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Abstract: 

The surprising discovery of much earlier and bigger galaxies by James Webb space telescope 

indicates the inadequacy of our understanding on cosmology. This paper confirms that the 

current estimate of 13.8 billion years for the age of the universe is an underestimation. 

Adopting a new approach, the paper estimates the age of the universe based on the second 

Friedmann equation, which provides more detailed information on the evolution of the 

universe. By ignoring the weak force in both decelerating and accelerating phases, the paper 

provides the most conservative estimate of the age of universe to be 14.7 billion years, which 

is about 1 billion years greater than the existing estimate. Moreover, when the weak force is 

included in the accelerating phase, the age of the universe is estimated at 16.5 billion years. It 

is expected that if the weak force is included in the decelerating phase, the estimate should be 

even higher. In order to estimate the age of universe more accurately and directly from the 

cosmological survey data, the paper suggests to construct the current cosmological model 

mainly based on the second Friedmann equation. 
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1. Introduction  

The Early Release Observations (ERO) data taken by James Webb space telescope (JWST) 

surprised astronomers and physicists to the extent of ‘panic’ (Witze, 2022; Ferreira et al, 

2022). Ferreira et al found there are about 10 times relative higher number of disk galaxies 

than seen by the Hubble Space Telescope at the redshifts of at z > 1.5. Adams et al (2022) 

found four z > 9 galaxies which have not previously been identified, with one object at z = 

11.5, and another a close pair of galaxies. Naidu et al (2023) found two remarkably luminous 

galaxies at z ≈ 10–12. Atek et al (2023) found two galaxies have a red shift z=16, which 

indicates they are only 250 million years after the Big Bang. Yan et al, (2023) indicated they 
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had detected galaxies with redshift up to z=20, which will push the age of earliest galaxy 

even closer to the Big Bang. Witze (2022) summarized the findings from the ERO data as: so 

many galaxies in the early universe, which are very young (or far away from us) and 

surprisingly close to each other; and some of which are already complex and massive, and 

rich in chemical elements. 

The surprising findings from the JWST data highlight our inadequate understanding of 

universe. Since the galaxies can be much earlier, bigger, more complex, and closer to each 

other, it is most likely that the formation of this galaxies has started much earlier. Given 

current belief that at least 1 billion year is needed to form a galaxy, the findings from the 

JWST data point to a much older universe. Currently the common approach to the findings 

from the JWST data is to revise the number of years for galaxy formation and thus keep the 

estimated the age of universe intact. However, there is a possibility that the estimated age of 

universe is too low. 

Astronomers have used two methods to estimate the age of the universe. One is through 

estimating the age of the oldest stars known as globular clusters (e.g. Krauss and Chaboyer, 

2003). It is generally agreed that this method provides only a lower boundary for the age of 

the universe (Cheng, 2005). One reason is that star formation starts during the decelerated 

expansion after the Big Bang (i.e. the inflation epoch), so this approach excludes the time 

before the star formation. The other reason is that, since observations are limited by the 

instruments and technology used today, it is most likely that the oldest stars we observed 

today are not the oldest stars in the universe, so the oldest star age may also be 

underestimated.  

The other method is to estimate the age of the universe based on astronomical survey data 

and cosmological models.  This method is comprehensive, includes time right after the Big 

Bang, and can obtain estimates for a number of cosmological parameters. However, the 

estimates from this approach crucially rest on the assumptions upon which the model is built. 

Interestingly, the estimates from the second method are close to those from the first method. 

On the surface, this ‘consistency’ seems comforting. However, considering that the first 

approach is very likely to underestimate the age of universe, we must conclude that the 

‘consistent’ results tend to suggest that the second approach may also has an underestimation 

issue.   
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The current cosmological models mainly rely on the first Friedmann equations, with the 

second Friedmann helping to determine the evolution of energy density. However, for a flat 

universe, both Friedmann equations are ordinary differential universe evolution equations but 

of different orders, so one should also be able to obtain a model mainly based on the second 

Friedmann equation. One may wonder that if the estimation based on the first Friedmann 

equation is valid, why should one bother to estimate the age of the universe based on the 

second Friedmann equation? The answer is that the second Friedmann equation includes 

more information and thus may provide more detailed and more accurate estimation.  

