (with initial [0, 0]⊤ and diagonal covariance 0.05I2) and with length
T = 2000.
Note that the number of evaluations of the non-linear model f does not differ in the different methods:
in ATAIS is only NT = 2000, in ILIS, is JT = 2000, whereas in the single MH we have T = 2000
evaluations of f. Therefore, all techniques have the same evaluations of the non-linear model f(θ) that
corresponds to the main cost in the likelihood evaluation.
Our goal here is to approximate the MAP estimation of θ by all these schemes. The results are given
in Figure 5. We can see the final ATAIS approximates of MAP of θ (using θtrue as the groundtruth),
represented with green squares, whereas the estimations of ILIS are presented with red circles. The re-
sults provided by the single MH chain are depicted with blue diamonds in Figure 5. Looking at Figure
5, it is clear that ATAIS (green squares) provides the best performance estimating θtrue (black cross)
better than ILIS (red circles). In addition, we can see that the single MH chain using the covariance
matrix estimated by ATAIS (blue diamonds) shows better results in most of the cases than ILIS, but
they are still worse than ATAIS.
Note that, in this example, the posterior is very narrow, which can make it hard for the generation of
samples in regions with high posterior evaluation, this is why the adaptation of the proposal scale ma-
trix in step 2d of Table 8 is quite important. To improve even more the exploration, at some iteration
the scale matrix of the proposal densities can be periodically increased to allow exploration of areas
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away from the narrow mode as described in Section 4.2.

(a) MAE versus N (b) MAE versus T

Figure 2: Location Example. MAE in the estimation of θMAP (using θtrue as the groundtruth), with
different number of particles by ATAIS versus (a) N with fixed T and with (b) T with fixed N.

(a) ˆ︁θ(t)
MAP (b) ˆ︁Σ(t)

ML

Figure 3: Location example. Convergence of the components in ˆ︁θ(t)
MAP and ˆ︁Σ(t)

ML in one run of ATAIS
algorithm.

Credible interval with 95% of probability for the matrix. In order to show how to perform a
complete Bayesian inference over the covariance matrix Σ as well, we consider a Wishart proposal
with ν = 100 (degrees of freedom) with a reference matrix (Φ) equal to ˆ︁Σ(T )

ML (i.e., we apply the second
part of ATAIS). With this proposal distribution, we generate J = 1000 matrices and assign a weight to
each of them following Eq. (54). Applying resampling (exactly J times) according to the normalized
weights {λ̄ j}

J
j=1, we calculate the percentiles 0.025 and 0.975 for each component to get a credible
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interval for the covariance matrix Σ, as shown below (where we have averaged over 100 independent
runs) in Eq (67). The first part of ATAIS was performed with T = 50 and N = 50, obtaining a
confidence interval with α = 0.05 for each value of the matrix,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ [0.6697, 1.3594] [−0.3206, 0.2958] [−0.6946, 0.3115]

[−0.3206, 0.2958] [1.2584, 2.4827] [−0.4709, 0.8096]
[−0.6946, 0.3115] [−0.4709, 0.8096] [2.9975, 5.8437]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (67)

Note that the covariance matrix Σ represents the covariance among the different sensors in the net-
work. In Figure 4, we can see the histograms obtained by the resampled particles of each component
of Σ (after performing resampling according to the weights {λ̄ j}

J
j=1). We must remark on how the

histograms corresponding to the null components of Σtrue have the mode very close to the value 0.

Figure 4: Location example: histogram of the components of Σ, denoted as [Σ]i, j = Σi, j, of the
covariance matrices after resampling according to the weights λ̄ j, for the location example.
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Figure 5: Location example: Estimations of θMAP with different schemes. the green squares represent
the estimation with ATAIS; the red circles depict for the estimations of ILIS with a covariance matrix
generated from a Wishart distribution. The blue diamonds represent the estimations of the single MH
addressing a conditional posterior as invariant density, where Σ is fixed to the value of estimation ΣML
obtained by ATAIS. The black cross shows θtrue.

Table 4: Localization example: MAE averaged over 100 simulations of ATAIS for estimating the
θtrue, ΣML. Recall that its groundtruth is computed as in Eq. (64). The complete MAE in the whole
space is also given.

