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Abstract. The 3D-brane universe model is an alternative non-Einsteinian theory

of gravity. The initial version of this theory uses the so-called equidistance postulate.
In the current second version of the theory this postulate is omitted. In the present

paper non-baryonic particles are studied within the second version of the theory. As
an example their revolution around a Schwarzschild black hole is considered.

1. Introduction.

The initial version of the 3D-brane universe model was built in the series of
papers [1–6] (see also [7–11]). Its second version was started in [12]. In this version
of the theory the gravitational field is described by a time-dependent 3D metric

gij = gij(t, x
1, x2, x3), 1 6 i, j 6 3, (1.1)

and by a time-dependent scalar function

g00 = g00(t, x
1, x2, x3). (1.2)

Here x1, x2, x3 are comoving coordinates. Their definition in the standard cosmo-
logy can be found in [13]. In the 3D-brane universe model they are defined in [1]
and [12]. Their definition is the same for both versions of the theory.

Through t in (1.1) and (1.2) we denote the so-called brane time. It is well-defined
in the first version of the theory due to the following equidistance postulate.

Postulate 1.1. Watches of any two comoving observers can be synchronized.

Comoving observers are those observers whose comoving coordinates are constants:

x1(t) = const, x2(t) = const, x3(t) = const .

In the initial version of the theory the brane time was defined as the proper time
of any comoving observer. This definition was consistent due to the equidistance
postulate 1.1. The equidistance postulate is excluded from the current version of
the theory. Therefore the brane time is defined as the proper time of some particular
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comoving observer. The choice of that particular comoving observer is not unique.
Replacing one comoving observer by another leads to a time scaling transformation

t̃ = t̃(t), t = t(t̃). (1.3)

In [12] it was shown that the equations of the gravitational field in the theory are
invariant under the time scaling transformations of the form (1.3) provided the
scalar function (1.2) is transformed as follows:

g00 =
( dt̃

dt

)2

g̃00, g̃00 =
( dt

dt̃

)2

g00. (1.4)

The equations of the gravitational field in the second version of the 3D-brane
universe model were derived in two ways in [12] and in [14]. The second way uses
the Lagrangian approach with the Lagrangian density of the gravitational field

Lgr = −
c4
gr

16 π γ

√

g00 (ρ + 2 Λ), (1.5)

where cgr is the speed of gravitational waves and ρ is a scalar given by the formula

ρ = g−1
00

3
∑

k=1

3
∑

q=1

gkq ∇kq g00 −
g−2
00

2

3
∑

k=1

3
∑

q=1

gkq ∇k g00 ∇q g00 −

−R − g−1
00

3
∑

k=1

3
∑

q=1

bk
q bq

k + g−1
00

3
∑

k=1

3
∑

q=1

bk
k bq

q.

(1.6)

In this paper we do not write and discuss the Euler-Lagrange equations that follow
from (1.5) and (1.6). Instead of it, we shall complement the action integral of the
gravitational field with the action integral of a non-baryonic particle and derive
dynamical equations for its motion in a way similar to that of [6].

2. Action integral for a non-baryonic massive particle.

The action integral of the gravitational field is expressed through its Lagrangian,
while its Lagrangian is expressed through the Lagrangian density (1.5):

Sgr =

∫

Lgr dt, Lgr =

∫

Lgr

√

det g d3x. (2.1)

The motion of a non-baryonic particle is described by the coordinate functions

xi = xi(t), i = 1, . . . , 3. (2.2)

Time derivatives of the functions (2.2) are components of its velocity vector v:

vi = ẋi(t), i = 1, . . . , 3. (2.3)

In (2.2) and (2.3) we assume x1, x2, x3 to be comoving coordinates and t to be a
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brane time. The action integral for a non-baryonic particle is given by the formula

Snb = −

∫

m c2
nb

√

g00 −
|v|2

c2
nb

dt. (2.4)

This formula (2.4) generalizes the formula (2.4) from [6]. The constant m in (2.4)
is the rest mass of a particle. The constant cnb is a speed constant similar to cgr

in (1.5). The same constant for baryonic particles is denoted through cbr. In the
standard Einstein’s relativity all of these speed constants should be equal to the
speed of light cel (speed of electromagnetic waves). The 3D-brane universe model is
a less restrictive theory. Here all of these speed constants a priori can be different.

