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Abstract. The 3D-brane universe model is an alternative non-Einsteinian theory
of gravity. It was initially built using the so-called equidistance postulate. In this

paper we consider a version of the theory without this equidistance postulate.

1. Introduction.

The 3D-brane universe model is based on the idea that the four-dimensional
spacetime subdivides into a dense foliation of 3D-branes. Each brane represents
some definite instantaneous state of the real 3D-universe in its evolution pathway

as shown in Fig. 1.1. Arguments in favor
of the 3D-brane universe model opposed
to the standard 4D paradigm are given in
[1] (see also [2] and [3]).

We can choose the normal vector n of
the unit length directed to the future at
each point of each 3D-brane. Since 3D-
branes are dense in the four-dimensional
spacetime, these vectors n constitute a
vector field. Integral curves (see § 2.12
of Chapter 2 in [4]) of the vector field n

are shown as black lines in Fig. 1.1. The
arrows at the ends of these curves indicate

the direction of the time evolution from the past to the future.
Let’s choose some 3D-brane for the initial one, say it is the brane AA’ in Fig. 1.1.

Let’s choose some coordinates x1, x2, x3 in the initial 3D-brane. We can extend
them to other 3D-branes along the integral curves of the field n by setting

xi(B) = xi(A), i = 1, 2, 3, (1.1)

for any point A of the initial 3D-brane. The coordinates introduced in such a way
are called comoving coordinates (see [5]). An observer whose world line (see [6])
coincides with one of the integral curves of the vector field n in Fig. 1.1 is called a
comoving observer.

The lengths of the curves AB and A′B′ can be used for introducing time intervals:

t =
|AB|

cgr

, t′ =
|A′B′|

cgr

. (1.2)
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The constant cgr from (1.2) in [7] was interpreted as the speed of gravitational
waves. The equidistance postulate introduced in [1] sounds as follows.

Postulate 1.1. Watches of any two comoving observers can be synchronized.

The postulate 1.1 means that t = t′ in (1.2) for any two points A and A′ in the initial
3D-brane. In other words it means that the distance between any two 3D-branes
is constant throughout all associated points of the two branes. For this reason the
postulate 1.1 is called the equidistance postulate. In this paper we exclude this
postulate from the theory thus expanding our theory to non-equidistant foliations
of 3D-branes in the four-dimensional spacetime.

2. Non-equidistant foliations of 3D-branes.

In the case of a non-equidistant foliation of 3D-branes in the four-dimensional
spacetime the time intervals t and t′ in (1.2) are not equal to each other. Let’s
choose one of the integral curves of the vector field n for the reference curve, say
it is the curve AB in Fig. 1.1. Then we can use the time interval t from (1.2) for
marking the hypersurface BB′ and can declare the product

x0 = cgr t (2.1)

to be the fourth coordinate in the foliated spacetime complementary to the comov-
ing coordinates x1, x2, x3 from (1.1). Under this convention the time interval t′

becomes the value of some definite function determined by the foliation structure:

t′ = t′(t, x′1, x′2, x′3) =
|A′B′|

cgr

. (2.2)

Here x′1, x′2, x′3 are comoving coordinates of both points A′ and B′. Let’s denote
through ν the following partial derivative of the function (2.2):

ν(t, x1, x2, x3) =
∂t′(t, x1, x2, x3)

∂t
. (2.3)

