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Abstract 

 

     In the present paper we use the curved Friedmann-Lemaitre-Robertson-Walker metric describing a spatially homogeneous 

and isotropic universe to derive the cosmological redshift distance in a way which differs from that which can be found in the 

general astrophysical literature. 

     Using the curved Friedmann-Lemaitre-Robertson-Walker metric the radial physical distance is described by R(t) = a(t)χ(r) 

with χ(r) = arcsin(r) for the curvature parameter ε = (+1) and χ(r) = arsinh(r) for ε = (-1), respectively. In this equation the 

radial co-moving coordinate is named r and a(t) means the time-depending scale parameter. We use the co-moving coordinate 

re (the subscript e indicates emission) describing the place of a galaxy which is emitting photons and ra (the subscript a 

indicates absorption) describing the place of an observer within a different galaxy on which the photons - which were 

traveling thru the universe - are absorbed. Therefore the physical distance - the real way of light - is calculated by D = 

a(t0)χ(ra) - a(te)χ(re) ≡ R0a - Ree. Here means a(t0) the today’s (t0) scale parameter and a(te) the scale parameter at the time te of 

emission of the photons. The physical distance D is therefore a difference of two different physical distances from an origin 

of coordinates being on r = 0. 

     Nobody can doubt this real travel way of light: The photons are emitted on the co-moving coordinate place re and are than 

traveling to the co-moving coordinate place ra. During this traveling the time is moving from te to t0 (te ≤ t0) and therefore the 

scale parameter is changing in the meantime from a(te) to a(t0). 

     Using this right physical distance D we calculate the redshift distance and some relevant classical cosmological equations 

(effects) for both possible values of ε = (±1) and compare these theoretical results with some measurements of astrophysics 

(quasars, SN Ia and galaxy containing a black hole). 

     We get the today’s Hubble parameter H0a,ε=(+1) ≈ 65.117 km/(s Mpc) for ε = (+1) and H0a,ε=(-1) ≈ 65.189 km/(s Mpc) for ε = 

(-1), respectively, as a main result. This values are a little smaller than the Hubble parameter H0,Planck ≈ 67.66 km/(s Mpc) 

resulting from Planck data 2018. 

     Furthermore, we find for the radius of the by us so-called Friedmann sphere R0a,ε=(+1) ≈ 2,697.62 Mpc and R0a,ε=(-1) ≈ 

3,011.07 Mpc. This radius corresponds to a maximum possible distance of seeing within an expanding universe. Photons 

emitted at this distance are infinite red shifted. 

     The today’s mass density of the Friedmann sphere results in ρ0m,ε=(+1) ≈ 1.037 x 10
-30

 g/cm3 and ρ0m,ε=(-1) ≈ 9.24 x 10
-32

 

g/cm3, respectively. For the mass of the Friedmann sphere we get MFs,ε=(+1) ≈ 2.506 x 10
54

 g and MFs,ε=(-1) ≈ 3.10 x 10
53

 g, 

respectively. 

     The mass of black hole within the galaxy M87 has the value MBH, M87,ε=(+1) ≈ 4.1469 x 10
43

g and MBH, M87,ε=(-1) ≈ 4.1468 

x 10
43

 g, respectively. The redshift distance of this object is Dε=(+1) ≈ 19.60 Mpc and Dε=(-1) ≈ 19.60 Mpc, respectively, but 

its today’s distance is only D0,ε=(+1) ≈ 8.13 Mpc and D0,ε=(-1) ≈ 6.78 Mpc, respectively. 
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1. Introduction 

 

The current cosmological standard model assumes the correctness of Einstein's field equations (EFE) containing 

the cosmological term Λ 
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and solves these equations with the help of the Friedmann-Lemaitre-Robertson-Walker metric (FLRWM) 
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which is suitable for the description of a homogeneous and isotropic universe evolving over time. 

 

The solutions found by solving the EFE are the two Friedmann equations (FE) 
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(3a,b) 

 

Gμν is the Einstein tensor, G the gravitational constant, c0 the velocity of light in vacuum, Tμν the energy-

momentum tensor and gμν the metric tensor. The parameter Λ is the cosmological constant that Einstein added to 

his original field equations, but later he discarded it. With ε = 0, (+1) or (-1) the constant of curvature was 

introduced and r, ϑ and φ are spherical polar coordinates. The time-dependent cosmological scale parameter was 

designated with a(t) and its time derivatives with points above. P is the pressure of matter and ρ is mainly the 

sum of two different densities: relativistic radiation (index r) and not-relativistic matter (index m). 

 

Using the two well known conservation laws 
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(5a,b) 

 

belonging to the two different densities ρr and ρm, respectively, we can rewrite the first FE as 
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(3c) 

 

The Eq. (4a,b) describe the development in time of radiation density and Eq. (5a,b) means the equivalent for 

non-relativistic matter. 

 

In the following, we neglect the mathematical possible cosmological constant Λ. The comparison of the redshift 

distance derived within this paper with measurement results shows in retrospect that this additional parameter is 

not required. As a result, the EFE are returned to their historically original form and the Eq. (3c) takes on the 

simpler form 
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(3d) 

 

Because we will deal with curved spacetime within this paper we have to set the parameter ε = (+1) on the one 

site and ε = (-1) on the other site. Therefore, we will get two different equations for the belonging redshift 

distances at the end of our calculation. 

 

2 Derivation of cosmological relevant relations 

 

2.1 Previews 

 

From the requirement of homogeneity it follows that all extra-galactic objects remain at their co-moving 

coordinate location r in the course of the temporal development of the universe, i.e. the co-moving coordinate 

distance between randomly selected galaxies does not change over time, the galaxies rest in this co-moving 

coordinate system. For this reason, dr/dt = 0 applies to them. 

This does not apply to the freely moving photons inside the universe: They detach themselves from a galaxy at a 

certain point in time at a certain co-moving coordinate location, and are then later absorbed at a completely 

different co-moving coordinate location. 

 

Here we introduce the designation re (the subscript e indicates emission of light) for the co-moving coordinate 

location of the light-emitting galaxy and name the co-moving coordinate location of the galaxy in which the 

observer resides ra (the subscript a indicates absorption of light). Both variables mark the co-moving coordinate 
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distance from an origin of coordinates r = 0. The constant co-moving coordinate distance between the two 

galaxies is therefore calculated to be χ(ra) - χ(re) [see Eq. (7a,b)] if we assume that the galaxy of the observer is 

more depart from the coordinate origin as the light-emitting galaxy. The light should therefore move from the 

inside to the outside within a spherical assumed mass distribution (outgoing photons), which serves as a simple 

model for the universe (using the FLRWM, it is quite easy to arrange that all directions are of a radial kind). 

 

Because of curved space, which is considered in this paper, we introduce 
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(6a,b) 

 

This results in 
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(7a,b) 

 

These equations describe the co-moving places of the emitting galaxy and of the galaxy containing the observer, 

respectively. 

 

Due to the measurable expansion of the universe we know that in the course of cosmic evolution all real physical 

distances R(t) = a(t)χ(r) over the time-dependent scale parameter a(t) being stretched according to the solution of 

Eq. (3b). 

 

For a galaxy resting in the coordinate system of the FLRWM, the real physical distance from the origin of 

coordinates becomes calculated to 
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if  = (+1) is considered. On the other hand, we get 
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if we use  = (-1) for integration. 

 

The radial co-moving coordinate r does not depend on time for galaxies. 
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The physical distance of the light-emitting galaxy from the origin of coordinates at time te (the time at that time) 

is therefore 

 

 ,)()( eeeeeeee RatatR    (9) 

 

while for the analog distance of the galaxy containing the observer at the same time 
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applies. The physical distance of both galaxies at the time te is therefore 

 

   .)( eeeaeaeeeaeee RRaaaDtD    (11) 

 

For the physical distance between both cosmic objects at a later time - means today‘s time here - t0 > te then 

applies 

 

   .)( 0000000 eaeaea RRaaaDtD    (12) 

 

However, both distances mentioned above are worthless for the computation of cosmological relevant distance 

relations, since the emitted photons make their physical way to the observer, which has to be calculated in 

accordance with 

 

 .00 eeaeea RRaaD    (13) 

 

To see this, imagine a photon that detaches itself at the time te < t0 from the emitting galaxy at the coordinate χe, 

where the scale parameter at this time has the value ae. After the photon has moved freely through the expanding 

universe, it will arrive at the coordinate point χa, the place of the observer within another galaxy, at time t0, with 

the scale parameter at that time being a0. Thus, the photon does not travel the path described by Eq. (11) nor by 

Eq. (12). The real distance traveled by the photon is always unequal to any one of these two distances. This must 

be taken into account when deriving the redshift distance. 

 

The real physical light path is illustrated by the green line in Fig. 1: 
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Figure 1.   Real physical light path. 

 

These remarks may be sufficient as a preliminary to the now following derivation of the redshift distance. 

 

 

2.2 ε = (+1) 

 

2.2.1 The redshift distance 

 

In principle, we follow the way demonstrated in our former published papers [11] and [12], respectively. 