The first Friedmann equation comes from the G00 component of the Einstein field equation, 

which indicates the energy evolution over time. On the other hand, the second Friedmann 

equation comes from the trace of the Einstein field equation, which manifests the overall 

energy-momentum conservation of an ideal fluid. The standard cosmological model is largely 

based on the first Friedmann equation (albeit it requires a relation between energy densities 

and the scale factor which in turn requires the second Friedmann equation), so it does not 

include the momentum evolution and thus may not give a very accurate and detailed 

estimation. It is expected that a valid estimate from the second Friedmann equation should 

agree with the existing estimate from the standard cosmological model. However, if the 

estimates from the two equations differ significantly, this signals an issue in the standard 

model and may shed some light on the surprising findings from the JWST data. 

The paper is organized as follows. Section 2 starts with an illustration of a misperception that 

affects the understanding and estimation of the age of the universe. Based on a decelerating 

universe and an accelerating universe, section 3 estimates the upper and lower boundaries for 

the age of the universe. In section 4, we utilize the turning point of decelerating/accelerating 

universe provided in the second Friedmann equation and provide conservative estimates for 

the age of the universe. Section 5 concludes.  

2. Misperception about accelerating and decelerating universe  

Before we embark on an estimation of the age of the universe, it is necessary to rectify a 

wide-spread mis-presentation and misperception related to the age of the universe. 

Before the discovery of dark energy and accelerating universe, the evolution of the universe 

is popularly presented in a graph similar to the panel (a) in Fig.1. Based on the value for the 

curvature parameter in the first Friedmann equation, the evolution of the universe can be put 
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into three types: the open universe, flat universe and close universe for k= -1, 0, +1, 

respectively. Without a cosmological constant, the Friedmann equations necessitate a 

decelerating universe thanks to the gravitational force. This is indicated by the decreasing 

slope (as time t increases) of all types of universe curves for k= -1, 0, +1.  

 

Fig.1 Models of universe evolution 
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The black dash-dotted line in panel (a) indicates an empty universe which expands at the 

constant rate determined by the Hubble constant at the current epoch. Since the decelerating 

universes (including open, flat and close universes) are all below the empty universe line, any 

evolution of universe above the empty universe line is considered an accelerating universe. 

For example, the red dash double-dotted curve above the empty universe line demonstrates an 

accelerating universe. 

Panel (a) also shows the scale factor for the current epoch a(t0) and for the inflation epoch 

a(tI). It is believed that before the deceleration or acceleration evolution depicted in panel, the 

universe experienced an extraordinary explosion or inflation period, but the inflation time is 

extremely short, estimated as tI=10-33-10-35 second. Since the time of inflation period is so 

short, it does not affect our estimation of the age of the universe. However, all (decelerating 

or accelerating) models of universe must agree with the same size of scale factor at both the 

current and the inflation epoch. 

Based on the standard cosmological model, after the inflation epoch, gravity causes the 

expansion of universe to decelerate. However, the deceleration diminishes as matter density 

decreases, so the repulsive force from dark energy accelerates universe eventually. As such, 

the universe evolution must include a decelerating phase first and an accelerating phase 

afterwards. Based on the misperception from panel (a) that the empty universe line is the 

boundary of accelerating and decelerating universe, an evolution of decelerating-accelerating 

universe shown by the dotted red line in panel (b) is commonly used in textbooks. Below the 

empty universe line (i.e. segment AB) is regarded as the decelerating phase while the part 

above the empty universe line (e.g. segment B to C) is the accelerating phase. As the 

decelerating phase must below the empty universe line, one naturally concludes that the age 

of a decelerating-accelerating universe must be less than the Hubble time – the age of the 

universe estimated from the empty universe. 

However, if we check the slope of the dotted red curve, we can find a turning point T at 

which a tangent line of the curve pass through the curve. Below T, the slope of the curve is 

decreasing, so the whole segment from A to T should be in the decelerating phase. Similarly, 

the segment above T shows an increasing slope and thus should be the accelerating phase.  

Since a decreasing universe can exist in the region above the empty universe line, the age of 

the universe is not bound by the age of the empty universe. We can draw a decelerating-
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accelerating universe curve entirely above but tangent to the empty universe curve at point C, 

shown as the blue solid curve in panel (b). From this curve, it is clear that it is well possible 

for the estimated age of universe to be greater than the Hubble time. 

3. Estimating the boundaries for the age of the universe 

To illustrate the impact of acceleration and deceleration of universe on the estimated age of 

the universe, we demonstrate in Fig. 2 the different types of universes in terms of the 

expansion rate ȧ(t), i.e. the change in a(t).  

