Gravitational Wave Colliding with a Small Mass Having Path Not Approximately a Geodesic

Karl De Paepe

Abstract

We consider a system of a gravitational plane wave pulse colliding with a point mass of small mass. The path of the mass is shown not to be approximately a geodesic.

1 Gravitational plane wave pulse metric

Define \(u = t - x \) and let the metric \(g_{\mu\nu} \) of the gravitational plane wave pulse be determined by [1]

\[
ds^2 = -dt^2 + dx^2 + [L(u)]^2 \left[e^{2\beta(u)} dy^2 + e^{-2\beta(u)} dz^2 \right]
\]

and \(g_{\mu\nu}(u) = \eta_{\mu\nu} \) for \(u < 0 \). From the equation \(R_{\mu\nu} = 0 \) the only relation between \(L \) and \(\beta \) is

\[
\frac{d^2 L}{du^2}(u) + \left(\frac{d\beta}{du}(u) \right)^2 L(u) = 0
\]

Let \(L(0) = 1 \) and \(\beta \neq 0 \). We then have by (2) that \(L(u) \) will decrease and become zero at some point \(u_0 > 0 \). Consequently \(g_{22}(u) > 0 \) for \(u < u_0 \).

2 Proper Lorentz transformation

Consider a coordinate transformation from \(t, x, y, z \) to \(t', x', y', z' \) coordinates that is a composition of a rotation by \(\theta \) about the \(z \) axis followed by a boost by \(2\cos(\theta)/(1 + \cos^2(\theta)) \) in the \(x \) direction followed by a rotation by \(\theta + \pi \) about the \(z \) axis. For \(\theta/\pi \) not an integer this is a proper Lorentz transformation such that

\[
t' = t' \left(1 + 2 \cot^2(\theta) \right) - 2 x' \cot^2(\theta) + 2 y' \cot \theta
\]

\[
x = 2 t' \cot^2(\theta) + x' \left(1 - 2 \cot^2(\theta) \right) + 2 y' \cot \theta
\]

\[
y = 2 t' \cot \theta - 2 x' \cot \theta + y'
\]

\[
z = z'
\]

By (3) and (4) we have \(u = t - x = t' - x' = u' \). For the metric (1) and transformation (3)-(6) define the metric \(g'_{\mu\nu}(u') \) by

\[
g'_{\mu\nu}(u') = \frac{\partial x^\alpha}{\partial x'^\mu} \frac{\partial x^\beta}{\partial x'^\nu} \eta_{\alpha\beta}(u)
\]

hence we get

\[
ds^2 = \left\{ 1 - 4[1 - g_{22}(u')] \cot^2(\theta) \right\} dt'^2 + \left[8[1 - g_{22}(u')] \cot^2(\theta) \right] dx'^2 - 4\left[1 - g_{22}(u') \right] \cot \theta dx' dy'
\]

\[
+ \left\{ 1 - 4[1 - g_{22}(u')] \cot^2(\theta) \right\} dx'^2 - 4[1 - g_{22}(u')] \cot \theta dy' dz'
\]

\[
+ 4[1 - g_{22}(u')] \cot \theta dx' dy' + g_{22}(u') dy'^2 + g_{33}(u') dz'^2
\]

Since \(g_{\mu\nu} = \eta_{\mu\nu} \) for \(u < 0 \) we have \(g'_{\mu\nu}(u') = \eta_{\mu\nu} \) for \(u' < 0 \). The metric \(g'_{\mu\nu}(u') \) satisfying \(R'_{\mu\nu} = 0 \) and \(g'_{\mu\nu}(u') = \eta_{\mu\nu} \) for \(u' < 0 \) is then also the metric of a gravitational plane wave pulse.
3 A geodesic of the metric $g'_{\mu\nu}$

The curve

$$t'(\lambda) = (1 + 2 \cot^2 \theta)\lambda - 2 \cot^2 \theta \int_0^\lambda \frac{dw}{g_{22}(w)}$$ \hspace{1cm} (9)

$$x'(\lambda) = 2 \cot^2 \theta \lambda - 2 \cot^2 \theta \int_0^\lambda \frac{dw}{g_{22}(w)}$$ \hspace{1cm} (10)

$$y'(\lambda) = -2 \cot \theta \lambda + 2 \cot \theta \int_0^\lambda \frac{dw}{g_{22}(w)}$$ \hspace{1cm} (11)

$$z'(\lambda) = 0$$ \hspace{1cm} (12)

is a geodesic of the metric $g'_{\mu\nu}(u')$. We have the figure

\[\text{Fig.} \text{Q} \]

4 Path of particle is not approximately a geodesic

Consider a system of a gravitational plane wave pulse that collides with a point mass A initially at rest at the origin. Let $\tilde{g}_{\mu\nu}(t', x', y', z')$ be the metric of the combined system of wave and A. The wave comes from infinity so for points having large negative t' and $x' < t'$ the wave is far from A and so is little affected by A. Consequently $\tilde{g}_{\mu\nu}(t', x', y', z')$ is approximately $g'_{\mu\nu}(t' - x')$ at points having large negative t' and $x' < t'$. Now $g'_{\mu\nu}(t' - x')$ is finite at all points hence $\tilde{g}_{\mu\nu}(t', x', y', z')$ is finite at points having large negative t' and $x' < t'$.

Assume the path of A is approximately the curve (9)-(12) for an A of small mass. We then have using the figure that A will reach a point p having large negative t' and $x' < t'$. By previous paragraph $\tilde{g}_{\mu\nu}(t', x', y', z')$ is then finite at p. Since A is a point mass $\tilde{g}_{\mu\nu}(t', x', y', z')$ at p is not finite. We then have $\tilde{g}_{\mu\nu}(t', x', y', z')$ is both finite and not finite at p. This is a contradiction. The path of A is then not approximately a geodesic.

References

 k.depaepe@alumni.utoronto.ca