 

We now investigate which equation results for the redshift distance (corresponding to the photon path), which 

depends on the redshift z, if the integral 
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is used. This integral results for  = (+1) when the line element ds is set equal to zero in the FLRWM (2) and 

radial (ϑ = φ = const) outgoing photons are considered. Eq. (14) describes the motion of photons inside the 

universe traveling from the co-moving coordinate χe,ε=(+1) to the co-moving coordinate χa,ε=(+1). 

During the travel time of the photons, the scale parameter changes from a(te) = ae to a(t0) = a0. If the time 

differential is replaced using the Eq. (3d), follows from Eq. (14) 
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After executing the integral we get 
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We have used appropriate terms for both involved conservation laws: 
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(17c,d) 

 

Eq. (17a,b) show us that we can use Km = Kem = K0m and Kr = Ker = K0r, respectively, because these values are 

the same constant ones. 

 

Now we insert Eq. (13) 
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in Eq. (16) and get  
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We now introduce the redshift named z. To this end, we recall the simple relation between the scale parameters 

a0 and ae at the two different times te and t0 and the redshift 
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and also 
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If Eq. (19b) and (19c) are inserted into Eq. (18), the result is 
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If we unite both arcsin() on the right site we get the equation 
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(21) 

 

We have set K0m = Km and K0r = Kr, respectively, in Eq. (21) to can see the generality better. 

 

This yields 
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if we introduce the following abbreviations 
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After some more calculation steps we find finely 
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(24) 

 

This is the equation for the redshift distance, for which we were searching. 

 

The redshift distance Dmr,ε=(+1) is therefore a function of the redshift z and the four parameters R0a,ε=(+1), γa, γm and 

γr which all can be determined fundamental by fitting the equation to appropriate astrophysical measurements. 

 

A look at the last root on the right side shows us that we have a condition belonging to the both parameters γm 

und γr: 
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Now we can have a look at some possible values belonging to the four parameters. 

At first we can neglect the parameter γr if the radiation density is very small in comparison of non-relativistic 

matter density and find in this way 
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(24a) 

 

In another case, we can neglect the parameter γm to can describe a universe containing radiation only 
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(24b) 

 

Fig. 2 shows the redshift distance (24) normalized to the distance R0a,ε=(+1) for various values of the parameter γm 

and γr = 0 as well as ra = 1. 
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Figure 2.   Redshift distance for different values of the parameters γm and γr = 0 as well as ra = 1. 

 

The value γm = 1 is the minimal possible value if γr is set to zero. Only in this case Dmr,ε=(+1) = R0a,ε=(+1) is reached 

a first time for z = 1. In all other cases this value is reached only for z = ∞. 

 

Fig. 3 shows the redshift distance (24) normalized to the distance R0a,ε=(+1) for various values of the parameter γr 

and γm = 1 as well as ra = 1. 
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Figure 3.   Redshift distance for different values of the parameter γr and γm = 1 as well as ra = 1. 

 

The curvature of all the curves is a direct consequence of the Friedmann equation. 

 

The comparison of Eq. (24) and (24a), respectively, with a Hubble diagram thus determines the current radius 

R0a,ε=(+1) = a0χa,ε=(+1) of the Friedmann sphere (the today's physical location of the observer). 

 

 

2.2.2 The Hubble parameter 

 

For calculating the Hubble parameter we make a Taylor series expansion of our redshift distance (24) up to first 

order in z and find 
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This results in 
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This is how we find the today's Hubble parameter 
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(28) 

 

The today’s Hubble parameter H0a,mr,ε=(+1) depends on the four parameters R0a,ε=(+1), γa, γm and γr and is in this 

form valid only for small redshifts because of the series expansion made. This means that this H0a,mr,ε=(+1) is only 

valid locally near the observer. 

 

Neglecting γr in Eq. (28) we find 
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But if we set γm = 0 in Eq. (28) we get 
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(30) 

 

The result is that the last both equations show the same mathematical behavior analyzing measurement values, 

but the physical meaning is different because of the physical structure of the parameter γm and γr, respectively. 

Furthermore, we recognize that in both cases γm and γr, respectively, cannot be equal to one. 

 

The reciprocal of the Hubble parameter (28) is the Hubble time tH0,mr,ε=(+1) and yields 
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2.2.3 The magnitude-redshift relation 

 

The magnitude-redshift relation results by the general definition of the apparent magnitude mmr,ε=(+1) 
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Here an apparent limit magnitude m0a,ε=(+1) was introduced instead of R0a,ε=(+1) which also changes with time. 

Substituting Eq. (24) into Eq. (32) then provides the sought magnitude-redshift relation 

 

 

 

    

 

     
  .

2

1
1

1

21

1

1

1
1

2
arcsin1

1

1
1log5

,,,;

1,0210

1,01,







































































































































































a

r

m

mr

m

mr

m

a

rmaamr

m
zzz

z

mzm

 

 

 

 

(33)

 

 

The four free parameters m0a,ε=(+1), γa, γm and γr can be determined by direct comparison with a suitable 

magnitude-redshift diagram of astrophysical objects. 

 

If we ignore the possible radiation density within our equation, we get the following simpler equation 
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(33a)

 
 

 

2.2.4 The angular size-redshift relation 

 

This relation results in for larger distances over 
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(35)

 
 

In this equation mr,ε=(+1) means the measurable angular size and ε=(+1) the linear size of the observed extra-

galactic object. 
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Setting γr = 0 we get 
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(35a) 

 

In logarithmic form Eq. (35) becomes to 
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(35b)

 
 

 

2.2.5 The number-redshift relation 

 

In flat Euclidean space the equation for the light-path sphere becomes to 
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We use this equation to calculate the number-redshift relation for curved spacetime, because the curvature is 

contained in the redshift distance. Therefore, we can expect that the error made is not a big one. 

  

If we introduce the redshift distance via Eq. (24) 
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we get for the number-redshift relation 
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(38)

 

 

where N0a,ε=(+1) means the expected number of objects in the whole light-path sphere V0a,ε=(+1) and besides 
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applies. With  the number density was named. 

 

In logarithmic form results 
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If we ignore in Eq. (40) the possible radiation density within our equation, we find 
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(41) 

 

 

2.3 ε = (-1) 

 

2.3.1 The redshift distance 

 

We now want to investigate which equation results for the redshift distance (corresponding to the photon path), 

which depends on the redshift z, if the integral 
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(42) 

 

is used. This integral results for  = (-1) when the line element ds is set equal to zero in the FLRWM (2) and 

radial (ϑ = φ = const) outgoing photons are considered. Eq. (42) describes the motion of photons inside the 

universe traveling from the co-moving coordinate χe,ε=(-1) to the co-moving coordinate χa,ε=(-1). 

During the travel time of the photons, the scale parameter changes from a(te) = ae to a(t0) = a0. If the time 

differential is replaced using the Eq. (3b), follows from Eq. (42) 
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After the execution of the integral we get 
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(44) 

 

We have used appropriate terms for both involved conservation laws how they are given in Eg. (17a,b). 

 

Now we insert the Eq. (13) 
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in Eq. (44) and get  
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(45) 

 

We now introduce the redshift z. If Eq. (19b) and (19c) are inserted into Eq. (45), the result is 
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If we unite both acsinh() on the right site we get after some simple calculations the equation 
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This yields 

 

    

   

     

,

1

1

1

1

21

1

1
2

1

ln1
1

1
1

,,,;

1,0

1,01,



















































































































































rm

m

rm
m

aa

rmaamr

zzz

z
R

RzD















 

 

 

 

 

(48) 

 

if we introduce the following abbreviations 
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(49) 

 

Eq. (48) is the equation for the redshift distance, for which we were searching. 

 

The redshift distance Dmr,ε=(-1) is therefore a function of the redshift z and the four parameters R0a,ε=(-1), γa, γm and 

γr which all can be determined fundamental by fitting the equation to appropriate astrophysical measurements. 

 

If we neglect the parameter γr we get 
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(48a) 

 

In another case, we can neglect the parameter γm to can describe a universe containing radiation only: 
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(48b) 

 

Fig. 4 shows the redshift distance (48) normalized to the distance R0a,ε=(-1) for various values of the parameter γm 

and γr = 0 as well as ra = 1. 

 

 

 

Figure 4.   Redshift distance for different values of the parameters γm and γr = 0 as well as ra = 1. 
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Fig. 5 shows the redshift distance (48) normalized to the distance R0a,ε=(-1) for various values of the parameter γr 
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Figure 5.   Redshift distance for different values of the parameter γr and γm = 1 as well as ra = 1. 

 

The curvature of all the curves is a direct consequence of the Friedmann equation. 

 

The comparison of Eq. (48) and (48a), respectively, with a Hubble diagram thus determines the current radius 

R0a,ε=(-1) = a0χa,ε=(-1) of the Friedmann sphere (today's physical location of the observer). 
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(50) 

 

This is how we find today's Hubble parameter 
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(51) 

 

The today’s Hubble parameter H0a,mr,ε=(-1) depends on the four parameters R0a,ε=(-1), γa, γm and γr and is in this form 

valid only for small redshifts because of the series expansion made. This means that this H0a,mr,ε=(-1) is only valid 

locally near the observer. 