Due to (2.1) we can treat ν as a function of the coordinates x0, x1, x2, x3.
Note that the time variable t in (2.1) is twice relative — it is relative to the

choice of some initial 3D-brane and it is relative to the choice of some reference
integral curve of the vector field n. The first sort of relativity is removed by

using the Big Bang. It is a point in the
four-dimension spacetime at which all in-
tegral curves of the vector field n do start
(see Fig. 2.1). If we replace the initial 3D-
brane AA′ by this Big Bang point, then
we get the absolute initial point for count-
ing the time t in (2.1). However, this time
t remains dependent on the choice of the
reference curve AB. The matter is that
in the absence of the equidistance postu-
late 1.1 there is no global age of the 3D-
universe. Each point of a 3D-brane has
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its own age relative to the Big Bang. And conversely, the points with the same age
do not constitute a physical 3D-brane. The time t in (2.1) is just a marker time
used to mark physical 3D-branes and to distinguish them from each other. This
time can be called a brane time. Unlike the cosmological time considered in [1] in
the case with the equidistance postulate 1.1, the brane time is not uniquely defined.
With these words of caution we proceed to build a new version of the theory.

3. Metric in the foliated spacetime.

Assume that the four-dimensional spacetime is foliated into 3D-branes and as-
sume that x1, x2, x3 are comoving coordinates associated with this foliation. As-
sume that x0 is a complementary coordinate given by the formula (2.1) where t is a
brane time. Under these assumption the four-dimensional metric in the coordinates
x0, x1, x2, x3 is given by the following block-diagonal matrix:

Gij =

∥

∥

∥

∥

∥

∥

∥

∥

∥

g00 0 0 0
0 −g11 −g12 −g13

0 −g21 −g22 −g23

0 −g31 −g32 −g33

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (3.1)

The diagonal element g00 of the matrix (3.1) is given by the formula

g00(x
0, x1, x2, x3) = ν2, (3.2)

where ν is the partial derivative from (2.3). Like the element g00 in (3.2), other
elements of the matrix (3.1) are functions of the coordinates x0, x1, x2, x3. They
define a time dependent positive 3D metric in a 3D-brane universe:

gij = gij(x
0, x1, x2, x3), 1 6 i, j 6 3. (3.3)

The metric (3.3) along with the function (3.2) describes the gravitational field in
the present extension of the 3D-brane universe model.

4. Reduction of four dimensional equations.

In this section and further below we follow the scheme of [1] and derive differential
equations for the metric (3.3) and for the function (3.2) by substituting the metric
(3.1) into the four-dimensional Einstein’s equation

rij −
r

2
Gij − Λ Gij =

8 π γ

c4
gr

Tij . (4.1)

Here γ is Newton’s gravitational constant (see [8]) and Λ is the cosmological
constant (see [9]). The quantities rij in (4.1) are the components of the four-
dimensional Ricci tensor (see § 8 in Chapter IV of [10]) associated with the metric
(3.1) and r is the scalar curvature1 associated with this metric. The quantities

1 We used lowercase letters for rij and r in order to reserve capital letters for the 3D Ricci

tensor and for the 3D scalar curvature.
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Tij in the right hand side of the equation (4.1) are the components of the energy-
momentum tensor (see [11]). They represent matter which is the source of the
gravitational field in the equation (4.1).

The metric (3.1) produces the metric connection with the components

γk
ij =

1

2

3
∑

s=9

Gks

(

∂Gsj

∂xi
+

∂Gis

∂xj
−

∂Gij

∂xs

)

. (4.2)

It is easy to derive that
γk

ij = Γk
ij for 1 6 i, j, k 6 3, (4.3)

where Γk
ij are the components of the metric connection for the metric (3.3):

Γk
ij =

1

2

3
∑

s=1

gks

(

∂gsj

∂xi
+

∂gis

∂xj
−

∂gij

∂xs

)

. (4.4)

The rest of the components (4.2) are distributed as follows:

γ0
ij =

g−1
00

2

∂gij

∂x0
for 1 6 i, j 6 3, (4.5)

γk
0j = γk

j0 =
1

2

3
∑

s=1

gks ∂gsj

∂x0
=

3
∑

s=1

g00 gks γ0
sj for 1 6 k, j 6 3, (4.6)

γ
q
00 =

1

2

3
∑

s=1

gqs ∂g00

∂xs
for 1 6 q 6 3, (4.7)

γ0
q0 = γ0

0q =
1

2
g−1
00

∂g00

∂xq
for 1 6 q 6 3, (4.8)

γ0
00 =

1

2
g−1
00

∂g00

∂x0
. (4.9)

The formulas (4.5), (4.6), (4.7), (4.8), and (4.9) are easily derived from (4.2) with
the use of the formula (3.1).