Varying in N (T = 50) Varying in T (N = 100)
N θtrue ΣML Complete MAE T θtrue ΣML Complete MAE
5 0.0377 0.8934 0.7378 5 0.1740 2.4068 2.0009
12 0.0207 0.0443 0.0400 10 0.0758 0.4292 0.4834
25 0.0205 0.0443 0.0399 20 0.0328 0.3002 0.3649
50 0.0205 0.0442 0.0399 30 0.0205 0.0441 0.0398
100 0.0204 0.0440 0.0400 50 0.0204 0.0440 0.0400

7.2 Multi-output model - dimension of the space D = 12

In this second experiment, we consider the following isotopic multi-output model, using the notation
in Eq. (8),

y = f(θ, τ) + v, (68)

where the vector function f(θ, τ) : R2 × R→ R4 with θ = [θ1, θ2]⊤ is given by the components

f1(θ, τ) = f1(θ1, τ) = θ1 sin(τ)τ,

f2(θ, τ) = f2(θ2, τ) = θ2 cos(τ)τ2, (69)
f3(θ, τ) = (θ1 + θ2) sin(τ) cos(τ),

f4(θ, τ) = f4(θ2, τ) = θ2τ2.
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The error term v ∼ N(0,Σtrue) with

Σtrue =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0.1 0.3 0.16 0
0.3 1.05 0 0

0.16 0 2 0
0 0 0 2.95

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
The true value of the vector θ is set to θtrue = [0.2, 0.1]⊤. In this case de dimension of the observations
remains at K = 4, with θ of dimension M = 2, which makes a total dimension of inference space of

D = M +
K(K + 1)

2
= 2 +

4(4 + 1)
2

= 12.

Remark. This example shows clearly the difficulty of performing an estimation of Σ directly from
the vectors observed, {yr}

R
r=1. This is due to the vectors not sharing the same mean (i.e., the functions

fi which also depends on τ).

The prior for θ is assumed to be uniform and improper, i.e., g(θ) ∝ 1. As in the previous exam-
ple, we also test three algorithms: (a) complete ATAIS, (b) ILIS using Metropolis-Hastings (MH)
chains and (c) a single MH chain working exclusively in the θ-space, maintaining fixed the covariance
matrix and equal to ˆ︁Σ(T )

ML given by ATAIS, as in the previous experiment. We aim to approximate the
MAP estimate of θ. All the results are averaged over 1000 independent runs.
ATAIS results. We employ in ATAIS the same specifications as in the previous example, i.e., N =
50,T = 40. We use a Gaussian proposal with the initial mean at [0, 0] and the initial covariance ma-
trix is 6I2. The initial covariance matrix for the observations, ˆ︁Σ(0)

ML , is the identity matrix, I4. Figure 6
depicts the evolution of the estimators ˆ︁θ(t)

MAP and ˆ︁Σ(t)
ML versus iteration t, in one run of ATAIS algorithm.

In Figures 7(a) and 7(b), we also provide the MAE versus the number of particles N and T , obtained
by ATAIS in estimating θMAP, using θtrue as groundtruth.
Table 5 provides other MAE values also in estimating the covariance matrix Σ, obtained by ATAIS. As
expected, the best results are obtained increasing the number of particles and the iterations, allowing
a better exploration of the parameter space. Even if the error of the estimation of ΣML is quite small.
This numerical example shows the strength of ATAIS, since in this multi-output problem the covari-
ance matrix Σ cannot be approximately in advance directly from the data. Additionally, considering
the MAE in the whole state space, we also perform different simulations where the product NT re-
mains fixed, while the value of T changes in {100, 200, 500, 1000, 2000}, so that N changes among
these values {200, 100, 40, 20, 10}. The results obtained are given in Figure 8(a). We can observe the
robustness of ATAIS: we obtain very small MAE values in all cases.
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(a) ˆ︁θ(t)
MAP (b) ˆ︁Σ(t)

ML

Figure 6: Multi-output example. Convergence of the components in the estimators ˆ︁θ(t)
MAP and ˆ︁Σ(t)

ML in
one run of ATAIS algorithm.