 

Neglecting γr in Eq. (51) we find 
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(52) 

 

But if we set γm = 0 in Eq. (51) we get 
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(53) 

 

The reciprocal of the Hubble parameter (51) is the Hubble time tH0,mr,ε=(-1) and yields 
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2.3.3 The magnitude-redshift relation 

 

The magnitude-redshift relation results by the general definition of the apparent magnitude mmr,ε=(-1) 
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Here an apparent limit magnitude m0a,ε=(-1) was introduced instead of R0a,ε=(-1) which also changes with time. 

Substituting Eq. (48) into Eq. (55) then provides the sought magnitude-redshift relation 

 

 

 

    

 

     

  .

1

1

1

1

21

1

1
2

1

ln1
1

1
1log5

,,,;

1,010

1,01,



































































































































































a

rm

m

rm

m

a

rmaamr

m

zzz

z

mzm

 

 

 

 

(56)

 

 

The four free parameters m0a,ε=(-1), γa, γm and γr can be determined by direct comparison with a suitable 

magnitude-redshift diagram of astrophysical objects. 

 

If we ignore the possible radiation density within our equation, we get the following simpler equation 
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(56a)

 
 

 

2.3.4 The angular size-redshift relation 

 

This relation results in for larger distances over 
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(58)

 
 

In this equation mr,ε=(-1) means the measurable angular size and ε=(-1) the linear size of the observed extra-

galactic object. 

 

Setting γr = 0 we get 
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(58a) 

 

In logarithmic form Eq. (58) becomes to 
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(58b)

 

 

 

2.3.5 The number-redshift relation 

 

We use here also Eq. (36) to calculate the number-redshift relation for curved spacetime, because the curvature is 

contained in the redshift distance. 

  

If we introduce the redshift distance via Eq. (48) 
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(59) 

 

we get for the number-redshift relation 
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(60)

 

 

where N0a,ε=(-1) means the expected number of objects in the whole light-path sphere V0a,ε=(-1) and besides 
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applies. With  the number density was named. 

 

In logarithmic form results 
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If we ignore in Eq. (62) the possible radiation density within our equation, we find 
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3. Derivation of further physical redshift distances 

 

The starting point for the derivation of the further redshift distances are the following elementary general 

equations 
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and also 
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This results in the following further distances 
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(67) 

 

Ree is the distance at that time between the galaxy observed emitting the light and the origin of the coordinates at 

the time te the light was emitted (te: time at that time). 

Rea is the distance at that time of the observer's galaxy from the origin of the coordinates at the time te. 

R0e is the today’s - at time t0, at which the light is absorbed on the place of observer - distance of the light-

emitting galaxy from the origin of the coordinates. 

R0a is today's distance of the galaxy containing the observer from the origin of the coordinates. 

 

Hint: 

We have not written above the second parts “,ε=(±1)” of indexes in all cases. 
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3.1 ε = (+1) 

   

The further redshift distances become in the case of ε = (+1) concretely 
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and 
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and of course too 
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(70) 

 

This distance is not depending on the parameters γa, γr and γm. 

 

These distances from the origin of coordinates yield 
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(71) 

 

De,mr,ε=(+1) is the distance at the time te between the observed galaxy and the galaxy in which the observer is 

located. 
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Furthermore we find 
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(72) 

 

D0,mr,ε=(+1) is the today’s distance between the two participating galaxies. 

 

The following figures illustrate the equations for the further redshift distances, in which we have normalized all 

distances to R0a,ε=(+1). 

 

 

 

Figure 6.   Redshift distance Rea,mr,ε=(+1) normalized to the distance R0a,ε=(+1). 
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Figure 7.     Redshift distance R0e,mr,ε=(+1) normalized to the distance R0a,ε=(+1) for various values of the parameter 

γm and γr = 0 as well as ra = 1. 
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Figure 8.    Redshift distance Ree,mr,ε=(+1) normalized to the distance R0a,ε=(+1) for different values of the parameter 

γm and γr = 0 as well as ra = 1. 

 

 

 

Figure 9.   Today's redshift distance D0,mr,ε=(+1) normalized to the distance R0a,ε=(+1) for various values of the 

parameter γm and γr = 0 as well as ra = 1. 
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Figure 10.   The redshift distance at that time De,mr,ε=(+1) normalized to the distance R0a,ε=(+1) for various values of 

the parameter γm and γr = 0 as well as ra = 1. 

 

In the specialist literature, four of these redshift distances are not known and they cannot be derived there, 

respectively. 

  

We will give concrete values for such redshift distances for the galaxy M87, 27 SN Ia and two other 

cosmological relevant objects below. 

 

 

3.2 ε = (-1) 

 

The further redshift distances become in the case of ε = (-1) concretely 

 

    

 

 

      





















































































































rm

m

rm

m

a

a

rmaamree

zzz

z

R

RzR















1

1

1

1

21

1

1
2

1

ln1
1

,,,;

1,0

1,01,,

 

 

 

 

 

(73) 

 

and 
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and of course too 
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This distance is not depending on the parameters γa, γr and γm. 

 

These distances from the origin of coordinates yield 
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(76) 

 

De,mr,ε=(-1) is the distance at the time te between the observed galaxy and the galaxy in which the observer is 

located. 

 

Furthermore We find 
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(77) 

 

D0,mr,ε=(-1) is the today’s distance between the two participating galaxies. 

 

In the specialist literature, four of these redshift distances are not known and they cannot be derived there, 

respectively. 

 

The following two figures illustrate the equations for the further redshift distances D0,mr,ε=(-1) and De,mr,ε=(-1), 

respectively, in which we have normalized all distances to R0a,ε=(-1). 
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Figure 11.   Today's redshift distance D0,mr,ε=(-1) normalized to the distance R0a,ε=(-1) for various values of the 

parameter γm and γr = 0 as well as ra = 1. 

 

 

 

Figure 12.   The redshift distance at that time De,mr,ε=(-1) normalized to the distance R0a,ε=(-1) for various values of 

the parameter γm and γr = 0 as well as ra = 1. 
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We will give concrete values for such redshift distances for the galaxy M87, 27 SN Ia and two other 

cosmological relevant objects below. 

 

 

4. Determination of the parameter values 

 

The present paper presents a theoretical derivation of redshift distances in the two possible curved spacetimes, 

which carry out without approximations for e.g. small redshifts z and is mainly of theoretical nature. The essay is 

therefore a theoretical offer to the observing cosmologists. 

 

Nevertheless, in this chapter we will apply the theory presented here in detail to some measurement results of 

observational cosmology, whereby we only demonstrate the principle of evaluating the measurement data. For 

this reason, no more detailed error analyzes are carried out. We leave that to the interested experts of 

observational cosmology. 

 

 

4.1 ε = (+1) 

 

4.1.1 Magnitude-redshift relation 

 

The apparent magnitude m depends according to Eq. (33) in addition to the measurable redshift z also on the 

four parameters m0a,ε=(+1), γa, γm and γr. 

 

To find the values of the parameters, the quasar catalog by Véron-Cetty et al. [1] is suitable in which measured 

redshifts and apparent magnitudes of 132,975 quasars are given. 

 

Fig. 13 shows all these quasars in a single magnitude-redshift diagram, where we have used log10(cz) on the axis  

of ordinates. 
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Figure 13.   Magnitude-redshift diagram for all 132,975 quasars according to M.-P. Véron-Cetty et al. [1]. 

 

A clear edge exists on the right side of the accumulation of measurement points, which indicates minimum 

apparent magnitudes for associated redshifts. The apparent magnitudes are usually up to far to the left of this 

edge inside the diagram. 

 

If we form redshift intervals with mean values of the redshifts and the corresponding mean values for the 

apparent magnitudes, this fact leads to a clear curvature of the mean value curve in the direction of the redshift 

axis. This curvature should be explained by means of a valid astrophysical theory. More precisely: The theory 

has to explain the curvature! This suggests that our redshift distance [i.e. ultimately Eq. (33)] could be suitable 

for the measured values. 

 

It is precisely this strange magnitude-redshift diagram, which was stimulating us to think about cosmological 

distance determinations for many years [9]. 

 

To evaluate the quasar data set, we first create 75 z-intervals with 1,773 quasars each. For these intervals, we 

calculate the mean values <zi> and the associated mean values <mi> of the quasars. 
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We use the following χ
2
-function 
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for our evaluation of the data. 

The abbreviation pk with k = 1, 2, 3, 4 stands for the four parameters we are looking for, m0a,ε=(+1), γa, γm and γr. 

 

If we use our magnitude-redshift relation (33), the χ
2
-function looks more concrete 
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(78a) 

 

Using the quasar data and the usual mathematical procedure, we find the parameters to be m0a,ε=(+1) = 20.1912, γm 

= 1.8116 and ra = 1. We have specialized our analysis to γr = 0 because the radiation density plays obvious no 

role today. 

 

Fig. 14 shows the result of the mean value formation and the adaptation of our theory to the curvature of the 

mean value curve. 
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Figure 14.   Magnitude-redshift diagram for 132,975 quasars according to M.-P. Véron-Cetty et al. [1]. 