Now we introduce the quantities which were already used in [1]:

bij =
1

2

∂gij

∂x0
. (4.10)

These quantities are components of the symmetric tensor field b. Raising indices
in (4.10), we produce the following quantities:

bk
j =

3
∑

s=1

gks bsj, bij =

3
∑

s=1

bi
s gsj . (4.11)

Using (4.10) and (4.11), we can rewrite the formulas (4.5) and (4.6) as follows:

γ0
ij = g−1

00 bij for 1 6 i, j 6 3, (4.12)

γk
0j = γk

j 0 = bk
j for 1 6 k, j 6 3. (4.13)
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The Ricci tensor in Einstein’s equation (4.1) is calculated through the curvature
tensor by means of the following formula (see § 8 in Chapter IV of [10]):

rij =

3
∑

k=0

rk
ikj, (4.14)

where the components of the curvature tensor are

rk
isj =

∂γk
ji

∂xs
−

∂γk
si

∂xj
+

3
∑

q=0

γk
sq γ

q
ji −

3
∑

q=0

γk
jq γ

q
si. (4.15)

Due to (4.14) in (4.15) we need only those terms where s = k:

rk
ikj =

∂γk
ji

∂xk
−

∂γk
ki

∂xj
+

3
∑

q=0

γk
kq γ

q
ji −

3
∑

q=0

γk
jq γ

q
ki. (4.16)

Applying (4.3), (4.12), and (4.13) to (4.16), we derive

rk
ikj = Rk

ikj + g−1
00 bk

k bij − g−1
00 bk

j bki for 1 6 i, j, k 6 3. (4.17)

Here Rk
ikj are the components of the 3D curvature tensor. They are given by a

formula similar to (4.15) upon setting s = k in it:

Rk
isj =

∂Γk
ji

∂xs
−

∂Γk
si

∂xj
+

3
∑

q=1

Γk
sq Γq

ji −

3
∑

q=1

Γk
jq Γq

si. (4.18)

The 3D connection components in (4.18) are given by the formula (4.4). The 3D
Ricci tensor is derived from (4.18) by means of the formula

Rij =

3
∑

k=1

Rk
ikj, (4.19)

which is the 3D version of the formula (4.14).
Now let’s consider the case k = 0 and 1 6 i, j 6 3 in (4.15). In this case we have

r0
i0j =

∂γ0
ji

∂x0
−

∂γ0
0i

∂xj
+

3
∑

q=0

γ0
0q γ

q
ji −

3
∑

q=0

γ0
jq γ

q
0i. (4.20)

Applying (4.12), (4.8), (4.3), (4.9), and (4.13), to (4.20), we reduce this formula to

r0
i0j = g−1

00

∂bij

∂x0
−

1

2
g−1
00 ∇ij g00 −

1

2
g−2
00

∂g00

∂x0
bij +

+
1

4
g−2
00 ∇i g00 ∇j g00 −

3
∑

q=1

g−1
00 bjq b

q
i for 1 6 i, j 6 3.

(4.21)
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Applying (4.17) and (4.21) to (4.14), we derive the following formula for the com-
ponents of the four-dimensional Ricci tensor:

rij = g−1
00

∂bij

∂x0
−

1

2
g−1
00 ∇ij g00 −

1

2
g−2
00

∂g00

∂x0
bij +

1

4
g−2
00 ∇i g00 ∇j g00 +

+ Rij + g−1
00

3
∑

k=1

bk
k bij − g−1

00

3
∑

k=1

(bki bk
j + bkj bk

i ) for 1 6 i, j 6 3.