For an empty universe, the change in a(t) is constant at all time, i.e. ȧ(t)= ȧ(t0). This is 

indicated by the flat line EC. The segment EC runs from the beginning of universe (t=0) to 

the current epoch (t= t0), so its length is the age of an empty universe, i.e. the Hubble time t0 

= tH = 1/H0. The size of rectangular area 0ECt0 can be calculated by the expansion rate times 

the age of the universe, indicating the total expansion from the beginning of the universe, or 

the current scale factor, a(t0)=ȧ(t0)*tH. Any model of universe evolution must agree on the 

current scale factor, so any other types of universe curves from the beginning to the current 

epoch must enclose an area of the same size of 0ECt0. 

 

Fig.2 Estimating age of different types of universes 
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The dark blue dotted curve in Fig. 2 shows a decelerating universe. The curve must pass C 

because it must have the same expansion speed ȧ(t0) at current epoch. The curve must be 

downward sloping due to the decreasing ȧ(t0) in over time. This necessitates a larger inital 

expansion rate, shown as the point D positioned above the EC line. Since the expansion rate 

upto the current epoch is greater than that for empty universe, the age of the decreasing 

universe must greater than the Hubble time. This is shown by point 0’ positioned at the right 

of point 0. As explained previously, the total expansion of the decelerating universe must 

agree with the current size of scale factor, i.e. area of 0’DCt0 = area of 0ECt0. This 

requirement necessitates that a higher expansion rate is associated with a shorter expansion 

time, namely, a younger age for a decelerating universe. Similarly, an accelerating universe 

indicated by the red dash curve must have an age older than the Hubble time.  

For a decelerating-accelereating universe indicated by the solid blue line, its age can be 

greater, smaller or equal to the Hubble time. In Fig.2 the area of LBNCt0 must have the same 

size as the area 0ECt0, so the area LBME0 and area MNC must have the same size. The large 

size of MNC and the small initial expansion rate (the relatively low position of point B) 

necessiates L to be positioned at the left of point 0, so the age of the decelerating-accelerating 

universe universe depicted here is greater than the Hubble time. Should the initial expansion 

rate is higher (i.e. higher position for B) and/or the area of MNC is smaller, the age of the 

decelerating-accelerating universe could be less than the Hubble time.  

Nevertheless, as an intermediate case between the accelerating universe and the decelerating 

universe, the age of a decelerating-accelerating universe must be constrained by the ages of 

the accelerating and decelerating universes (assuming the same deceleration and acceleration 

functions are used). As a result, the age of the accelerating universe can act as the upper 

boundary of the estimated age of the universe, while the the age of the decelerating universe 

acts as a lower boundary.  

Using a Friedmann equation, we can determine the boundaries for the age of the universe. 

The general form of the second Friedmann equation can be expressed as: 

�̈�

𝑎
= −

4πG

3
(ρ +

3𝑝

c2 ) +
𝛬𝑐2

3
                                                       (1) 
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Where a is the scale factor, ρ stands for the energy density of radiation and matter, p for the 

pressure generated by radiation and matter. The last term is the cosmological term, indicative 

of dark energy.  

In considering each type of universe, we can derive the lower and higher boundaries for the 

age of the universe. Since this type of derivation is commonly displayed in cosmology 

textbooks, we describe here only very briefly. For a raduation universe, ρ=ρ0r a
-4, p= ρc2/3, 

where ρ0r is the matter density at the current epoch, so we have: 

�̈� = −
8πG

3
𝜌0𝑟𝑎−3 

The solution for this decelerating universe is: 

𝑎(𝑡) = (
3πG𝜌0𝑟

32
)

1/3

𝑡1/2 

Using the boundary conditions a(t0)=1 and ȧ(t0)=H0, we can obtain a lower boundary for the 

age of the universe: tmin1=1/(2H0)= tH/2. This is a result well documented in cosmology 

textbooks (e.g. Cheng, 2005). 

For matter universe, the pressure term in eq. 1 vanishes.  As the universe expanses, the 

density of matter decreases at the rate of a-3, implying ρ=ρ0m a-3, where ρ0 is the matter 

density at the current epoch, so we have: 

�̈� = −
4πG

3
𝜌0𝑚𝑎−2 

The solution for this decelerating universe is: 

𝑎(𝑡) = (6πG𝜌0𝑚)1/3𝑡2/3 

Using the boundary conditions a(t0)=1 and ȧ(t0)=H0, we can obtain the lower boundary for the 

age of the universe: tmin2=2/(3H0)=2/3*tH.  