 

A possible interpretation of the measured magnitude-redshift relation may be: 

The quasars came in to being historically slowly as relatively few and weakly luminous objects at a point in time 

that corresponds to about z ≈ 4.3 (development effect). The quasars later behaved as our theory expects in curved 

space and moved with time - i.e. for decreasing redshifts z - on average along the theoretical curve (in the 

diagram from top right diagonally to bottom left). The quasars have gradually died out in the recent past and 

became relatively bright in this process. 

 

 

4.1.2 Number-redshift relation 

 

We use the following variance to evaluate the number-redshift relation 

 

 
 

   .
1

1

1

2

,,

2 






N

i

iobskithk NpN
N

p  
 

(79) 

 

The abbreviation pk with k = 1, 2, 3, 4 stands for the four parameters we are looking for, N0a,ε=(+1), γa, γm and γr. 

 

If we insert our number-redshift relation (40), the Eq. (79) reads concrete 

 

4,5 

4,7 

4,9 

5,1 

5,3 

5,5 

5,7 

5,9 

6,1 

6,3 

6,5 

16 17 18 19 20 21 22 

lo
g 1

0(
 c

z 
) 

m 

log10( cz )( m )   m0a,mr,ε=(+1) = 20.1912,   γm = 1.8116,   γr = 0,   ra = 1 



 38 

  
 

 

   

     

.

2

1
1

1

21

1

1

1
1

2
arcsin1

1

1
1

1

1
,,,;

3

21,0

1

2

,1,0

2

i

r
m

mr
m

mr
m

aai

N

i

iobsirmaa

zzand

zzz

z
NX

with

NX
N

Nz



















































































































































 


















 

 

 

 

(79a) 

 

 

Using this simple χ
2
-function, we find N0a,ε=(+1) = 126,789 for the theoretically expected total number of quasars, 

if we use the value γm = 1.8116 found via the magnitude-redshift relation. Furthermore we have used γr = 0 and 

ra = 1. 

 

The expected number N0a,ε=(+1) = 126,789 is slightly smaller than the actual number of quasars measured within 

the catalogue of M.-P. Véron-Cetty et al. [1]. 

May be that the reason for this is the use of the simple Eq. (36) for the flat volume during the derivation of the 

number-redshift relation. 

 

Fig. 15 shows the graphic result. 

 

 

 

Figure 15.   Number-redshift diagram for the 132,975 quasars according to M.-P. Véron-Cetty et al. [1]. 
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Table 11 in the appendix shows the numbers Ni summed up in the redshift intervals zi of the quasars according to 

[1]. 

 

4.1.3 Angular size-redshift relation 

 

In this case, we use the measurement data from K. Nilsson et al. [2] to find an average linear size of the cosmic 

objects measured there. 

 

The starting point is the variance 
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(80) 

 

The abbreviation pk with k = 1, 2, 3, 4 stands for the four parameters we are looking for, δε=(+1)/R0a,ε=(+1), γa, γm 

and γr. 

 

If we use our angular size-redshift relation (35), the Eq. (80) reads concrete (setting γr = 0) 
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(80a) 

 

The comparison of the theory with the measurement data using γm = 1.8116, γr = 0 and ra = 1 results in a value of 

δε=(+1)/R0a,ε=(+1) = 5.9592 x 10
-5

. 

 

Fig. 16 shows the graphic result. 
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Figure 16.   Angular size-redshift diagram according to K. Nilsson et al. [2]. 

 

The determination of the linear size δε=(+1) requires the knowledge of R0a,ε=(+1). Because the absolute magnitudes 

are known for some SN Ia (which differ strangely enough slightly from one another), we can determine R0a,ε=(+1) 

using a magnitude-redshift diagram of these cosmic objects. We will carry out this within the next chapter. 

 

 

4.1.4 Fixing of R0a,ε=(+1) with the help of SN Ia 

 

By W. L. Freedman et al. [3], data from a total of 27 SN Ia were made available, with the help of which we can 

determine both the distance R0a,ε=(+1) - a current physical distance - and, as a main result, the today’s Hubble 

parameter H0a,mr,ε=(+1). 

 

The data we are interested in are the distance modules (μTRGB and μCeph, respectively), the maximum apparent 

magnitudes (mCSP_B0 and mSC_B, respectively) and the radial velocities VNED, from which the redshifts zNED can 

be calculated. 

 

The methods taken into account in [3] for determining the maximum apparent magnitude and thus the associated 

absolute magnitude are different, which is why somewhat different values are given for one and the same SN Ia.  

For our purposes, we calculate the mean values from these data and assign them to the relevant SN Ia. 

 

We calculate the absolute magnitudes Mi of the SN Iai using (μTRGB - mCSP_B0) and (μCeph - mSC_B), respectively, 

and then we always calculate an average value <Mi> if both value pairs are specified for one and the same SN Ia. 
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From all the absolute magnitudes obtained in this way, we finally form the mean value of the absolute magnitude 

to be <M> ≈ -19.24, which enables us to determine the distance R0a,ε=(+1) with the aid of the parameter m0a,ε=(+1), 

which results from the magnitude-redshift diagram of the SN Ia. The simple equation used for this is 
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(81)
 

 

The graphic result is shown in Fig. 17. 

 

 

 

Figure 17.   Magnitude-redshift diagram for 27 SN Ia according to W. L. Freedman et al. [3]. 

 

The theoretical curve (blue) lies exactly on the linear trend line (dashed in red) with the equation given in the 

figure. 

 

Finding m0a,ε=(+1) ≈ 22.9149 and using the mean value of the absolute brightness <M> = -19.24, the distance 

R0a,ε=(+1) ≈ 2,697.62 Mpc we are ultimately looking for is the essential result of this data analysis. 

We get furthermore a0 ≈ 1,717.36 Mpc. This value can be calculated with Eq. (23) using R0a,ε=(+1) and γa found. 

 

With the help of the value of R0a,ε=(+1) and taking the Eq. (28), which is an approximation for small redshifts, the 

today's Hubble parameter H0a,m,ε=(+1) ≈ 65.117 km/(s∙Mpc) results, if we neglect the radiation density how before 

always. This value is slightly below the Planck value (2018) with H0,Planck ≈ 67.66 km/(s∙Mpc) [4].  
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In Table 12 of the appendix, all the values we have used for the magnitude-redshift diagram of the 27 SN Ia are 

compiled. 

 

Using Eq. (5b) we can write 
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(82) 

 

Inserting the second equation of equations (23) we get as result for the today's mass density 
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(83) 

 

With the help of the parameters γm and R0a,ε=(+1) determined by us, we find ρ0m,ε=(+1) ≈ 1.037 x 10
-30

 g/cm
3
 for 

today's matter density inside the closed universe with ε = (+1). 
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(84) 

 

the constant mass of the Friedmann sphere - so called by us - results in MFs,ε=(+1) ≈ 2.506 x 10
54

 g. 

 

Because we generally do not consider the accuracy within this paper, we simply specify the decimal places with 

up to three places, whereby the mathematical analysis of the data usually delivers more decimal digits. 

 

With the known value R0a,ε=(+1) ≈ 2,697.62 Mpc we can calculate the mean linear size of the Nilsson objects [2] 

to be δε=(+1) ≈ 0.161 Mpc, because we have found δε=(+1)/R0a,ε=(+1) = 5.959 x 10
-5

 for them. 

Using known R0a,ε=(+1) and γm, of course, all linear dimensions of these objects can be calculated using their 

angular size and redshift if they could be measured. 

 

 

4.1.5 Calculation of the further redshift distances for SN Ia 

 

Because we were able to determine R0a,ε=(+1), we can graphically display all the further redshift distances in a 

form, which is not normalized to R0a,ε=(+1). The result is shown in Fig. 18, using the values we found for our 

parameters γa, γm and R0a,ε=(+1) and γr = 0. 
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Figure 18.   Redshift distance Dmr,ε=(+1) (real light path) and all further redshift distances Di,mr,ε=(+1) (i = 0, e) and 

Rjk (j = 0, e; k = e, a) as a function of the redshift up to z = 12. 

 

We have neglected in the Fig. 18 the part “mr,ε=(+1)” of indexes for all Rjk. 

 

To interpret Fig. 18: 

a) For redshift z going towards infinity the distance Dmr,ε=(+1) goes to R0a,ε=(+1). 

This means that no observer can observe objects for which is Dmr,ε=(+1) > R0a,ε=(+1) ≈ 2,697.62 Mpc. 

b) The light path distance Dmr,ε=(+1) = R0a,ε=(+1) - Ree,mr,ε=(+1) is always greater than the distances D0,mr,ε=(+1) (today’s) 

and De,mr,ε=(+1) (time at that time). 

In particular, the light path Dmr,ε=(+1) is not equal to the today’s distance D0,mr,ε=(+1) between two astrophysical 

objects. 

c) The distances Rjk,mr,ε=(+1) are physical distances from an origin coordinates and develop directly with the 

change in the scale parameter a(t) over time. For large redshifts, the scale parameter was correspondingly small 

and, as a result, the associated physical distances were also correspondingly small. 

d) The distance at that time De,mr,ε=(+1) is interesting: It shows a maximum for a specific redshift and approaches 

zero for very large redshifts.  