Comparison with ILIS and an “helped”-MH. We compare again the ATAIS results with (a) ILIS
using Metropolis Hastings (MH) chains and (b) a unique MH chain working only in the θ-space,
keeping fixed the covariance matrix to the maximum likelihood estimation ˆ︁Σ(T )

ML obtained by ATAIS in
its first part. Namely, this MH is helped by using and keeping ˆ︁Σ(T )

ML given by ATAIS, and works only n
the θ-space. For ILIS, we consider as prior and proposal density for the covariance matrix a Wishart
distribution with ν = 5 degrees of freedom and a reference matrixΦ = 1

ν
I4. For working in the θ-space

we use MH chains with a Gaussian random walk proposal density with initial mean [0,0] and diagonal
covariance matrix 0.005I2. The length of the chains is T = 200. We generate J = 10 possible matri-
ces, thus we have J = 10 parallel chains considering different target densities (each target considers a
different covariance matrix). We consider that all the chains provide a unique estimation of the MAP
of θ. Finally, for the single MH chain addressing the conditional posterior fixing ˆ︁Σ(T )

ML (obtained by
ATAIS), we consider a Gaussian random walk proposal density. This proposal density has an initial
mean [0, 0] and has a diagonal covariance matrix 0.005I2. The length of the chain is T = 2000.
In Figure 8(b), we can see the final ATAIS estimates of the MAP of θ represented by green squares,
while red circles represent the estimations of ILIS. The results provided by a single MH chain are
displayed using blue diamonds. Looking at Figure 8(b), it is clear that the ATAIS gives the best
estimations of θtrue (black cross) than the estimations of ILIS. Once again, we see how using the
covariance matrix estimated by ATAIS (blue diamonds) gives better results than ILIS. In addition, we
can see that the single MH chain using the covariance matrix estimated by ATAIS (blue diamonds)
shows better results than ILIS in most of the cases, and some of them are comparable to ATAIS. Re-
call that, this third method has the advantage of using exactly ˆ︁Σ(T )

ML that is the estimation provided by
ATAIS. Then, the success of this third method is mainly due to an ATAIS ability.

Credible interval with 95% of probability for the matrix. In order to perform a complete Bayesian
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inference over the covariance matrix Σ, we apply the second part of ATAIS. We consider a Wishart
density as proposal (and prior) with ν = 100 (degrees of freedom) with a reference matrix (Φ) equal toˆ︁Σ(T )
ML (i.e., we apply the second part of ATAIS). With this proposal distribution, we generate J = 1000

matrices and assign a weight to each of the following Eq. (54). Applying resampling according to the
normalized weights {λ̄ j}

J
j=1, we calculate the percentiles 0.025 and 0.975 for each component to get

a credible interval for the covariance matrix Σ, as shown below in Eq (70) (where we have averaged
over 100 independent runs). The first part of ATAIS was performed with T = 50 and N = 50.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[0.0614, 0.1586] [0.1669, 0.4483] [0.0703, 0.4736] [−0.2578, 0.1985]
[0.1669, 0.4483] [0.6125, 1.5325] [−0.4739, 0.7620] [−0.7571, 0.7682]
[0.0703, 0.4736] [−0.4739, 0.7620] [1.5868, 3.9349] [−1.3594, 1.0586]

[−0.2578, 0.1985] [−0.7571, 0.7682] [−1.3594, 1.0586] [2.4684, 9.1016]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (70)

(a) MAE versus N. (b) MAE versus T .

Figure 7: Multi-output example. MAE in the estimation of the MAP of the posterior (considering
θtrue as the groundtruth) by ATAIS; (a) versus the number of particles N with fixed T and (b) versus
iterations T with fixed N.
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(a) Keeping constant the product NT . As T grows,
N decreases, e.g., in T = 500, we have N = 40, and
in T = 2000 we have N = 10.

(b) ˆ︁θMAP with different schemes.

Figure 8: Multioutput example. (a) Complete MAE in estimating the θMAP and the ΣML, keeping fixed
the number of posterior evaluations NT = 20000, with T ∈ {100, 200, 500, 1000, 2000}, hence N ∈
{200, 100, 40, 20, 10}. (b) Estimations of θMAP. The green squares represent the estimation with ATAIS;
the red circles depict the estimations of ILIS with a covariance matrix generated from a Wishart
distribution. The blue diamonds represent the estimations of the single MH addressing a conditional
posterior as invariant density, where Σ is fixed to the value of estimation ΣML obtained by ATAIS. The
black cross depicts θtrue.