For an accelerating universe, we consider only dark energy in the universe, so the second 

Friedmann equation become: 

�̈� =
𝛬𝑐2

3
𝑎 
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The solution is the de Sitter universe: 

𝑎(𝑡) = 𝑎𝐼𝑒
√Λ𝑐2

3
 𝑡

 

Where aI is the scale factor at the inflation epoch. This scale factor must agree with that from 

other models. From the empty universe, we can estimate: aI = H0 tI , where tI is the time of the 

inflation period, tI≈10-33 seconds. 

Using the boundary condition at the current epoch, a(t0)=1 and ȧ(t0)=H0 , we can derive: 

𝑡𝑚𝑎𝑥 = 𝑡𝐻 𝑙𝑛
𝑡𝐻

𝑡𝐼
≈ 115𝑡𝐻 

This upper boundary is over 100 times greater than the Hubble time. This may seem 

unreasonable, but it is consistent with the nature of exponential growth function. The smaller 

size of scale factor at the inflation epoch, the larger expansion time is expected from an 

exponential growth function.  This wide range of boundaries may not be useful to restrict the 

proper estimates of the age of the universe. Nevertheless, it indicates that the age of the 

universe can be significantly greater than the Hubble time. It also indicates that the estimation 

results depend crucially on the relative strength and duration of the deceleration phase and 

acceleration phase. 

4. A new estimation of the age of the universe. 

Considering radiation, matter and dark energy in the universe, the compact second Friedmann 

equation (i.e. eq.1) can be rewritten explicitly as: 

�̈�

𝑎
= −

8πG

3
𝜌0/𝑎4 −

4πG

3
𝜌0/𝑎3 +

𝛬𝑐2

3
                                                            (2) 

This is a second order ordinary differential equation and its solution is extremely 

complicated, so we need use approximations. The equation shows that when ä =0, the 

expansion of the universe experiences a change from deceleration to acceleration. The scale 

factor aT at the turning point should be important. Setting in the above equation the 

acceleration rate ä to zero, we have: 

𝛬𝑐2𝑎4 − 4πG𝜌0𝑚𝑎 − 8πG𝜌0𝑟 = 0 
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The CMB survey data (Bennett C. et al., 2012, Aurich R., Lustig S., 2015) show that the ratio 

of density of radiation, and matter to critical density ρc is 0.0001 and 0.2814, respectively. 

Using the critical density ρc= 9.47 *10-27 kg/m3, and the value for cosmological constant 

Λ=1.267*10-52, we can numerically solve the above equation to obtain the scale factor at the 

turning point:  

𝑎𝑇′=0.581061 

To check how important the radiation component in the expansion of the universe, we omit 

the radiation term (the first term on the right-hand side of eq. 2) and solve for a, we obtain aT 

and compute its value based on currently estimated parameters: 

𝑎𝑇 = (
4πG𝜌0

𝛬𝑐2 )
1/3

=0.580824                                               (3) 

It can be seen that the inclusion of radiation makes a 0.04% difference to the scale factor at 

the turning point, so it is obvious that contribution of radiation to the age of the universe is 

omittable. This result is also consistent with the general chronology of the universe. The time 

of matter dominated universe (1017 seconds) is 104 times more than that for radiation 

dominated universe (1013 seconds). As such, we ignore the radiation component in our 

estimation of the age of the universe, namely, omit the first term on the right-hand side of 

eq.2. 

When the scale factor below aT, the impact of gravity dominates and the universe is 

decelerating, and vice versa. The approximation we used here is to focus on the dominant 

factors. That is, during the decelerating phase, the impact of gravitational force far outweighs 

that of the dark energy, so we ignore dark energy in this phase. On the other hand, when the 

universe is accelerating, the dark energy is much greater so we ignore the gravitational force. 

As will shown later, this approximation will generate an underestimation bias because the 

omission of the weak force shortens the time of each phase. In other words, this approach 

estimates only a refined low boundary (compared with that shown in the previous section) for 

the age of the universe. 