(4.22)

The formula (4.22) is an extension of the formula (5.26) from [1].
The next step is i = 0 and 1 6 j, k 6 3. in (4.16). In this case we have

rk
0kj =

∂bk
j

∂xk
−

∂bk
k

∂xj
+

3
∑

q=1

Γk
kq b

q
j −

3
∑

q=1

Γk
jq b

q
k +

+
1

2
g−1
00 bk

k

∂g00

∂xj
−

1

2
g−1
00 bk

j

∂g00

∂xk
.

(4.23)

We add two terms to (4.23) and rearrange the terms in it:

rk
0kj =

∂bk
j

∂xk
+

3
∑

q=1

Γk
kq b

q
j −

3
∑

q=1

Γq

kj bk
q +

1

2
g−1
00 bk

k ∇j g00 −

−
∂bk

k

∂xj
−

3
∑

q=1

Γk
jq b

q
k +

3
∑

q=1

Γq
jk bk

q −
1

2
g−1
00 bk

j ∇k g00.

Due to the symmetry Γq
kj = Γq

jk two extra terms that was added do cancel each
other. But they let us apply the concept of covariant derivatives to the above
formula (see § 6 in Chapter IV of [10]). As a result we obtain

rk
0kj = ∇k bk

j −∇j bk
k +

1

2
g−1
00 bk

k ∇j g00 −
1

2
g−1
00 bk

j ∇k g00 (4.24)

for 1 6 k, j 6 3. Then we consider the case i = k = 0 with 1 6 j 6 3 in (4.16):

r0
00j = 0 for 1 6 j 6 3. (4.25)

Applying (4.24) and (4.25) to (4.14), we derive

r0j =

3
∑

k=1

∇k bk
j −

3
∑

k=1

∇j bk
k +

1

2
g−1
00

3
∑

k=1

(

bk
k ∇j g00 − bk

j ∇k g00

)

. (4.26)

Due to the symmetry of the Ricci tensor rij the formula (4.26) yields

ri0 =

3
∑

k=1

∇k bk
i −

3
∑

k=1

∇i bk
k +

1

2
g−1
00

3
∑

k=1

(

bk
k ∇i g00 − bk

i ∇k g00

)

. (4.27)

The next step is to calculate the component r00 of the four-dimensional Ricci
tensor. In order to calculate this component we choose i = 0 and j = 0 with



3D-BRANE GRAVITY WITHOUT EQUIDISTANCE POSTULATE. 7

1 6 k 6 3 in (4.16). As a result we derive

rk
0k0 =

1

2

3
∑

s=1

gks ∇ks g00 −
g−1
00

4

3
∑

s=1

gks ∇k g00 ∇s g00 +

+
1

2
g−1
00

∂g00

∂x0
bk
k −

∂bk
k

∂x0
−

3
∑

q=1

bk
q b

q
k.

(4.28)

The last case is the case where i = 0, j = 0, and k = 0 in (4.16):

r0
000 = 0. (4.29)

Applying (4.28) and (4.29) to (4.14), we derive

r00 =
1

2

3
∑

k=1

3
∑

s=1

gks ∇ks g00 −
g−1
00

4

3
∑

k=1

3
∑

s=1

gks ∇k g00 ∇s g00 +

+
1

2
g−1
00

∂g00

∂x0

3
∑

k=1

bk
k −

3
∑

k=1

∂bk
k

∂x0
−

3
∑

k=1

3
∑

q=1

bk
q b

q
k.