Using the formulas (2.1) and (2.4), we write the total action of the gravitational
field and a single non-baryonic particle as the sum

S = Sgr + Snb. (2.5)

The Lagrangian associated with the action (2.5) is also written as a sum:

L = Lgr + Lnb. (2.6)

The Lagrangian of the gravitational field Lgr is taken from (2.1). The formula for
the Lagrangian Lnb is derived from (2.4). Indeed, we have

Lnb = −m c2
nb

√

g00 −
|v|2

c2
nb

. (2.7)

Applying the stationary action principle (see [15]) to the sum of action integrals
(2.5), we get the following Euler-Lagrange equations:

−
d

dt

( δL

δvi

)

g,b,x
+
( δL

δxi

)

g,b,v
= 0. (2.8)

The first term Lgr in the right hand side of (2.6) does not depend on the functions
(2.2) and (2.3), while the second term Lnb in the right hand side of (2.6) is not an
integral. Therefore the Euler-Lagrange equations (2.8) reduce to

−
d

dt

(∂Lnb

∂vi

)

+
∂Lnb

∂xi
= 0. (2.9)

The partial derivatives in (2.9) are easily calculated using (2.7). Indeed, we have

∂Lnb

∂vi
=

m vi
√

g00 −
|v|2

c2
nb

,
∂Lnb

∂xi
=

3
∑

r=1

3
∑

s=1

m

2

∂grs

∂xi
vr vs − c2

nb

m

2

∂g00

∂xi

√

g00 −
|v|2

c2
nb

. (2.10)

The function g00 is interpreted as a scalar function. Therefore its partial derivative
in (2.10) is equal to its covariant derivative:

∂g00

∂xi
= ∇i g00. (2.11)



4 RUSLAN SHARIPOV

It is known that ∇i grs = 0 and it is known that this covariant derivative is given
by the following formula (see § 7 in Chapter III of [16]):

∇i grs =
∂grs

∂xi
−

3
∑

q=1

Γq
ir gqs −

3
∑

q=1

Γq
is grq . (2.12)

From ∇i grs = 0 and from the formula (2.12) we derive

3
∑

r=1

3
∑

s=1

∂grs

∂xi
vr vs =

3
∑

q=1

3
∑

s=1

2 Γq
is vq vs. (2.13)

Here Γq
is are the components of the metric connection associated with the metric

(1.1). Due to (2.11) and (2.13) the formulas (2.10) are written as follows:

∂Lnb

∂vi
=

m vi
√

g00 −
|v|2

c2
nb

,
∂Lnb

∂xi
=

3
∑

q=1

3
∑

s=1

m Γq
is vq vs −

m c2
nb

2
∇i g00

√

g00 −
|v|2

c2
nb

. (2.14)

Applying (2.14) to the equations (2.9), we derive

d

dt

( m vi
√

g00 −
|v|2

c2
nb

)

=

3
∑

q=1

3
∑

s=1

m Γq
is vq vs −

m c2
nb

2
∇i g00

√

g00 −
|v|2

c2
nb

. (2.15)

The time derivative in the left hand side of (2.15) is transformed as follows:

d

dt

( m vi
√

g00 −
|v|2

c2
nb

)

=
m v̇i

√

g00 −
|v|2

c2
nb

+

+
m vi

(
√

g00−
|v|2

c2
nb

)3

1

2

(

d

dt

(

|v|2

c2
nb

)

− ġ00 −

3
∑

s=1

vs ∇s g00

)

.

(2.16)

Combining (2.15) and (2.16), we derive the differential equations for vi:

m v̇i
√

g00 −
|v|2

c2
nb

+
m vi

(
√

g00 −
|v|2

c2
nb

)3

1

2

(

d

dt

(

|v|2

c2
nb

)

− ġ00−

−
3
∑

s=1

vs ∇s g00

)

=

3
∑

q=1

3
∑

s=1

m Γq
is vq vs −

m c2
nb

2
∇i g00

√

g00 −
|v|2

c2
nb

.