Letting tD be the time of the decelerating phase. Omitting the last term in eq. 2, we can obtain 

the following solution: 

𝑎(𝑡𝐷) = 𝑎0𝑡𝐷

2

3 = 𝑎𝑇                                                          (4) 
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Differentiating the above equation, we have: 

�̇�(𝑡𝐷) =
2

3
𝑎0𝑡𝐷

−
1

3 = �̇�𝑇                                                      (5) 

Differentiating eq.4 further, we have the deceleration rate due to gravity, which should be 

matched by the acceleration rate due to cosmological constant: 

�̈�(𝑡𝐷) = −
2

9
𝑎0𝑡𝐷

−
4

3 +
𝛬𝑐2

3
𝑎(𝑡𝐷) = 0                                                (6) 

Solving eqs. 4 -6, we have the parameter a0 , the expansion rate at the turning point ȧT, and 

the time for the decelerating phase tD: 

𝑎0 = 1.494 ∗ 10−12                                                                 (7) 

�̇�𝑇 = 1.601 ∗ 10−18                                                                (8) 

𝑡𝐷 = 2.418 ∗ 1017𝑠 = 7.668 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 𝑦𝑒𝑎𝑟                                  (9) 

The accelerating phase starts at the turning point with a scale factor aT and an expansion rate 

ȧT. Omitting the first and second terms on the righthand side of eq. 2, we have the solution of 

exponential expansion: 

𝑎(𝑡) = 𝑎𝑇𝑒
√Λ𝑐2

3
 (𝑡−𝑡𝐷)

+ (�̇�𝑇−√
Λ𝑐2

3
𝑎𝑇) (𝑡 − 𝑡𝐷)                               (10) 

The last term in eq. 10 is necessary to calibrate the expansion rate at the turning point to ȧT. 

Namely, the first-order derivative of a(t) in eq. 10 must satisfy the boundary condition at t= 

tD. The accelerating phase continues till the current epoch at t=t0 and a(t0)=1. Setting in eq.10 

t=t0, we have: 

𝑎(𝑡0) = 𝑎𝑇𝑒
√Λ𝑐2

3
( 𝑡0−𝑡𝐷)

+ (�̇�𝑇−√
Λ𝑐2

3
𝑎𝑇) ( 𝑡0 − 𝑡𝐷) = 1 

Numerically solve the above equation, we have the time for the accelerating phase:  

  𝑡𝐴 = 𝑡0 − 𝑡𝐷 = 7.048 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 𝑦𝑒𝑎𝑟                                         (11) 

The age of the universe t0 is the sum of deceleration time tD and acceleration time tA:  
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𝑡0 = 𝑡𝐷 + 𝑡𝐴 = 14.716 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 𝑦𝑒𝑎𝑟                                      (12) 

The estimated result is about 1 billion years more than the current best estimation. However, 

as we mentioned earlier, the estimated result from this approach produces only a refined low 

boundary for the age of the universe. Here we explain this in detail. 

The omission of the impact of dark energy during the decelerating phase makes the 

deceleration faster and thus a shorter deceleration time is needed to achieve the expansion 

rate ȧT at the turning point. Let gΛ be the average acceleration rate of dark energy during the 

deceleration phase. Its contribution to the expansion during deceleration phase can be 

expressed as 0.5gΛtD
2. Including this into the decelerating expansion function we have: 

𝑎(𝑡𝐷) = 𝑎0𝑡𝐷

2
3 +

1

2
𝑔Λ𝑡𝐷

2 

Differentiating the above equation, we have: 

�̇�(𝑡𝐷) =
2𝑎0

3𝑡𝐷
1/3 + 𝑔Λ𝑡𝐷                                                      (13) 

In both eqs. 13 and 5, a0 is calibrated from the expansion rate at the inflation epoch, so it 

should be the same for both equations. ȧ(tD) is the expansion rate at the turning point, which 

is calibrated by the Hubble constant and the scale factor at the turning point so it should also 

be the same. As tD increases, the first term on the righthand side of both equations tends to 

depress the expansion rate towards the target, but the extra last term in eq. 13 does the 

opposite. As a result, to achieve the same target of ȧ(tD), the tD in eq.13 has to be larger than 

that in eq.5.  

Similarly, the omission of the impact of gravitational force during the accelerating phase 

makes the acceleration faster and thus shortens acceleration time to achieve the scale factor at 

the current epoch. Let gm be the average deceleration rate due to matter during the 

acceleration phase. The contribution of gm to the expansion during acceleration phase can be 

expressed as -0.5gm(t-tD)2. Including this into the accelerating expansion function we have: 

𝑎(𝑡) = 𝑎𝑇𝑒
√Λ𝑐2

3
 (𝑡−𝑡𝐷)

+ (�̇�𝑇−√
Λ𝑐2

3
𝑎𝑇) (𝑡 − 𝑡𝐷) −

1

2
𝑔m(𝑡 − 𝑡𝐷)2                       (14) 
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The aT and ȧT in both eq. 10 and 14 are the scale factor and expansion rate at the turning 

point, respectively. They should be the same in both equations. Similarly, at the current 

epoch, a(t)=1 for both equations. At t increases, the first and second terms on the righthand 

side of both equations increase to achieve the target a(t)=1, but the last term in eq. 14 

decreases, reducing the pace of increase in the scale factor. As a result, longer time (t-tD) in 

eq. 14 is required to arrive at the a(t) at the current epoch. In other words, the tA in eq. 11 is 

underestimated. 