(4.30)

The four-dimensional scalar curvature r is calculated through the four-dimensio-
nal Ricci tensor (4.14) by means of the formula

r =

3
∑

i=0

3
∑

j=0

rij Gij, (4.31)

see § 8 in Chapter IV of [10]. Since the matrix (3.1) is block-diagonal, (4.31) yields

r = r00 g−1
00 −

3
∑

i=1

3
∑

j=1

rij gij . (4.32)

Applying (4.22) and (4.30) to (4.32) and taking into account (4.10), we derive

r = g−2
00

∂g00

∂x0

3
∑

k=1

bk
k + g−1

00

3
∑

k=1

3
∑

q=1

gkq ∇kq g00 −

−
g−2
00

2

3
∑

k=1

3
∑

q=1

gkq ∇k g00 ∇q g00 − 2 g−1
00

3
∑

k=1

∂bk
k

∂x0
−

−R − g−1
00

3
∑

k=1

3
∑

q=1

bk
q b

q

k − g−1
00

3
∑

k=1

3
∑

q=1

bk
k bq

q.

(4.33)

The three-dimensional scalar curvature R in (4.33) is given by the formula

R =
3

∑

i=1

3
∑

j=1

Rij gij. (4.34)
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The formula (4.34) is an analog of the four-dimensional formula (4.31).
Now we are ready to rewrite Einstein’s equations (4.1) in 3 + 1 presentation.

They are subdivided into three groups. The first group is written as

g−2
00

2

(

gij

3
∑

k=1

bk
k − bij

)

∂g00

∂x0
+

g−1
00

2

3
∑

k=1

3
∑

q=1

(

gkq gij − δk
i δ

q
j

)

∇kq g00 −

−
g−2
00

4

3
∑

k=1

3
∑

q=1

(

gkq gij − δk
i δ

q
j

)

∇k g00 ∇q g00 +

+g−1
00

(

∂bij

∂x0
−

3
∑

k=1

∂bk
k

∂x0
gij −

3
∑

k=1

(bki bk
j + bkj bk

i ) −
gij

2

3
∑

k=1

3
∑

q=1

bk
q b

q
k −

−
gij

2

3
∑

k=1

3
∑

q=1

bk
k bq

q +

3
∑

k=1

bk
k bij

)

+ Rij −
R

2
gij + Λ gij =

8 π γ

c4
gr

Tij,

(4.35)

where 1 6 i, j 6 3. The equations (4.35) are derived from (4.1) using (4.22) and
(4.33). The quantities δk

i and δ
q
j are Kronecker deltas.

The second group of equations derived from (4.1) is written as

3
∑

k=1

∇k bk
i −

3
∑

k=1

∇i bk
k +

1

2
g−1
00

3
∑

k=1

(

bk
k ∇i g00 − bk

i ∇k g00

)

=
8 π γ

c4
gr

Ti0, (4.36)

where 1 6 i 6 3. The equations are immediate from (4.26) or (4.27).
The third group comprises exactly one equation. It is written as

−
1

2

3
∑

k=1

3
∑

q=1

bk
q b

q
k +

1

2

3
∑

k=1

3
∑

q=1

bk
k bq

q +
R

2
g00 − Λ g00 =

8 π γ

c4
gr

T00. (4.37)

This equation (4.37) is derived from (4.1) using (4.30) and (4.33).
The equations (4.35), (4.36), and (4.37) are extensions of the equations (5.32),

(5.33), and (5.34) from [1]. The further progress of the previous version of theory in
[12] showed that only one of the three groups of equations (5.32), (5.33), and (5.34)
is preserved in the theory. In the present version of theory we preserve two of the
three groups of equations (4.35), (4.36), and (4.37). They are the equations (4.35)
and (4.37). The reason is because in the present version of theory we have one more
dynamic variable g00 in (3.2), which is associated with the equation (4.37). The
other dynamic variables of the theory are the components of the three-dimensional
metric (3.3). They are associated with the equations (4.35).