Table 5: Multi-output example: MAE averaged over 1000 simulations of ATAIS for estimating the
θtrue, ΣML (its groundtruth is computed as in Eq. (64)), and the complete MAE in the whole space.

Varying in N (with fixed T = 50) Varying in T (with fixed N = 100)
N θtrue ΣML Complete MAE T θtrue ΣML Complete MAE
5 0.2325 0.7666 0.7073 5 0.2100 0.4648 0.4365
12 0.0102 0.0136 0.0132 10 0.1219 0.1293 0.1285
25 0.0013 0.0026 0.0024 20 0.0355 0.2663 0.2407
50 0.0012 0.0023 0.0021 30 0.0015 0.0031 0.0029
100 0.009 0.0017 0.0025 50 0.0010 0.0021 0.0019
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7.3 Use of mini-batches
In this experiment, we test the possible use of mini-batches in ATAIS. More specifically, we test the
second strategy in Section 4.6. We consider the multi-output model in Section 7.2. We consider
different number of data in the batches, L ∈ {2, 5, 10, 25}. We have R = 50 observations. Following
Section 4.6, the data are randomly divided into R

L disjoint subsets, with L elements in each batch.
Namely, we have exactly R

L batches. The number of iterations in ATAIS, T , is also equal to R
L , which

forces to take fewer ATAIS steps as we increase the size of the subsets. Hence, we have T = R
L that

represents both the number of iterations and the number of batches. Since in this example the total
number of observations is R = 50, we have T ∈ {25, 10, 5, 2} (according to the values of L given
above). The number of particles in each iteration of ATAIS is set to N ∈ {5000, 104}.
Figure 9 shows the MAE in estimating the full parameter space {θ,Σ} (considering ΣML in Eq. (64) as
groundtruth), averaged over 105 independent runs. We can see that the MAE is always very small in
all cases. Hence, ATAIS works well even using mini-batches. Moreover, since the use of mini-batches
has a tempering effect that fosters the exploration of the space, ATAIS works even better with batches
when the number of data in each batch, L, is not too small (in Figure 9, the choice L = 2 degrades
slightly the performance).

Figure 9: Testing the use of mini-batches in the multi-output model in Section 7.2: MAE in estimating
the full parameter space {θ,Σ} with R = 50 (number of data), L ∈ {2, 5, 10, 25} (number of data in the
batches), T = R

L ∈ {50, 10, 5, 2} (number of iterations which coincides with the number of batches).
Note that the curve of N = 5000 is depicted with a solid line, and the results with N = 104 are shown
with a dashed line.

7.4 Testing ATAIS in models with a Student’s-t noise
As described in Section 3.2, ATAIS can be also applied when the noise perturbation in the observation
model follows an elliptical distribution. In this experiment, we consider a noise distribution with
heavier tails with respect to the Gaussian case. More specifically, we consider a noise variable vr in
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Eqs. (1)-(25) is distributed as a multivariate Student’s-t distribution with 10 degrees of freedom. In
this case, the estimation of Σ is obtained by the iterative process described in Section 3.2. We test
the case of the Student’s-t noise in both models described in the experiments above: the localization
model in Section 7.1 and the multi-output model in Section 7.2.
In Table 6, we provide the averaged MAE over 103 runs in the estimations of ATAIS for θtrue, and
ΣML, computed as in Eq. (64). We set the number of iterations to T = 50 and the number of particles
N is taken as {5, 12, 25, 50, 100}. Table 6 shows the results for the localization model in Section 7.1
and the multi-output model in Section 7.2 both with the Student’s-t noise. Again we can observe that
ATAIS provides good results. The MAE decreases as the number of particles N increases, as expected.
It is worth noting that in this scenario with a noise with a heavier tail the estimation of the matrix ΣML
seems to be more difficult than with the Gaussian noise scenario.