(2.17)
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Through ġ00 in (2.16) and (2.17) we denote the partial derivative of the scalar
function (1.2) with respect to the time variable. The equality (2.16) is derived
using (2.11). Apart from (2.11) below we need the following equality from [14]:

bij =
ġij

2 cgr

=
1

2 cgr

∂gij

∂t
=

1

2

∂gij

∂x0
. (2.18)

The second term in the left hand side of (2.17) comprises the time derivative of
|v|2. We calculate this time derivative as follows:

d(|v|2)

dt
=

d

dt

( 3
∑

r=1

3
∑

s=1

grs vr vs

)

=

3
∑

r=1

3
∑

s=1

d(grs vr)

dt
vs +

+

3
∑

r=1

3
∑

s=1

d(grs vs)

dt
vr −

3
∑

r=1

3
∑

s=1

dgrs

dt
vs vr =

3
∑

s=1

2 v̇s vs −

−

3
∑

r=1

3
∑

s=1

∂grs

∂t
vs vr −

3
∑

r=1

3
∑

s=1

3
∑

i=1

∂grs

∂xi
ẋi vs vr .

(2.19)

We transform (2.19) using (2.18), (2.3), and (2.13). This yields

d(|v|2)

dt
= −

3
∑

q=1

3
∑

s=1

3
∑

i=1

2 Γq
is vq vs vi +

+

3
∑

s=1

2 v̇s vs −

3
∑

r=1

3
∑

s=1

2 cgr brs vs vr .

(2.20)

Now we multiply (2.17) by vi and sum up with respect to i running from 1 to 3:

m

3
∑

i=1

v̇i vi

√

g00 −
|v|2

c2
nb

+
m |v|2

(
√

g00 −
|v|2

c2
nb

)3

1

2

(

d

dt

(

|v|2

c2
nb

)

− ġ00 −

−

3
∑

s=1

vs ∇s g00

)

=

3
∑

q=1

3
∑

s=1

3
∑

i=1

m Γq
is vq vs vi −

m c2
nb

2

3
∑

i=1

vi ∇i g00

√

g00 −
|v|2

c2
nb

.

(2.21)

Then we apply (2.20) to the time derivative of |v|2 in (2.21). As a result the equality
(2.21) simplifies and reduces to the following one:

3
∑

i=1

v̇i vi =

3
∑

q=1

3
∑

s=1

3
∑

i=1

Γq
is vq vs vi +

cgr |v|
2

g00 c2
nb

3
∑

r=1

3
∑

s=1

brs vs vr +

+
ġ00 |v|

2

2 g00

−
c2
nb

2

3
∑

i=1

vi ∇i g00 +
|v2|

g00

3
∑

i=1

vi ∇i g00.

(2.22)
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Now we substitute (2.22) into (2.20). As a result we get

d(|v|2)

dt
= −

2 cgr

g00

(

g00 −
|v|2

c2
nb

) 3
∑

r=1

3
∑

s=1

brs vs vr +

+
ġ00 |v|

2

g00

− c2
nb

3
∑

i=1

vi ∇i g00 +
2 |v|2

g00

3
∑

i=1

vi ∇i g00.

(2.23)

The next step is to substitute (2.23) into the equation (2.17). This yields

v̇i −
3
∑

q=1

3
∑

s=1

Γq
is vq ẋs = −

c2
nb

2
∇i g00 +

+ vi

( 3
∑

s=1

vs ∇s g00

g00

+
ġ00

2 g00

+
cgr

c2
nb g00

3
∑

r=1

3
∑

s=1

brs vs vr

)

.

(2.24)

The left hand side of the equation (2.24) fits the definition of the covariant derivative
of a covectorial field with respect to a parameter along a parametric curve, see (8.10)
in § 8 of Chapter III in [16]). Therefore we can write (2.24) as

∇tvi = −
c2
nb

2
∇i g00 + vi

( 3
∑

s=1

vs ∇s g00

g00

+

+
ġ00

2 g00

+
cgr

c2
nb g00

3
∑

r=1

3
∑

s=1

brs vs vr

)

.