5. The Schwarzschild black hole metric as an example.

The Schwarzschild black hole metric is a four-dimensional metric (3.1) written
in terms of the following four coordinates:

x0 = cgr t, x1 = ρ, x2 = θ, x3 = φ. (5.1)

The Schwarzschild black hole metric is diagonal. Its temporal component is

g00 = 1 −
rgr

ρ
. (5.2)
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The quantity rgr in (5.2) is a constant which is called the Schwarzschild gravitational
radius (see § 100 in [13]). The other diagonal components of the Schwarzschild
metric in (3.1) are given by the formulas

g11 =
1

1 −
rgr

ρ

, g22 = ρ2, g33 = ρ2 sin2(θ). (5.3)

The non-diagonal components of the Schwarzschild metric in (3.1) are zero.
The Schwarzschild metric is a stationary metric. This means that its components

(5.2) and (5.3) do not depend on the time variable x0 = cgr t in (5.1). Therefore
from (4.10) for the Schwarzschild metric we derive

bij = 0. (5.4)

By means of direct calculations one can find that the four-dimensional Ricci tensor
of the Schwarzschild metric is identically zero:

rij = 0. (5.5)

The same is true for the four-dimensional scalar curvature:

r = 0. (5.6)

Due to (5.5) and (5.6) the Schwarzschild metric with the components (5.2) and
(5.3) is a solution of the Einstein equations (4.1) with Λ = 0 and Tij = 0.

In the 3D-brane universe paradigm the three-dimensional metric (5.3) and the
scalar field (5.1) are treated as two separate entities both describing gravity. Non-
zero components of the metric connection associated with the 3D metric (5.3) are
given by the following formulas:

Γ1
11 =

rgr

2 ρ (rgr − ρ)
, Γ2

12 = Γ2
21 =

1

ρ
, Γ1

22 = rgr − ρ, Γ3
23 = cot θ,

(5.7)

Γ1
33 = (rgr − ρ) sin2 θ, Γ3

13 = Γ3
31 =

1

ρ
, Γ2

33 = −
sin(2 θ)

2
, Γ3

32 = cot θ,

Using (5.7) and applying the formulas (4.18) and (4.19), we can calculate the three-
dimensional Ricci tensor for the metric (5.3). It is presented by the diagonal 3× 3
matrix whose diagonal elements are given by the following formulas:

R11 =
rgr

ρ2 (rgr − ρ)
, R22 =

rgr

2 ρ
, R33 =

rgr sin2 θ

2 ρ
. (5.8)

Using (5.8) and applying the formula (4.34), we can calculate the three-dimensional
scalar curvature associated with the metric (5.3). It turns out to be zero:

R = 0. (5.9)

In (4.35) we see the gradient of the function g00. Using (5.2), we can calculate the
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components of this gradient in the coordinates ρ, θ, φ from (5.1):

∇1 g00 =
rgr

ρ2
, ∇2 g00 = 0, ∇3 g00 = 0. (5.10)

Apart from the gradient of g00, in (4.35) we see the double gradient of the scalar
function g00. Its components are calculated with the use of (5.10) and (5.7). The
double gradient ∇ij g00 is presented by the diagonal 3 × 3 matrix

∇ij g00 =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(4 ρ − 3 rgr)

2 (rgr − ρ) ρ3
0 0

0
rgr (rgr − ρ)

ρ2
0

0 0
rgr (rgr − ρ) sin2 θ

ρ2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (5.11)

The gradient term and the double gradient term in (4.35) are given by the formulas

Aij =
g−2
00

4

3
∑

k=1

3
∑

q=1

(

gkq gij − δk
i δ

q
j

)

∇k g00 ∇q g00,

Bij =
g−1
00

2

3
∑

k=1

3
∑

q=1

(

gkq gij − δk
i δ

q
j

)

∇kq g00.