Although the omitted factors are relatively weaker in the respective phases, the accumulated 

effect of underestimation can be considerable because the weak factors work for extremely 

long periods in both phases.  To demonstrate the effect of underestimation and provide a 

more accurate estimation of the age of the universe, we can improve our estimation by 

including gravity effect on the acceleration phase. The last term in the expansion function for 

accelerating phase (i.e. eq. 10) indicates that, without a gravity, the expansion speed at the 

turning point expands the universe constantly over time. When gravity is not ignored, this 

term should change according to the expansion function of the gravity shown in eq. 4. 

Calibrating the parameter based on the scale factor aT and an expansion rate ȧT at the turning 

point, we have:  

𝑎(𝑡) = 𝑎𝑇𝑒
√Λ𝑐2

3
 (𝑡−𝑡𝐷)

+
3

2
(�̇�𝑇−√

Λ𝑐2

3
𝑎𝑇) (𝑡 − 𝑡𝐷 + 1)

2

3                               (15) 

Or in the first and second differential forms: 

�̇�(𝑡) = √
Λ𝑐2

3
𝑎𝑇𝑒

√Λ𝑐2

3
 (𝑡−𝑡𝐷)

+ (�̇�𝑇−√
Λ𝑐2

3
𝑎𝑇) (𝑡 − 𝑡𝐷 + 1)−

1

3                                    (16) 

The base (t-tD+1) in the last term is a technical treatment to avoid the divergence of 

expansion speed at the turning point (i.e. when t=tD). Since the time t or tD in seconds are 

used for calculation, adding one second is almost nothing compared with the billions of years 

of the evolution of the universe. The boundary conditions for the above equations are the 

scale factors a(t0)=1 and the expansion rate ȧ(t0)= H0 for the current epoch. Namely, 

𝑎(𝑡0) = 𝑎𝑇𝑒
√Λ𝑐2

3
 (𝑡0−𝑡𝐷)

+
3

2
(�̇�𝑇−√

Λ𝑐2

3
𝑎𝑇) (𝑡0 − 𝑡𝐷 + 1)

2

3 = 1                               (17) 
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�̇�(𝑡0) = √
Λ𝑐2

3
𝑎𝑇𝑒

√Λ𝑐2

3
 (𝑡−𝑡𝐷)

+ (�̇�𝑇−√
Λ𝑐2

3
𝑎𝑇) (𝑡 − 𝑡𝐷 + 1)−

1

3 = 𝐻0                    (18) 

Numerically solving equation for variables (t-tD) and ȧT, we have: 

𝑡0 − 𝑡𝐷 = 8.838 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 𝑦𝑒𝑎𝑟                                                 (19) 

Plugging the deceleration time tD estimated in eq. 9, we have the age of the universe: 

𝑡0 = 16.506 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 𝑦𝑒𝑎𝑟                                                       (20) 

This estimate is about 1.8 billion years greater than that in eq.12. If we include the dark 

energy effect in the decelerating phase, one can expect that the estimated age of the universe 

should be greater than that in eq. 20. The most plausible estimation would be obtained from 

the best approximation for the solution of the Friedmann equation.  

5. Conclusion  

Through an illustration of malpresentation of the decelerating and accelerating universe, the 

paper exposes a common misperception that the age of the universe cannot be greater than 

the Hubble time. Against the trend of mainly using the first Friedmann equation for a 

cosmological model, the paper estimates the age of the universe mainly based on the second 

Friedmann equation. When the weak force is ignored in each (decelerating or accelerating) 

phase of universe evolution, the estimate of 14.7 billion years for the age of the universe is 

about 1 billion years greater than the existing estimate. However, the paper argues that this 

estimation is only a refined low boundary for the age of the universe, because excluding the 

weak force will shorten the duration of both decelerating and accelerating phases. As an 

illustration, the paper includes the weak force in the accelerating phase, and estimates age of 

the universe becomes 16.5 billion years. To estimate the age of the universe accurately, the 

paper suggests to build a cosmological model based on the second Friedmann equation. 
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