(2.25)

The equalities (2.3) can be written as differential equations

ẋi = vi. (2.26)

The equations (2.25) complemented with the equations (2.26) constitute the system
of ordinary differential equations describing the motion of a non-baryonic particle
in the gravitational field described by the metric (1.1) and the scalar function
(1.2). These equations do not comprise the mass m at all. This observation can be
interpreted as follows.

Theorem 2.1. The inertial and passive gravitational masses of a non-baryonic

massive particle are equal to each other.

The definition of inertial mass and the definitions of active and passive gravita-
tional masses are given in [17]. The same theorem 2.1 was formulated in [6] within
the first version of our theory. It remains valid in the present second version too.

3. Legendre transformation and the energy function

of a non-baryonic particle.

The Legendre transformation of a dynamical system is determined by its La-
grangian. In the case of the Lagrangian (2.6) it is given by the formulas

pi =
( δL

δvi

)

g,ġ,g
b,x

, β00 =
( δL

δġ00

)

g,g,b
x,v

, βij =
( δL

δbij

)

g,ġ,g
x,v

. (3.1)
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Since the Lagrangian Lgr does not depend on vi and since the Lagrangian Lnb does
not depend on bij , the formulas (3.1) can be written as

pi =
(∂Lnb

∂vi

)

g,ġ,g
b,x

, β00 =
(δLgr

δġ00

)

g,g,b
x,v

, βij =
(δLgr

δbij

)

g,ġ,g
x,v

. (3.2)

The quantities pi, β00, and βij in (3.2) are the generalized momenta associated with
the generalized velocities vi, ġ00 and bij. The quantities β00, and βij are already
already calculated in [14], see the formulas (5.2) and (4.3) therein:

β00 = 0, βij =
c4
gr g

−1/2

00

8 π γ

(

bij −

3
∑

k=1

bk
k gij

)

. (3.3)

The quantities (3.3) are not interested for us in this paper. The quantities pi are
also already calculated, see the formulas (2.10) above:

pi =
m vi

√

g00 −
|v|2

c2
nb

. (3.4)

It is easy to see that pi in (3.4) are components of a covector p. This covector is
called the momentum covector of a non-baryonic particle.

Now let’s return back to the equations (2.15). Using the components of the
momentum covector p from (3.4) and taking into account the equations (2.3), we
can write the equations (2.15) as follows:

ṗi −

3
∑

q=1

3
∑

s=1

Γq
is pq ẋs = −

m c2
nb ∇i g00

2

√

g00 −
|v|2

c2
nb

. (3.5)

The left hand side of the equation (3.5) fits the definition of the covariant derivative
of a covectorial field with respect to a parameter along a parametric curve, see (8.10)
in § 8 of Chapter III in [16]). Therefore we can write (3.5) as

∇tpi = −
m c2

nb ∇i g00

2

√

g00 −
|v|2

c2
nb

. (3.6)

The equations (3.6) complemented with the equations (2.26) constitute the system
of ordinary differential equations describing the motion of a non-baryonic particle
in the gravitational field described by the metric (1.1) and the scalar function (1.2).
The right hand sides of the equations (3.6) are interpreted as the components of
the force covector F acting upon a non-baryonic particle:

Fi = −
m c2

nb ∇i g00

2

√

g00 −
|v|2

c2
nb

. (3.7)
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The energy function of a non-baryonic particle is written using the components
of its momentum covector p and the components of its velocity vector v:

E =

3
∑

i=1

pi vi − Lnb. (3.8)

Applying (3.4) and (2.7) to (3.8), we derive

E =
m |v|2

√

g00 −
|v|2

c2
nb

+ m c2
nb

√

g00−
|v|2

c2
nb

. (3.9)

The formula (3.9) can be simplified. It reduces to

E =
m c2

nb
√

g00−
|v|2

c2
nb

. (3.10)

Due to (1.4) the quantity g00 in (3.10) can be reduced to g00 = 1 at some
particular point and at some particular instant of time if we apply the time scaling
transformation (1.3) and pass to the proper time of the comoving observer at that
particular point and that particular instant of time:

E =
m c2

nb
√

1−
|v|2

c2
nb

. (3.11)

Due to (3.11) the constant cnb is interpreted as the upper limit for the speed of a
non-baryonic particle.

4. Circular revolution of a non-baryonic

particle around a Schwarzschild black hole.