(5.12)

The terms (5.12) are given by diagonal matrices. Using (5.10) and (5.11), we get

Aij =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

0 0 0

0
rgr (rgr − ρ)

ρ2
0

0 0
rgr (rgr − ρ) sin2 θ

ρ2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, (5.13)

Bij =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

rgr

(rgr − ρ) ρ2
0 0

0
rgr (3 rgr − 2 ρ)

4 (rgr − ρ) ρ
0

0 0
rgr (3 rgr − 2 ρ) sin2 θ

4 (rgr − ρ) ρ

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (5.14)

Now we are ready to verify the equations (4.35), (4.36), and (4.37) for the
Schwarzschild metric in the 3D-brane universe paradigm. Due to (5.4) the compo-
nents of the tensor field b in (4.35), (4.36), and (4.37) do vanish. Therefore the
equations (4.36) are fulfilled provided Ti0 = 0.

Applying (5.9) and (5.4) we conclude that the equation (4.37) is fulfilled provided
T00 = 0 and provided we assume that Λ = 0.

Due to (5.4), (5.9), and (5.12) the equations (4.35) reduce to the following ones:

Bij − Aij + Rij + Λ Gij =
8 π γ

c4
gr

Tij . (5.15)
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Applying (5.13), (5.14) and (5.8) to (5.15), we conclude that the equations (4.35)
are fulfilled provided Tij = 0 and provided we assume that Λ = 0. The ultimate
result is formulated in the following theorem.

Theorem 5.1. The diagonal Schwarzschild’s black hole metric with the spacial

components (5.3) and with the temporal component (5.2) provides a solution for the

3D-brane gravity equations (4.35) and (4.37) for the empty space, i. e. for Tij = 0
and T00 = 0, in the coordinates (5.1) in cosmology with zero cosmological constant.

The equations (4.36) are excluded from the theorem 5.1 since they are excluded
from the theory of gravity in the 3D-brane universe paradigm. This exclusion makes
the 3D-brane universe model an alternative non-Einsteinian theory of gravity.

6. Time scaling invariance.

As we noted in Section 2 of the present paper, in the absence of the equidistance
postulate 1.1 the choice of the brane time in (2.1) is not unique. However the extent
of non-uniqueness is not that large. Provided some comoving coordinates x1, x2,
x3 are chosen and fixed, it is given by the following time scaling transformations:

t̃ = t̃(t), t = t(t̃). (6.1)

Here t̃(t) and t = t(t̃) are two strictly monotonic, increasing, differentiable, and
mutually inverse functions. Applying (2.1) to (6.1), we get

x̃0 = x̃0(x0), x0 = x0(x̃0). (6.2)

The transformations (6.2) can be extended to mutually inverse coordinate trans-
formations in the four-dimensional spacetime:























x̃0 = x̃0(x0),

x̃1 = x1,

x̃2 = x2,

x̃3 = x3,























x0 = x0(x̃0),

x1 = x̃1,

x2 = x̃2,

x3 = x̃3.

(6.3)

The four-dimensional metric (3.1) obeys the standard tensorial transformation rule
with respect to the coordinate transformations (6.3):

Gij =

3
∑

k=0

3
∑

q=0

∂x̃k

∂xi

∂x̃q

∂xj
G̃kq, (6.4)

see (4.7) and (5.2) in Chapter III of [10]. The same tensorial rule applies to the
components of the energy-momentum tensor:

Tij =

3
∑

k=0

3
∑

q=0

∂x̃k

∂xi

∂x̃q

∂xj
T̃kq. (6.5)

Due to the special form of the coordinate transformations (6.3) it preserves the
block-diagonal structure of the matrix (3.1) in (6.4). The relationships (6.4) sub-
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divide into spatial and temporal parts. In their spacial part we have

gij(x
0, x1, x2, x3) = g̃ij(x̃

0(x0), x1, x2, x3), 1 6 i, j 6 3. (6.6)

The temporal part of (6.4) looks slightly different:

g00(x
0, x1, x2, x3) = (x̃0(x0)′)2 g̃00(x̃

0(x0), x1, x2, x3). (6.7)

Let’s denote through ξ the derivative of the function x̃0(x0) in (6.3). Then the
formulas (6.6) and (6.7) are rewritten as follows:

g00 = ξ2 g̃00, gij = g̃ij. (6.8)