Table 6: Experiment with Student’s-t noise: MAE averaged over 1000 simulations of ATAIS for
estimating the θtrue and ΣML (its groundtruth is computed as in Eq. (64)). The number of iterations is
fixed to T = 50.

Localization model with Student’s-t noise Multi-output model with Student’s-t noise
N θtrue ΣML Complete MAE θtrue ΣML Complete MAE
5 0.1732 12.3840 10.1639 0.1481 0.3517 0.3291
12 0.0752 2.4801 2.0428 0.0747 0.1157 0.1111
25 0.0470 0.6286 0.5229 0.0484 0.0579 0.0568
50 0.0372 0.1094 0.0963 0.0337 0.0377 0.0366
100 0.0327 0.0753 0.0676 0.0246 0.0284 0.0279

7.5 Application to a biology system - dimension of the space D = 7

In this third example of application, we focus on an inference problem in a biology system [63]. We
aim to make inference on the covariance matrix of the observations of a model. This model represents
a physiological system with two states and one input variable. The model is governed by a set of four
parameters denoted as θ = [k12, k21, k1e, b]⊤. The dynamics of the system is ruled by the following
differential equations. using the notation in Eq. (8):

d f1

dτ
= − (k1e + k12) · f1(θ, τ) + k21 · f2(θ, τ) + b · u(τ),

d f2

dτ
=k12 · f1(θ, τ) − k21 · f2(θ, τ),

(71)

where

u(τ) =

⎧⎪⎪⎨⎪⎪⎩τ + 0.5 if 0 ≤ τ ≤ 1
1.5e1−τ if τ > 1,

(72)

is an input of the system. We set the true parameters to θtrue = [1, 1, 1, 2]⊤ and

Σtrue =

(︄
1 0.9

0.9 2

)︄
.
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The prior for the components of θ was set as uniform in the interval [0, 5] (for all the components)
as suggested in [63]. The system of differential equations above has no analytically close solution.
Hence, the generation of the data according to the system is obtained using a Runge-Kutta Matlab
solver [64]. We assume that the solution is perturbed by Gaussian noise according to the distribution
N(0,Σtrue). Then, 100 data points are sampled at equidistant times from the solution of the system
(71).

Remark. Note that, in this experiment, the function f is evaluated only approximately since it is
the solution of the system (71) which cannot be evaluated exactly. Thus, even considering the vector
of true values θtrue, we need to approximate f(θtrue, τ) by a differential equation solver (discretizing
it) obtainingˆ︁f(θtrue, τ).
In order to make inference we use ATAIS with N = 300 particles during T = 100 iterations. The
initial value for the mean of the proposal is set at [0, 0, 0, 0] and for the covariance matrix is 6I4. The
initial estimate for the covariance matrix of the data, ˆ︁Σ(0)

ML , was the identity, I2. The convergence in one
run of ATAIS estimators can be observed in Figure 7.5.

(a) ˆ︁θ(t)
MAP (b) ˆ︁Σ(t)

ML

Figure 10: Application to a system biology example. Evolution of the components in the estimatorsˆ︁θ(t)
MAP and ˆ︁Σ(t)

ML versus t, in one run of ATAIS algorithm.

In the second part of ATAIS, we generate J = 1000 matrices from a Wishart distribution (degrees of
freedom, ν = 100) with reference matrix equal to ˆ︁Σ(T )

ML , the final estimate of the first part of ATAIS. To
each of the generated matrices we assign a weight following Eq (54). After performing resampling.
Applying resampling according to the weights {λ̄ j} we calculate the percentiles 0.025 and 0.975 to get
a 95% credible interval (averaged over 50 independent runs) in Eq (73). It can be seen that our interval
contains the true components of the covariance matrix.(︄

[0.7820, 1.3876] [0.7099, 1.4614]
[0.7099, 1.4614] [1.6518, 2.8760]

)︄
(73)
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As a final remark, in this example, the posterior has a particularly flat shape in some regions, so that
many values of the parameters θ provide acceptable results for the solution of the system (71), even if
the distance to the θtrue could be large.