In [12] a Schwarzschild black hole was studied within the framework of the 3D-
brane universe model using the spacial coordinates

x1 = ρ, x2 = θ, x3 = φ (4.1)

and the time variable t associated with the comoving observer at infinity. Its
gravitational field in the variables (4.1) is described by the scalar function

g00 = 1 −
rgr

ρ
(4.2)

and the diagonal three-dimensional metric gij with the components

g11 =
1

1 −
rgr

ρ

, g22 = ρ2, g33 = ρ2 sin2(θ). (4.3)
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The nonzero components of the metric connection associated with the 3D metric
(4.3) are given by the following formulas:

Γ1
11 =

rgr

2 ρ (rgr − ρ)
, Γ2

12 = Γ2
21 =

1

ρ
, Γ1

22 = rgr − ρ, Γ3
23 = cot θ,

(4.4)

Γ1
33 = (rgr − ρ) sin2 θ, Γ3

13 = Γ3
31 =

1

ρ
, Γ2

33 = −
sin(2 θ)

2
, Γ3

32 = cot θ.

The Schwarzschild black hole metric is a stationary solution of the gravitational
field equations. Therefore we have the following relationships:

ġ00 = 0, bij = 0 for 1 6 i, j 6 3. (4.5)

Assume that a non-baryonic particle with the mass m revolves around a black
hole in its equatorial plane with angular velocity ω. Then its revolution is

ρ(t) = ρ = const, θ(t) =
π

2
= const, φ(t) = ω t. (4.6)

Differentiating (4.6) with respect to t, we find the components of the velocity vector:

v1 = 0, v2 = 0, v3 = ω. (4.7)

The components of the velocity covector are produced by the standard formula

vi =

3
∑

k=1

gik vk. (4.8)

Applying (4.3) and (4.7) to (4.8) and taking into account (4.6), we get

v1 = 0, v2 = 0, v3 = ρ2 ω. (4.9)

The components of the acceleration covector are defined as follows

ai = ∇tvi = v̇i −

3
∑

q=1

3
∑

s=1

Γq
is vq ẋs. (4.10)

Applying (4.4) and (4.9) to (4.10) and taking into account (2.26), we get

a1 = −ρ ω2, a2 = 0, a3 = 0. (4.11)

Now we can apply the differential equation (2.25) describing the dynamics of the
particle. Here are the gradient components of the scalar field (4.2) in it:

∇1 g00 =
rgr

ρ2
∇2 g00 = 0, ∇3 g00 = 0. (4.12)



10 RUSLAN SHARIPOV

Using (4.7) and (4.12), we derive

3
∑

s=1

vs ∇s g00 = 0. (4.13)

Due to (4.5), (4.13), and (4.10) the equation (2.25) reduces to

ai = −
c2
nb

2
∇i g00. (4.14)

Applying (4.11) and (4.12) to (4.14), we derive the equality

−ρ ω2 = −
c2
nb rgr

2 ρ2
. (4.15)

The gravitational radius of a black hole with the mass M is given by the formula

rgr =
2 γ M

c2
gr

. (4.16)

The formula (4.16) can be found in § 100 of Chapter XII in [18] or in [19]: Substi-
tuting (4.16) into (4.15), we derive

ρ ω2 =
c2
nb γ M

c2
gr ρ2

. (4.17)

Despite the denominator in the force formula (3.7), the formula (4.17) coincides
with the prediction of the classical Newton’s theory of gravitation up to the factor
c2
nb/c2

gr. In the standard relativity both constants cnb and cgr are taken to be equal
to the speed of light cel. Our theory the 3D-brane universe model is different. It
admits the option where these two constants cnb and cgr are different.

5. Conclusions.

The present paper extends the results of [6] to the second version of the 3D-
brane universe model where the equidistance postulate 1.1 is excluded. Like in the
previous version of the theory, if the inequality

cnb > cel (5.1)

is fulfilled, then superluminal motion of a non-baryonic massive particle is possible.

The constant cnb in (5.1) is not necessarily unique. There may be several sorts
of non-baryonic matter each having its own speed constant cnb.

6. Dedicatory.

This paper is dedicated to my sister Svetlana Abdulovna Sharipova.
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