 

Table 1 summarizes all calculated redshift distances of the 27 SN Ia used by us for analyzing the data. 
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1980N 2,685.91 2,677.69 2,689.35 2,697.62 8.23 8.27 19.93 0.004356347 

1981B 2,688.20 2,681.58 2,690.96 2,697.62 6.63 6.65 16.04 0.003502423 

1981D 2,685.91 2,677.69 2,689.35 2,697.62 8.23 8.27 19.93 0.004356347 

1989B 2,691.43 2,687.07 2,693.24 2,697.62 4.36 4.37 10.55 0.002298257 

1990N 2,688.20 2,681.58 2,690.96 2,697.62 6.63 6.65 16.04 0.003502423 

1994D 2,688.20 2,681.58 2,690.96 2,697.62 6.63 6.65 16.04 0.003502423 

1994ae 2,683.72 2,673.96 2,687.80 2,697.62 9.76 9.81 23.66 0.005176915 

1995al 2,680.75 2,668.92 2,685.70 2,697.62 11.84 11.91 28.70 0.006291019 

1998aq 2,685.36 2,676.75 2,688.96 2,697.62 8.62 8.66 20.87 0.004563157 

1998bu 2,691.43 2,687.07 2,693.24 2,697.62 4.36 4.37 10.55 0.002298257 

2001el 2,688.23 2,681.62 2,690.98 2,697.62 6.61 6.63 16.00 0.003492416 

2002fk 2,680.95 2,669.25 2,685.84 2,697.62 11.70 11.78 28.37 0.006217635 

2003du 2,676.00 2,660.85 2,682.34 2,697.62 15.15 15.27 36.77 0.008078922 

2005cf 2,677.57 2,663.53 2,683.46 2,697.62 14.05 14.16 34.09 0.007485178 

2006dd 2,685.91 2,677.69 2,689.35 2,697.62 8.23 8.27 19.93 0.004356347 

2007af 2,679.89 2,667.45 2,685.09 2,697.62 12.44 12.52 30.17 0.006614576 

2007on 2,685.91 2,677.69 2,689.35 2,697.62 8.23 8.27 19.93 0.004356347 

2007sr 2,682.39 2,671.69 2,686.86 2,697.62 10.70 10.76 25.93 0.005677261 

2009ig 2,675.00 2,659.17 2,681.64 2,697.62 15.84 15.97 38.45 0.008452514 

2011by 2,685.36 2,676.75 2,688.96 2,697.62 8.62 8.66 20.87 0.004563157 

2011fe 2,693.53 2,690.65 2,694.73 2,697.62 2.88 2.89 6.97 0.001517717 

2011iv 2,685.91 2,677.69 2,689.35 2,697.62 8.23 8.27 19.93 0.004356347 

2012cg 2,688.20 2,681.58 2,690.96 2,697.62 6.63 6.65 16.04 0.003502423 

2012fr 2,685.95 2,677.75 2,689.37 2,697.62 8.21 8.24 19.87 0.004343005 

2012ht 2,684.66 2,675.55 2,688.46 2,697.62 9.11 9.15 22.07 0.004826672 

2013dy 2,684.99 2,676.11 2,688.69 2,697.62 8.88 8.92 21.51 0.004703254 

2015F 2,686.23 2,678.22 2,689.57 2,697.62 8.01 8.05 19.40 0.0042396 

 

Table 1.   Redshift distance D and the further redshift distances Di and Rjk of all 27 SN Ia. 

 

We have neglected here the part “mr,ε=(+1)” of indexes in all cases. 

 

To interpret the distances from Table 1: 

For a more detailed explanation, we take into account the SN Ia 2006dd, for example, and use it to interpret the 

meaning of the distances in the table. 
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The "light-travel time" always means the time interval between the emission of light (the time at that time 

te,2006dd) by the SN Ia 2006dd and today (t0), i.e. Δt2006dd = t0 - te,2006dd. This light-travel time is generally different 

for all observable cosmic objects, here especially for the individual SN Ia 2006dd we will consider. 

 

a) The today's (t0) distance between the selected SN Ia 2006dd and us as observers is D0,mr,ε=(+1) ≈ 8.27 Mpc. 

b) The distance at that time (te) between this SN Ia 2006dd and us as observers was De,mr,ε=(+1) ≈ 8.23 Mpc. 

According to this, the distance between the two cosmic objects has increased by about 0.04 Mpc during the light-

travel time Δt2006dd. 

c) The SN Ia 2006dd has been shifted expansively away from the origin of the coordinates by ΔRe = R0e - Ree ≈ 

11.66 Mpc during the light-travel time due to the time-dependent scale parameter a(t). 

d) The galaxy with us as observers has been expansively shifted away from the origin of the coordinates by ΔRa 

= R0a - Rea ≈ 11.71 Mpc during the light-travel time due to a(t). 

The difference between the two displacement distances is of course the increase in the distance between the two 

cosmic objects noted above. 

e) The real light path (redshift distance) covered by the photons within the interval of time Δt2006dd is Dmr,mr,ε=(+1) 

≈ 19.93 Mpc. It is unequal to the other mentioned distances Di and greater than these. 

 

 

4.1.6 Evaluation of the data from the black hole in M87 

 

For the sake of simplicity, we summarize the data taken from the specialist literature on the galaxy M87 

containing a black hole (BH) in it in the first line of Table 2 {see [5] and [6]}. 

The second line lists the data specified in this paper, which usually differ from those in the specialist literature. 

 

  D [ Mpc ] MB [ mag ] z mB [ mag ] ΘBH [ μas ] δ/2 = RS [ pc ] MBH [ g ] 

literature 16.9 / 16.8 -23.5 0.004283 9.6 42 

 

1.2928E+43 

we 19.60 -21.860 

   

1.995268E-03 4.1469E+43 

 

Table 2.   Summary of data from galaxy M87 containing a black hole in it. 

 

The theory was adapted to the measured angle size ΘBH given in the specialist literature. Overall, a larger redshift 

distance Dmr,ε=(+1), a smaller absolute magnitude MB and a little bigger value of mass MBH of the black hole 

follow. 

 

Table 3 lists the values found by means of our theory for all redshift distances Rjk, Di and D, respectively. 

 

[ Mpc ] Rea Ree R0e R0a De D0 D 

we 2,686.12 2,678.02 2,689.49 2,697.62 8.09 8.13 19.60 

literature --- --- --- --- --- --- 16.8 
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Table 3.   Redshift distances Di, D and Rjk belonging to the black hole in M87. 

 

From these values, the expansion-related shifts in distance of the galaxy M87 and of the galaxy with us as 

observers can be calculated, which took place during the time of light travel. 

 

The theory from the specialist literature does not know the most distances listed in Table 3. Therefore, they 

cannot be calculated using this theory and not determined in terms of value. 

 

The distance Dmr,ε=(+1) differs because of the physical meaning: In our theory, Dmr,ε=(+1) is the real physical light 

path, which is not the case in the astrophysical specialist literature. 

 

We briefly interpret the meaning of the distances listed in Table 3, whereby the light-travel time is again defined 

as described in former chapter: 

a) The today's (t0) distance between the BH or the galaxy M87 and us as observers is D0,mr,ε=(+1) ≈ 8.13 Mpc. 

b) The distance at that time (te) between the BH (or M87) and us as observers was De,mr,ε=(+1) ≈ 8.09 Mpc. 

Accordingly, the distance between the two cosmic objects has increased by about 0.04 Mpc during the light-

travel time ΔtBH,M87 = t0 - te,BH,M87. 

c) The BH (or M87) has been shifted expansively away from the origin of the coordinates by ΔRe = R0e - Ree ≈ 

11.47 Mpc during the light-travel time due to the time-dependent scale parameter a(t). 

d) The galaxy with us as observer was expansively shifted away from the origin of the coordinates by ΔRa = R0a 

- Rea ≈ 11.50 Mpc during the light-travel time due to a(t). 

e) The real light path (redshift distance) covered by the photons during the interval of time ΔtBH,M87 is Dmr,ε=(+1) ≈ 

19.60 Mpc. It is unequal to the other mentioned distances Di and greater than these. 

 

Fig. 19 shows the various calculated distances in a clear form. 
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Figure 19.   Visualization of the distances Di, D and Rjk with regard to M87 and observer. 

 

The distances are not drawn to scale here. 

 

 

4.1.7 Maximum values known today: Galaxy UDFj-39546284 and Quasar J0313 

 

The galaxy UDFj-39546284 [8] currently holds the record among the galaxies with a redshift of z = 10.3, while 

the quasar J0313 [7] with z = 7.642 holds the analog record among the quasars. 

 

Table 4 shows all the corresponding distances Rjk, Di and D together using Mpc as unit of measurement. 

 

object name z D D0 De Ree R0e Rea R0a object 

J0313 7.642 2,616.77 1,998.96 231.31 80.84 698.66 312.15 2,697.62 quasar 

UDFj-39546284 10.300 2,645.71 2,111.08 186.82 51.91 586.54 238.73 2,697.62 galaxy 

 

Table 4.   All calculated redshift distances Rjk, Di and D for the two cosmic objects with the maximum redshifts 

and for us as observer. 