7.6 Application to graph topology estimation - dimension of the space D = 59

In this section, the goal is to apply ATAIS to estimate a graph topology with 10 nodes. The graph
is represented by a 10 × 10 graph shift operator that is usually considered a sparse matrix [65, 66].
In this experiment, we consider that the precision matrix P = Σ−1 is the graph shift operator. Thus,
we assume P to be a sparse matrix and hence represent the graph [65, 66]. If the nodes i and j are
connected, then it follows that Pi, j ≠ 0. Estimating the graph topology consists mainly of knowing
the connections between the nodes, which is determined by the matrix P = Σ−1. The goal is to apply
ATAIS to estimate the graph topology. The corresponding adjacent matrix (binary matrix showing the
connection, that is the groundtruth in this experiment) is depicted in Figure 11(a). Furthermore, we
assume the following multi-output nonlinear model,

f1(θ) = −θ4τ + 5θ21
f2(θ) = 2θ3 sin−θ2τ
f3(θ) = θ1 − θ3 + θ1 cos(2τ)
f4(θ) = 3θ4 + 3θ2 + θ1 exp(0.1τ)
f5(θ) = θ23 − 2θ1 + 3θ2 − exp(0.8θ3) exp(1 − τ)
f6(θ) = 5(θ4 + θ3) − θ2 log(1 + 2τ)
f7(θ) = 3θ2 − 0.2τ sin(θ3)
f8(θ) = 3θ1 + 5θ3 − 20 sin(θ4) cos(2τ +

π

4
)

f9(θ) = θ2 + 4θ4 + 5 exp
(︄

1
1 + θ3

)︄
τ

f10(θ) = 5θ1 + 10θ3 − 5θ4 sin(τ),

(74)

where fr,i(θ) is i-th signal contaminated by Gaussian noise and is emitted by at the i-th node. The
model in Eq. (74) is characterized by a vector parameter θ ∈ R4 with the following true values
θtrue = [0.5, 2, 5, 3]⊤. We assume an improper uniform prior over θ. Note that, in this scenario, we
have M = 4 and K = 10, hence the complete space has dimension,

D = M +
K(K + 1)

2
= 59.

We estimate Σ with ATAIS, then compute P = Σ−1 and apply a threshold value of 0.3 for obtaining
a corresponding binary matrix (entries of P smaller than 0.3 are set to 0, whereas entries of P greater
than 0.3 are set to 1). More sophisticated strategies could be considered, for instance, using ATAIS
jointly with a graphical lasso approach. We set T = 10 and N = 20000 and consider 500 independent
runs. For the adaptation of the covariance of the proposal density in Eqs. (26)-(78), we apply a
cyclic/periodic strategy in Eq. (27)

δt+1 =

{︄
a δt, if δt ≥ δmin,

δ0, if δt < δmin,
(75)
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with δ0 = 1, a = 0.1 and δmin = 0.05.
The results in estimation of P = Σ−1 are given in percentages in Figure 11. In 69.7% of the runs,
we obtain exactly the groundtruth matrix in (a). In the rest of the runs, we get very similar adjacency
matrices, shown in (b)-(c).
Figure 12 depicts the evaluations of the final conditional log-posterior of the samples θ(n)

t such that
w̄(n)

t ≥ 1/N at each iteration. Hence, the number of these relevant samples varies with iteration t
and with the specific run, depending also on the adaptation of the proposal and its covariance matrix
in Eqs. (26)-(78). For instance, in Figure 12(a), we can observe the evaluation in 3 different runs
where the number of extremely relevant samples - with weights such that w̄(n)

t ≥ 1
N - is 70, 73 and

111, respectively. These numbers (of the extremely relevant samples) can be considered small, but
actually they are very well-located as shown in Figure 12(b), which illustrates the histograms of the
four components of these relevant samples. Note that the histograms are localized around the true
values of θtrue = [0.5, 2, 5, 3]⊤. Indeed, the values of the log-posterior evaluations are close to the log-
posterior evaluation at θtrue. Computing an averaged (standard) ESS measure ˆ︃ES S = 1

T

∑︁T
t=1 ESS(t)

(averaged over the iterations, and also over the different runs) where ESS(t) = 1/
∑︁N

n=1 w̄(n)
t [46], we

obtain ˆ︃ES S
N ≈ 0.10, i.e., 10% of the N particles. However, we can see they are well located, in fact, the

MAE in estimation of θ is only 0.01. Therefore, ATAIS provides very good performance, remarking
that the dimension of the space is D = 59.