Unlike (6.4), the relationships (6.5) subdivide into three parts. Two of them are

T00 = ξ2 T̃00, Tij = T̃ij for 1 6 i, j 6 3. (6.9)

The third part of the relationships (6.5) is written as

Ti0 = ξ T̃i0 and T0i = ξ T̃0i for 1 6 i 6 3. (6.10)

The transformations (6.8), (6.9), and (6.10) can be extended to all terms in the
gravity equations (4.35), (4.36), and (4.37). From (6.8) we derive

gij = g̃ij. (6.11)

Then, applying (6.8) and (6.11) to (4.10), we get

bij = ξ b̃ij, bk
q = ξ b̃k

q . (6.12)

Differentiating the first relationship in (6.8) with respect to x0, we get

∂g00

∂x0
= ξ3 ∂g̃00

∂x̃0
+ 2 ξ ξ′ g̃00. (6.13)

Similarly, differentiating (6.12) with respect to x0, we derive

∂bij

∂x0
= ξ2 ∂b̃ij

∂x̃0
+ ξ′ b̃ij,

∂bk
q

∂x0
= ξ2

∂b̃k
q

∂x̃0
+ ξ′ b̃k

q . (6.14)

The next step is to apply the second relationship (6.8), (6.3), and (6.11) to (4.4).
As a result we derive a transformation rule for the connection components:

Γk
ij = Γ̃k

ij. (6.15)

The transformation rule (6.15) along with (6.3) yields

∇i g00 = ξ2 ∇i g̃00, ∇ij g00 = ξ2 ∇ij g̃00. (6.16)
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Similarly, applying (6.15) and (6.3) to (6.12), we derive

∇ibkq = ξ ∇ib̃ij, ∇ib
k
q = ξ ∇ib̃

k
q . (6.17)

The transformations (6.3), (6.8), (6.11), and (6.15) applied to the relationships
(4.18), (4.19), and (4.34) yield the following formulas:

Rij = R̃ij, R = R̃. (6.18)

No we a ready to formulate the following theorem. Its proof is direct calculations.

Theorem 6.1. The gravitational field equations (4.35) and (4.37) of the 3D-brane

universe model are invariant with respect to the transformations (6.3), (6.8), (6.9),
(6.10), (6.11), (6.12), (6.13), (6.14), (6.15), (6.16), (6.17), and (6.18) induced by

the brane time scaling (6.1).

Note that the equations (4.36) are also invariant with respect to the above men-
tioned transformations. However we do not include them to the theorem 6.1 since
we are going to exclude them from the theory at all.

7. Conclusions.

The gravitational field equations (4.35) and (4.37) constitute the main result of
the present paper. They are written in special coordinates x0, x1, x2, x3, three
of which x1, x2, x3 are comoving coordinates and the fourth one x0 = cgr t is a
brane time coordinate. The existence of such coordinates is based on the idea
that the four-dimensional spacetime should be considered as a dense foliation of
3D-branes. This idea was first suggested and motivated in [1]. In [1] and in the
succeeding papers [12], [14], [15] [7], and [16] (see also [17], [18], and [19]) the idea
was complemented with the equidistance postulate 1.1. As a result an alternative
non-Einsteinian theory of gravity was developed. The name of this theory is 3D-

brane universe model.
In the present paper we start a new extended version of the theory excluding

the equidistance postulate from it. From the standard relativity this new version of
theory inherits Schwarzschild’s black hole metric becoming an example of solution
for the extended gravity equations (4.35) and (4.37) (see Section 5 above). Along
with the solution for gravity equations, the new extended version of theory gains a
new feature (or maybe an obstruction) that consists in non-uniqueness of the global
brane time. This feature is discussed in Sections 2 and 6 of the present paper.

8. Dedicatory.

This paper is dedicated to my sister Svetlana Abdulovna Sharipova.
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