Table 5 summarizes the spatial shifts of the two objects chosen and the observer with respect to the origin of 

coordinates due to the expansion during the associated light travel times. 
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object name R0e - Ree R0a - Rea object 

J0313 617.82 2,385.47 quasar 

UDFj-39546284 534.63 2,458.89 galaxy 

 

Table 5.   Expansion-related shifts in the distance of the quasar and the galaxy and of the observer [Mpc]. 

 

We have already explained above how the tables have to be interpreted. 

 

Fig. 20 shows the distances Di,mr,ε=(+1) and Dmr,ε=(+1) of the three special astrophysical objects analyzed in this 

paper in one diagram, whereby we have entered all numerical values for the distances in Mpc. 

 

 

 

Figure 20.   All distances Di,mr,ε=(+1)  and Dmr,ε=(+1) for M87, J0313 and UDFj-39546284. 

 

The middle curve shows the today’s distances D0,mr,ε=(+1) of the three objects from us as observers. These 

distances are clearly shorter than the associated light paths Dmr,ε=(+1) of these objects. 
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4.2.1 Magnitude-redshift relation 

 

The apparent magnitude m depends according to Eq. (56) in addition to the measurable redshift z also on the 

four parameters m0a,ε=(-1), γa, γm and γr. 

 

To analyze the quasar catalog by Véron-Cetty et al. [1] we use the same redshift intervals with mean values of 

the redshifts and the corresponding mean values for the apparent magnitude how this was done in chapter with ε 

= (+1). 

 

We use the same χ
2
-function Eq. (78) for the evaluation of the measurement values. 

The introduced abbreviation pk with k = 1, 2, 3, 4 stands here for the four parameters we are looking for, m0a,ε=(-

1), γa, γm and γr. 

 

Using our magnitude-redshift relation (56), the χ
2
-function looks concrete 
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(85) 

 

Using again the quasar data and the usual mathematical procedure, we find the parameters to be m0a,ε=(-1) = 

20.17575, γm = 0.160004 and ra = 2.8225. We have specialized our analysis to γr = 0 because the radiation 

density plays obvious no role today. 

 

Fig. 21 shows the result of the mean value formation and the adaptation of our theory to the curvature of the 

mean value curve. 
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Figure 21.   Magnitude-redshift diagram for 132,975 quasars according to M.-P. Véron-Cetty et al. [1]. 

 

We have given a possible interpretation of the measured magnitude-redshift relation in the chapter with ε = (+1). 

 

 

4.2.2 Number-redshift relation 

 

We use here also Eq. (79) to evaluate the number-redshift relation. 

 

The introduced abbreviation pk with k = 1, 2, 3, 4 stands here for the four parameters we are looking for, N0a,ε=(-

1), γa, γm and γr. 

 

If we insert our number-redshift relation (60), the Eq. (79) reads here concrete 
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Using this simple χ
2
-function, we find N0a,ε=(-1) = 121,138 for the theoretically expected total number of quasars, 

if we use the value γm = 0.160004 found via the magnitude-redshift relation. Furthermore we have used γr = 0 

and ra = 2.8225. 

 

The expected number N0a,ε=(-1) = 121,138 is slightly smaller than the number of quasars measured and listed 

within the catalogue of M.-P. Véron-Cetty et al. [1]. 

May be that the reason for this is the use of the simple Eq. (59) for the flat volume during the derivation of the 

number-redshift relation. 

 

Fig. 22 shows the graphic result. 

 

 

 

Figure 22.   Number-redshift diagram for the 132,975 quasars according to M.-P. Véron-Cetty et al. [1]. 

 

 

4.2.3 Angular size-redshift relation 

 

We use here also the measurement data from K. Nilsson et al. [2] to find an average linear size of the cosmic 

objects measured there. 

 

The starting point is here also the Eq. (80). 

The introduced abbreviation pk with k = 1, 2, 3, 4 stands now for the four parameters we are looking for, δε=(-

1)/R0a,ε=(-1), γa, γm and γr. 

 

If we use our angular size-redshift relation (58), the Eq. (80) reads concrete (setting γr = 0) 
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(87) 

 

The comparison of the theory with the measurement data using γm = 0.160004, γr = 0 and ra = 2.8225 results in a 

value of δε=(-1)/R0a,ε=(-1) = 5.7488 x 10
-5

. 

 

Fig. 23 shows the graphic result. 

 

 

 

Figure 23.   Angular size-redshift diagram according to K. Nilsson et al. [2]. 
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The determination of the linear size δε=(-1) requires the knowledge of R0a,ε=(-1). Because the absolute magnitudes 

are known for some SN Ia, we can determine R0a,ε=(-1) using a magnitude-redshift diagram of these cosmic 

objects. We will do that in the next chapter. 

 

 

4.2.4 Fixing of R0a,ε=(-1) with the help of SN Ia 

 

Here we use also the data given by W. L. Freedman et al. [3] for our analysis. The goal is to find the values of 

distance R0a,ε=(-1) and the today’s Hubble parameter H0a,mr,ε=(-1). 

 

The simple equation used for this task is 
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The graphic result is shown in Fig. 24. 

 

 

 

Figure 24.   Magnitude-redshift diagram for 27 SN Ia according to W. L. Freedman et al. [3]. 

 

The theoretical curve (blue) lies exactly on the linear trend line (dashed in red) with the equation given in the 

figure. 
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Finding m0a,ε=(-1) ≈ 23.1536 and using the mean value of the absolute brightness <M> = -19.24, the distance 

R0a,ε=(-1) ≈  3,011.065 Mpc we are ultimately looking for is the essential result of this data analysis. 

We get furthermore a0 ≈ 1,710.08 Mpc. This value can be calculated with Eq. (49) using R0a,ε=(-1) and γa found. 

 

With the help of the value of R0a,ε=(-1) and taking the Eq. (51), which is an approximation for small redshifts, the 

today's Hubble parameter H0a,m,ε=(-1) ≈ 65.189 km/(s∙Mpc) results, if we neglect the radiation density how before 

also. This value is slightly below the Planck value (2018) with H0,Planck ≈ 67.66 km/(s∙Mpc) [4].  

 

With the help of Eq. (82) we can calculate the today’s matter density ρ0m,ε=(-1).  

 

Using the parameters γm and R0a,ε=(-1) determined by us, we find ρ0m,ε=(-1) ≈ 9.24 x 10
-32

 g/cm
3
 for today's matter 

density inside the open universe with ε = (-1). 

 

Via Eq. (84) the constant mass of the Friedmann sphere - so called by us - results in MFs,ε=(-1) ≈ 3.10 x 10
53

 g. 

 

With the known value R0a,ε=(-1) ≈ 3,011.06 Mpc we can calculate the mean linear size of the Nilsson objects [2] to 

be δε=(-1) ≈ 0.1731 Mpc, because we have found δε=(-1)/R0a,ε=(-1) = 5.7488 x 10
-5

 for them. 

Using known R0a,ε=(-1) and γm, of course, all linear dimensions of these objects can be calculated using their 

angular size and redshift if they could be measured. 

 

 

4.2.5 Calculation of the further redshift distance for SN Ia 

 

Because we were able to determine R0a,ε=(-1), we can graphically display the further redshift distances De,mr,ε=(-1), 

D0,mr,ε=(-1) and Dmr,ε=(-1) in a form, which is not normalized to R0a,ε=(-1). The result is shown in Fig. 25, using the 

values we found for our parameters γa, γm and R0a,ε=(-1) and setting γr = 0. 
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Figure 25.   Redshift distance Dmr,ε=(-1) (real light path) and the two further redshift distances De,mr,ε=(-1) and 

D0,mr,ε=(-1) as a function of the redshift up to z = 12. 

 

To interpret Fig. 25: 

a) For Dmr,ε=(-1), going to R0a,ε=(-1) the redshift z goes towards infinity. This means that no observer can observe 

objects for which is Dmr,ε=(-1) > R0a,ε=(-1) ≈ 3,011.07 Mpc. 

b) The light path distance Dmr,ε=(-1) can for bigger redshifts be smaller than the today’s distances D0,mr,ε=(-1). 

d) The distance at that time De,mr,ε=(-1) is interesting: It shows a maximum for a specific redshift and approaches 

zero for very large redshifts.  

 

Table 6 summarizes all calculated redshift distances of the 27 SN Ia used by us. 