(a) True matrix, obtained in estima-
tion 69.7% of times.

(b) Obtained in estimation 22.1%
of times.

(c) Obtained in estimation 8.2% of
times.

Figure 11: Graph topology estimation with ATAIS algorithm (with T = 10 and N = 2 · 104). In the
69.7% of the runs, we obtain exactly the groundtruth matrix in (a). In the rest of other runs, we get
very similar adjacency matrices, shown in (b)-(c).
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Figure 12: (a) Evaluations of the final conditional log-posterior of the samples θ(n)
t such that w̄(n)

t ≥

1/N at each iteration. (b) Histograms of the four components of the relevant samples. They are
localized around the true values of θtrue = [0.5, 2, 5, 3]⊤.

7.7 Comparison with other benchmark schemes
First of all, it is important to remark that, in all the numerical experiments above, the application of
other Monte Carlo approaches directly on the joint space {θ,Σ} often produces much higher errors in
estimation, which makes it difficult to compare and visualize with respect to the results obtained by
ATAIS. In this section, we make an effort to compare with other techniques. Specifically, we apply
different MCMC algorithms on the complete parameter space θ,Σ, in order to compare to ATAIS.
Since ATAIS can be applied even when f is not differentiable, in other to perform a fair comparison,
we compare with benchmark algorithms in the literature that do not use the gradient information. We
consider the multi-output model with Gaussian noise in Section 7.2. Hence, as shown in Section 7.2,
the dimension of the complete space is D = 12.

Firstly, we apply a Metropolis-Hastings (MH) algorithm, testing different parameters. We use different
random walk Gaussian proposal densities for the θ with covariance matrix aIM with a ∈ {0.1, 1, 10}
and for the proposal for generating Σ is a random walk Wishart with ν ∈ {5, 50} degrees of freedom,
with a length of the chain of T = 2 · 104. Secondly, we apply an adaptive version of the previously
described MH schemes where the random walk Gaussian proposal density with respect to θ is tuned
using the empirical mean and variance of the generated past samples [3, 5]. Then, the parameter a is
auto-tuned. Finally, we also applied also MH-within-Gibbs sampler (that is a more adequate scheme
for sampling tight posteriors in high-dimensional spaces) where, for each internal Gibbs iteration for
sampling from each full-conditional, we apply 10 MH internal steps [67]. The internal MH considers
random walk Gaussian proposal pdf with unit variance. Moreover, since the elements of the matrix
Σ required to fulfill certain constraints we discard the matrices that are not positive definite. Hence,
this scheme is much more costly than ATAIS and the other MCMC algorithms above. At each run,
the initializations of the chains of all the MCMC schemes (as in ATAIS) described above are chosen
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randomly around a vector of zeros for θ and an identity matrix for Σ (with a standard deviation of 4;
for Σ, we always consider an initial diagonal matrix with the same random element in the diagonal).
Table 7 shows the MAE (averaged over 103 independent runs) for different schemes in the multi-
output example. We include also the MAE corresponding to ATAIS for facilitating the comparison.
Note that, we consider always more evaluations of the model for the MCMC schemes than ATAIS,
except for the last line of ATAIS. In any case, ATAIS clearly outperforms the rest of the compared
techniques.

Table 7: Comparison with other techniques in the multi-output model of Section 7.2: MAE in the
complete space by different methods.

Method Parameters Posterior evaluations MAE
MH a = 0.1, ν = 5,T = 2 · 104

T = 2 · 104

154.71
MH a = 0.1, ν = 50,T = 2 · 104 0.6635
MH a = 1, ν = 5,T = 2 · 104 6.0458
MH a = 1, ν = 50,T = 2 · 104 0.8170
MH a = 10, ν = 5,T = 2 · 104 3.6669
MH a = 10, ν = 50,T = 2 · 104 1.4905

adaptive MH ν = 5 T = 2 · 104
T = 2 · 104 2.9072

adaptive MH ν = 50 T = 2 · 104 0.7481
MH-within-Gibbs 10 internal MH steps, T = 2 · 104 T = 2 · 104 0.1351