 

SN Ia De,mr,ε=(-1) D0,mr,ε=(-1) Dmr,ε=(-1) z 

1980N 6.87 6.90 19.93 0.00435635 

1981B 5.53 5.55 16.04 0.00350242 

1981D 6.87 6.90 19.93 0.00435635 

1989B 3.64 3.64 10.54 0.00229826 

1990N 5.53 5.55 16.04 0.00350242 

1994D 5.53 5.55 16.04 0.00350242 

1994ae 8.15 8.20 23.66 0.00517692 

1995al 9.89 9.96 28.72 0.00629102 

1998aq 7.19 7.23 20.87 0.00456316 

1998bu 3.64 3.64 10.54 0.00229826 
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2001el 5.52 5.53 15.99 0.00349242 

2002fk 9.78 9.84 28.38 0.00621764 

2003du 12.67 12.77 36.80 0.00807892 

2005cf 11.75 11.84 34.12 0.00748518 

2006dd 6.87 6.90 19.93 0.00435635 

2007af 10.40 10.47 30.18 0.00661458 

2007on 6.87 6.90 19.93 0.00435635 

2007sr 8.94 8.99 25.93 0.00567726 

2009ig 13.25 13.36 38.49 0.00845251 

2011by 7.19 7.23 20.87 0.00456316 

2011fe 2.40 2.41 6.97 0.00151772 

2011iv 6.87 6.90 19.93 0.00435635 

2012cg 5.53 5.55 16.04 0.00350242 

2012fr 6.85 6.88 19.87 0.00434301 

2012ht 7.61 7.64 22.07 0.00482667 

2013dy 7.41 7.45 21.51 0.00470325 

2015F 6.69 6.72 19.40 0.0042396 

 

Table 6.   Redshift distance Dmr,ε=(-1) and the further redshift distances De,mr,ε=(-1) and Do,mr,ε=(-1) of all 27 SN Ia. 

 

To interpret the distances from Table 6: 

For a more detailed explanation, we take into account the SN Ia 2006dd, for example, and use it to interpret the 

meaning of the distances in the table. 

 

The "light-travel time" always means here also the time interval between the emission of light (the time at that 

time te,2006dd) by the SN Ia 2006dd and today (t0), i.e. Δt2006dd = t0 - te,2006dd. This light-travel time is generally 

different for all observable cosmic objects, here especially for the individual SN Ia 2006dd we will consider. 

 

a) The today's (t0) distance between the selected SN Ia 2006dd and us as observers is D0,mr,ε=(-1) ≈ 6.90 Mpc. 

b) The distance at that time (te) between this SN Ia 2006dd and us as observers was De,mr,ε=(-1) ≈ 6.87 Mpc. 

According to this, the distance between the two cosmic objects has increased by about 0.03 Mpc during the light-

travel time Δt2006dd. 

c) The real light path (redshift distance) covered by the photons within the interval of time Δt2006dd is Dmr,mr,ε=(-1) ≈ 

19.93 Mpc. It is unequal to the other mentioned distances Di and greater than these. 

 

 

4.2.6 Evaluation of the data from the black hole in M87 
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For the sake of simplicity, we summarize the data taken from the specialist literature on the galaxy M87 

containing a black hole (BH) in it in the first line of Table 7 {see [5] and [6]}. 

The second line lists the data specified in this paper, which usually differ from those in the literature. 

 

  D [ Mpc ] MB [ mag ] z mB [ mag ] ΘBH [ μas ] δ/2 = RS [ pc ] MBH [ g ] 

literature 16.9 / 16.8 -23.5 0.004283 9.6 42 

 

1.2928E+43 

we 19.60 -21.861 

   

1.995223E-03 4.1468E+43 

 

Table 7.   Summary of data from galaxy M87 containing a black hole in it. 

The theory was adapted to the measured angle size ΘBH given in the specialist literature. Overall, a larger redshift 

distance Dmr,ε=(-1), a smaller absolute magnitude MB and a similar value of mass MBH of the black hole follow. 

 

Table 8 lists the values found by means of our theory for all redshift distances Rjk, Di and D, respectively. 

 

[ Mpc ] De,mr,ε=(-1) D0,mr,ε=(-1) Dmr,ε=(-1) 

we 6.76 6.78 19.60 

literature --- --- 16.8 

 

Table 8.   Redshift distances De,mr,ε=(-1), D0,mr,ε=(-1) and Dmr,ε=(-1) belonging to the black hole in M87. 

 

The theory from the specialist literature does not know two of the distances listed in Table 8. Therefore, they 

cannot be calculated using this theory and not determined in terms of value. 

 

The distance Dmr,ε=(-1) differs because of the physical meaning: In our theory, Dmr,ε=(-1) is the real physical light 

path, which is not the case in the astrophysical specialist literature. 

 

We briefly interpret the meaning of the distances listed in Table 8, whereby the light-travel time is again defined 

as described in a former chapter: 

a) The today's (t0) distance between the BH or the galaxy M87 and us as observers is D0,mr,ε=(-1) ≈ 6.78 Mpc. 

b) The distance at that time (te) between the BH (or M87) and us as observers was De,mr,ε=(-1) ≈ 6.76 Mpc. 

Accordingly, the distance between the two cosmic objects has increased by about 0.02 Mpc during the light-

travel time Δt BH,M87 = t0 - te,BH,M87. 

c) The real light path (redshift distance) covered by the photons during the interval of time ΔtBH,M87 is Dmr,ε=(-1) ≈ 

19.60 Mpc. It is unequal to the other mentioned distances Di and greater than these. 

 

 

4.2.7 Maximum values known today: Galaxy UDFj-39546284 and Quasar J0313 
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Similar to the chapter ε = (+1) the table 9 shows the resulting distances De,mr,ε=(-1), D0,mr,ε=(-1) and Dmr,ε=(-1) (in 

Mpc) belonging to the two cosmic objects J0313 and UDFj-39546284. 

 

object name z Dmr,ε=(-1) D0,mr,ε=(-1) De,mr,ε=(-1) object 

J0313 7.642 3,009.20 2,994.94 346.56 quasar 

UDFj-39546284 10.300 3,034.90 3,280,36 290.30 galaxy 

 

Table 9.   Redshift distances De,mr,ε=(-1), D0,mr,ε=(-1) and Dmr,ε=(-1) of the two cosmic objects with the maximum 

redshifts. 

We have already explained above how the tables have to be interpreted. 

 

Fig. 26 shows the distances De,mr,ε=(-1), D0,mr,ε=(-1) and Dmr,ε=(-1) of the three special astrophysical objects analyzed 

in this paper in one diagram, whereby we have entered all numerical values for the distances in Mpc. 

 

 

 

Figure 26.  Redshift distances De,mr,ε=(-1), D0,mr,ε=(-1) and Dmr,ε=(-1) for M87, J0313 and UDFj-39546284. 

 

The middle (beginning left) curve shows the today’s distances D0,mr,ε=(-1) of the three objects from us as 

observers. 
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We see that this today’s distance D0,mr,ε=(-1) can be clearly larger than the associated light path Dmr,ε=(-1) of the 

cosmic objects. This effect concerns in our case here the galaxy UDFj-39546284 with z = 10.300. 

The data of the quasar J0313 with z = 7.642 show that the light-way distance Dmr,ε=(+1) = 3,009.20 is only a little 

bigger as the today’s distance D0,mr,ε=(-1) = 2,994.94. 

 

5. Hubble parameter again 

 

In this chapter, we discuss only on the case of the closed universe with ε = (+1). The other possible case with ε = 

(-1) can treated similar. 

 

At this point we explicitly point out that our equation of today's Hubble parameter - which also only applies to 

very small redshifts - differs significantly from the definition (!) used in the specialist literature. The equations 

for both are 
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For an arbitrary point in time t this reads 
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(89a) 

 

The index a generally indicates the spatial proximity to the observer, meaning χ = χa,ε=(+1) = arcsin(ra). 

 

In our theory, the numerator contains the constant physical speed of light c0 in vacuum, while the current, i.e. the 

variable spatial expansion speed da/dt is found at this place in the specialist literature. 

 

In a more recent past - time tx - our distance from the origin of coordinats Rxa,ε=(+1) < R0a,ε=(+1) was slightly smaller 

than the current one and the Hubble parameter Hxa was therefore correspondingly larger. 
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Furthermore, in the case of the Hubble parameter in specialist literature, the - actually non-physical - spatial 

expansion speed da/dt can have been arbitrarily large in the past and, in addition, the scale parameter a(t) 

arbitrarily small. 

Both types of Hubble parameters therefore show a completely different behavior! 

 

In addition, our Hubble parameter is actually made up of physical quantities, while the Hubble parameter in the 

astrophysical literature is only defined using the non-physical scale parameter a(t), although to the latter can be 

assigned a suitable unit of measurement - e.g. Mpc. This means that a(t) alone per se is not a physical distance. 

This meaning only applies to the real physical distance R(t)a,ε=(+1) = a(t)χa,ε=(+1) and the differences that can be 

calculated from it. 

 

The Hubble parameter is the proportionality factor between the so called Hubble speed V = c0z and a distance, 

i.e. the actual Hubble law applies 
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(90) 

 

For the redshift z it simply follows therefore 
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(91) 

 

In the specialist literature, the redshift z is therefore depending on the ratio of the current speed of the observer 

(his galaxy) related to an origin of the coordinates to the speed of light in the product with the ratio of an object 

distance Dlit,Hubble and the current distance of the observer's galaxy from an origin of the coordinates. 

 

Our redshift, on the other hand, is depending on the ratio of the light path distance Dε=(+1),Hubble and the current 

distance R0a,ε=(+1) of the observer galaxy from an origin of the coordinates and is besides proportional to the 

factor that contains the parameters γa, γm and γr. 

 

Overall, it is somewhat unclear in the specialist literature what exactly corresponds to the distance Dlit,Hubble. 
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Note: 

Of course, it can be set γr = 0 in equations (89) to (91) in case of neglecting the radiation matter. 

 

Fig. 27 shows the difference between our non-approximated redshift distance Dmr,ε=(+1) and the linear Hubble 

redshift distance Dε=(+1),Hubble [compare Eq. (26)] that is an approximated one. 

 

 

 

Figure 27.   Non-approximated redshift distance Dmr,ε=(+1) compared to the linear Hubble redshift distance 

Dε=(+1),Hubble. 

 

It can be seen that the two curves already clearly separate from each other at z ≈ 0.025, and that Hubble's law 

results in distances Dε=(+1),Hubble that are significantly too large for larger redshifts, so that it is no longer 

applicable from around this value. 

 

Recall: 

Of course, it should be noted that the Hubble parameter H0a,ε=(+1) in our theory results from an approximation for 

small redshifts z. 

 

 

6. Concluding remarks 
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The Fig. 28 summarizes all three possible redshift distances, which we have calculated in this paper and in paper 

[12], respectively, in one diagram. 

 

 

 

Figure 28.   all redshift distances - real light ways - together in one diagram without normalization to R0a. 

 

We see that differences between the three curves occur only for relatively big redshifts. This shows us, that we 

have to analyze more data especially containing more bigger redshifts to can distinguish between the 

mathematical possible types of the universe. 

 

All three real light pathes Dmr,ε=(±1,0) of the photons through the expanding universe correspond to dynamic 

distances and appear therefore as apparent distances. These distances are in general not identical to the today’s 

distances D0,mr,ε=(±1,0)(z) between the cosmic objects. 

 

For every conceivable observer, the cosmic objects are not radial-spatially, where they appear at first glance! 

In cosmology, nothing is what it seems to be if we look at distances and therefore in the past. 

 

Of course, all cosmological relevant astrophysical objects have today’s distances D0,mr,ε=(±1,0). However, these 

distances are not observable, but we can calculate them. Photons that are emitted at these distances from the 

observed galaxy cannot have reached us so far. 
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I would like to thank my wife for the long-standing toleration and the corresponding endurance of my almost 

constant virtual absence. What would I be without her?! 

 

7. Appendix 

 

In this table appendix, we provide the essential data that we have used and some of the data that we have edited 

or generated for general purposes. 

 

 

< V >i < z >i < V >i < z >i < V >i < z >i 

17.12072194 0.269543711 19.5118161 1.28508799 19.7439932 1.86740102 

18.42994924 0.434725324 19.4960406 1.30997857 19.7431839 1.90379949 

18.77986464 0.514410603 19.5406994 1.33635871 19.73815 1.91629442 

18.92177101 0.571495206 19.5648675 1.36044896 19.7370051 1.94113536 

19.01993232 0.621120135 19.5526283 1.38646193 19.6390299 1.96661139 

19.07454597 0.665043993 19.5667343 1.41249746 19.7247377 1.99498872 

19.10685279 0.710045685 19.5917766 1.43823632 19.7073435 2.02761873 

19.20756345 0.750830795 19.5835759 1.46348111 19.7225437 2.05895826 

19.23878173 0.788362662 19.6146701 1.4877084 19.7209927 2.09067964 

19.34673999 0.823077834 19.6560914 1.50872984 19.7166723 2.12286464 

19.35605189 0.857111675 19.6421545 1.53039989 19.7562211 2.15726452 

19.35379019 0.889902425 19.6730062 1.55031021 19.6955838 2.1915251 

19.35354202 0.925268472 19.669718 1.57141117 19.7102256 2.23148844 

19.36111675 0.958962211 19.691489 1.59370615 19.6203328 2.27565595 

19.36687535 0.99085674 19.6689622 1.61663057 19.6516638 2.32895262 

19.39208122 1.021072758 19.7130344 1.64024196 19.7034969 2.39616356 

19.41216018 1.049862944 19.7208742 1.66227637 19.6915454 2.47184715 

19.43737733 1.076128596 19.7568415 1.68460462 19.7660462 2.57089058 

19.47736041 1.10186802 19.6973942 1.70912747 19.7708009 2.71401918 

19.4307727 1.129618161 19.7453187 1.7323057 19.7781162 2.90122279 

19.45345178 1.157690919 19.7723632 1.75403384 19.9208291 3.05796277 

19.4499718 1.18469656 19.7568754 1.77625888 20.0279357 3.20401523 

19.50609701 1.208890017 19.7599436 1.79742358 20.2283362 3.40521263 

19.48940778 1.233098139 19.7587704 1.82113988 20.5549521 3.7254264 

19.47597857 1.259028765 19.7435195 1.84394303 21.3169261 4.34427862 

 

Table 10.   Mean values from the quasar data set used according to [1]. 

 

Hint: 
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<z>i (with i = 1, 2, ..., 75) are the 75 mean values of the redshifts of the quasars in the redshift intervals formed. 

<V>i are the associated 75 mean values of the apparent visual magnitude of the quasars. 

 

 

zi (end of interval) Ni zi (end of interval) Ni 

0.24669 622 3.45369 128,884 

0.49338 3,891 3.70038 130,205 

0.74008 12,827 3.94708 131,357 

0.98677 25,495 4.19377 132,019 

1.23346 41,724 4.44046 132,432 

1.48015 58,818 4.68715 132,669 

1.72685 78,456 4.93385 132,848 

1.97354 97,109 5.18054 132,902 

2.22023 110,358 5.42723 132,924 

2.46692 117,810 5.67392 132,932 

2.71362 121,463 5.92062 132,949 

2.96031 123,820 6.16731 132,972 

3.20700 126,835 6.41400 132,977 

 

Table11.   Numbers Ni summed up in the redshift intervals zi of the quasars according to [1]. 

 

 

SN Ia μTRGB μCeph μ or <μ> mCSP_B0 mSC_B mB or <mB> Mi or <Mi> VNED z 

1980N 31.46 

 

31.46 12.08 

 

12.08 -19.38 1,306.00 0.004356347 

1981B 30.96 30.91 30.94 11.64 11.62 11.63 -19.31 1,050.00 0.003502423 

1981D 31.46 

 

31.46 11.99 

 

11.99 -19.47 1,306.00 0.004356347 

1989B 30.22 

 

30.22 11.16 

 

11.16 -19.06 689.00 0.002298257 

1990N 

 

31.53 31.53 12.62 12.42 12.52 -19.01 1,050.00 0.003502423 

1994D 31.00 

 

31.00 11.76 

 

11.76 -19.24 1,050.00 0.003502423 

1994ae 32.27 32.07 32.17 12.94 12.92 12.93 -19.24 1,552.00 0.005176915 

1995al 32.22 32.50 32.36 13.02 12.97 13.00 -19.37 1,886.00 0.006291019 

1998aq 

 

31.74 31.74 12.46 12.24 12.35 -19.39 1,368.00 0.004563157 

1998bu 30.31 

 

30.31 11.01 

 

11.01 -19.30 689.00 0.002298257 

2001el 31.32 31.31 31.32 12.30 12.20 12.25 -19.07 1,047.00 0.003492416 

2002fk 32.50 32.52 32.51 13.33 13.20 13.27 -19.25 1,864.00 0.006217635 

2003du 

 

32.92 32.92 13.47 13.47 13.47 -19.45 2,422.00 0.008078922 

2005cf 

 

32.26 32.26 12.96 13.01 12.99 -19.28 2,244.00 0.007485178 

2006dd 31.46 

 

31.46 12.38 

 

12.38 -19.08 1,306.00 0.004356347 

2007af 31.82 31.79 31.81 12.72 12.70 12.71 -19.10 1,983.00 0.006614576 
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2007on 31.42 

 

31.42 12.39 

 

12.39 -19.03 1,306.00 0.004356347 

2007sr 31.68 31.29 31.49 12.30 12.24 12.27 -19.22 1,702.00 0.005677261 

2009ig 

 

32.50 32.50 13.29 13.46 13.38 -19.13 2,534.00 0.008452514 

2011by 

 

31.59 31.59 12.63 12.49 12.56 -19.03 1,368.00 0.004563157 

2011fe 29.08 29.14 29.11 9.82 9.75 9.79 -19.33 455.00 0.001517717 

2011iv 31.42 

 

31.42 12.03 

 

12.03 -19.39 1,306.00 0.004356347 

2012cg 31.00 31.08 31.04 11.72 11.55 11.64 -19.41 1,050.00 0.003502423 

2012fr 31.36 31.31 31.34 12.09 11.92 12.01 -19.33 1,302.00 0.004343005 

2012ht 

 

31.91 31.91 12.66 12.70 12.68 -19.23 1,447.00 0.004826672 

2013dy 

 

31.50 31.50 12.23 12.31 12.27 -19.23 1,410.00 0.004703254 

2015F 

 

31.51 31.51 12.40 12.28 12.34 -19.17 1,271.00 0.0042396 

      

<M>= -19.24 

   

Table 12.   Summary of the data which we have used from the 27 SN Ia according to [3]. 

 

SN Ia values that can be traced back to a mean value are marked in green (bold). 

The individual meanings of the data can be found in the article mentioned. 

 

The data for the angular-size redshift diagram can be found in full in [2]. 
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