ATAIS N = 100, T = 5 NT = 500 0.4365
ATAIS N = 100, T = 20 NT = 2000 0.2407
ATAIS N = 100, T = 100 NT = 104 0.0015
ATAIS N = 100,T = 200 NT = 2 · 104 0.0012

8 Conclusions
In this work, we have introduced an adaptive importance sampling (AIS) method for robust inference
in complex Bayesian inversion problems with unknown parameters θ of the non-linear mapping and
unknown covariance matrix Σ of the noise perturbation. The variables of interest are split in two
blocks, the parameters θ of the non-linear model and the covariance matrix Σ, are handled in different
ways. The main proposed inference scheme is divided into two main parts. The first part is devoted
to approximating a conditional posterior θ given the data and the maximum likelihood estimator of
Σ. This first part allows of finding regions of high probability about θ and Σ (working alternately in
subsets of the complete space, with reduced dimensions).
In the second part, a Bayesian approach is also performed over Σ re-using and re-weighting the sam-
ples of θ previously generated. Then, an approximation of the complete posterior of {θ,Σ} is provided.
This second part does not require of additional evaluation of the possibly costly non-linear vectorial
model f. The resulting scheme is a robust inference approach for Bayesian inversion, based on an
adaptive importance sampler that addresses a sequence of different conditional posteriors and a post-
process that allows a Bayesian inference also over Σ. Several variants and computational details have
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been discussed. Additionally, a simpler compelling scheme, called ILIS, has been introduced in order
to compare with ATAIS. Several numerical experiments have been presented. We can observe the
good performance obtained by ATAIS, providing a complete Bayesian analysis of the complete space
{θ,Σ}, and outperforming other benchmark algorithms.
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Table 8: ATAIS: an adaptive IS scheme with a sequence of adaptive target pdfs

1. Initializations: Choose N, µ1, Λ1, ˆ︁Σ(0)
ML , and set πMAP = 0. Recall πt(θ) ∝ p(θ|Y, ˆ︁Σ(t−1)

ML ).

2. For t = 1, . . . ,T :

(a) Sampling:
i. Draw θ(1)

t , ...,θ
(N)
t ∼ q(θ|µt,Λt).

ii. Assign to each sample the weights

w(n)
t =

πt(θ
(n)
t )

q(θ(n)
t |µt,Λt)

, n = 1, ...,N. (76)

(b) Current maximum estimations:
i. Obtain θ(t)

max = arg max
n
πt(θ

(n)
t ), and computeˆ︁rt = fr(θ

(t)
max).

ii. Compute ˆ︁Σt =
1
R

R∑︂
r=1

(yr −ˆ︁rt)(yr −ˆ︁rt)⊤.

(c) Global maximum estimations:
• If πt

(︁
θ(t)
max

)︁
> πMAP:

i. ˆ︁θ(t)
MAP = θ(t)

max,

ii. ˆ︁Σ(t)
ML =

ˆ︁Σt,

iii. Update πMAP = πt+1
(︁ˆ︁θ(t)
MAP

)︁
(note that πt+1(θ) takes into account the new ˆ︁Σ(t)

ML).

• Otherwise ˆ︁θ(t)
MAP =

ˆ︁θ(t−1)
MAP , and ˆ︁Σ(t)

ML =
ˆ︁Σ(t−1)
ML .

(d) Adaptation: Set

µt+1 = ˆ︁θ(t)
MAP, (77)

Λt+1 =

N∑︂
n=1

w̄(n)
t (θ(n)

t − θ̄t)⊤(θ(n)
t − θ̄t) + δtIM, (78)

where w̄(n)
t

w(n)
t∑︁N

i=1 w(i)
t

are the normalized weights, θ̄t =
∑︁N

n=1 w̄(n)
t θ(n)

t and δt > 0.

3. Output: Return the final estimators ˆ︁θ(T )
MAP, ˆ︁Σ(T )

ML , and all the weighted samples {θ(n)
t ,˜︁w(n)

t },
for all t and n, with the corrected weights

˜︁w(n)
t = w(n)

t
πT+1(θ(n)

t )

πt(θ
(n)
t )
. (79)
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