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Introduction to Null Mathematics of Trigonometry  
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It is assumed the reader has read and understood both Null Algebra and Null Algebra Extension I.  

These texts are available for download at (https://vixra.org/abs/2103.0131) and at 

(https://vixra.org/abs/2206.0135 ).  If you have not yet read these texts and attempted the examples 

contained therein for yourself it is highly suggested you do so before reading further as some concepts 

explained in detail there, are given only cursory review here.  Without reading these prerequisites you 

may not fully understand the reasoning behind logic used in the equations of this text. 
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Section 1.1—Introduction to Complex Numbers: 

What are the form of complex numbers?  They are commonly transcribed in the following general 

ways on the Cartesian style Complex Plane. 

 

Fig. 1. 

 

 𝑧 = 𝑎 ± 𝑏𝑖  This is the standard form of a complex number. 

 

 𝑦 = √−𝑛 = ±𝑏𝑖 The root of a negative number is a value, positive or negative,   

    having no real part under traditional mathematics. 

 

 𝑦 = 𝑎 ± √−𝑛 = 𝑎 ± 𝑏𝑖 Another example of a complex number formed of a real part and a 

     root of  a negative number. 

 

 

Complex numbers are marked on the Complex Plane.  Figure 2 shows the traditional layout of the 

Complex Plane, on which Complex numbers are marked out with a real and imaginary part.  The Image 

of Figure 2 assumes the real part is the x-axis. 

 

 

Fig. 2: 

 

1.1.a 

𝑧 = 𝑎 + 𝑏𝑖 z* =𝑎 − 𝑏𝑖 
 

 

 

 

 

 

 

 

We say 𝑧 and z* are complex conjugates of each other.  As such squaring a complex number means to 

multiply it by its complex conjugate.  This has the effect of always being both real and positive as a 

product. 

 

1.1.b: 

𝑧2  =  𝑧 ⋅ z*  =  (𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖)  =  𝑎2 + 𝑏2 

 

For the instance that 𝑎 = 0 and  𝑏 = 1we have: 

 

1.1.c: 

𝑧2  =  𝑧 ⋅ z* =  (𝑖) ⋅ (−𝑖)  =  −𝑖2  =  1 

 

Where:  𝑧 = 0 + 1 ⋅ 𝑖  𝑧∗ = 0 − 1 ⋅ 𝑖 
 

 

 



Thus 1.1.c is the very definition of the Complex Number i from Traditional Algebra.  Namely— 

 

1.1.d: 

 If −𝑖2 = 1 then  𝑖2 = −1 

 

1.1.e 

 

If the Square of a Complex Number 𝑧2 is the multiplication of the complex number 𝑧 by its complex 

conjugate, such that 𝑧2  =  𝑧 ⋅ z*, and for 𝑧 = 𝑎 + 𝑏𝑖 defined by a = 0, b = 1 (The complex conjugate 

will use b = -1) 

 

Then 𝑧 ⋅ z*  = (i)(-i) = −𝑖2 = 1. 

 

i must be such that 𝑖2 = −1 and 𝑖 = √−1 

 

 

1.1.f: 

Also note that if there is no imaginary part to a complex number where 𝑎 = ℝ and 𝑏 = 0 we have 

 

𝑧2  =  𝑧 ⋅ z*  =  (𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖)  =  𝑎2 + 𝑏2 

 

𝑧2  =  𝑧 ⋅ z* =  (ℝ + 0𝑖) ⋅ (ℝ − 0𝑖)  =  ℝ2 − 0𝑖2  =  ℝ2 

 

When the imaginary part of a complex number has magnitude of 0, the result of squaring the number is 

again both real and positive, but now identical to squaring a real number.  This an example which 

indicates the squaring of complex numbers as multiplication of complex conjugates is identical to 

squaring of real numbers by multiplying them by themselves.  In other words, if squaring the real 

number 2, we have: 

 

2 ⋅ 2 = 4 ≡ 𝑧 ⋅ z* =  (2 + 0𝑖) ⋅ (2 − 0𝑖) = 4 − 0𝑖 = 4 

 

Squaring real numbers is identical to squaring complex numbers with an imaginary part of magnitude 

0. 

 

 

1.2—Functions of Complex numbers: 

Although the Complex Plane is drawn as a standard Cartesian Plane it ignores the format of a function 

which when graphed has an output axis for an output variable.  Thus graphs on the complex plane 

having labels for the x and i axis contain plots of two-dimensional output values for y.  Consider the 

following equation with listed point values: 

 

𝑦 = 2𝑥 + 𝑥𝑖 

x-value Real 

Part 2x 

y-value Resolved y i-value Resolved y-

conjugate 

Conjugate y-

value 

Conjugate i-

value 

1 2 2+i 3 i 1 2-i -i 

2 4 4+2i 6 2i 2 4-2i -2i 



3 6 6+3i 9 3i 3 6-3i -3i 

4 8 8+4i 12 4i 4 8-4i -4i 

5 10 10+5i 15 5i 5 10-5i -5i 

6 12 12+6i 18 6i 6 12-6i -6i 

 

For simplicity only the positive conjugate halves are shown below.  There are two ways we could 

visualize the plotting of these points within traditional algebra: 1) plotting on the xi-plane the actual 

values for x and i (the inputs), or 2) since y is itself composed of two-dimensional points of the form 

𝑦 = 𝑎 + 𝑏𝑖, we can plot the outputs as defined by the example equation in terms of x and i.  Method 2 

is the version used in traditional mathematics to plot points when looking at the complex plane.  These 

are shown below. 

 

 

Input Plot       Output Plot 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

Both the input plot and output plot for the equation 𝑦 = 2𝑥 + 𝑥𝑖 use the x and i axis to plot points.  

However it is the output plot which is used in traditional mathematics to perform complex analysis.  

The first two y-points from the above chart and indicated in Figure 3b. 

 

It can be beneficial to view the Complex Plane as a Three Directional-Hyperplane, which actually 

includes the y-axis.  When viewing all three axis at the same time one can see additional detail about 

the nature of the complex points being plotted.  Below are shown several graphs of the equation 𝑦 =
2𝑥 + 𝑥𝑖, including the xiy-hyperplane.  Because we are exploring a three directional complex hyper-

plane, the two directional graphs are all input plots; they show the input point values of the x-axis, 

while values and the y and i-axis vary by a function in terms of x.  In three directions this equation is 

graphed as a series of parametric points defined by a vector function in three directions. 

 

 

 

 

 

 

 

 



𝑦 = 2𝑥 + 𝑥𝑖 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Combined xiy-Hyperplane of  𝑦 = 2𝑥 + 𝑥𝑖. 
 

Figure 3 explanation: 

This expansion of the Complex Plane into a the three directional xiy-hyperplane is a unique application 

and requires a special approach.  The chart in section 1.2 shows the various component values at each 

x input for the example equation 𝑦 = 2𝑥 + 𝑥𝑖.  In context of the three directional hyperplane we are 

treating i as an independent variable.  This isn't that big of a leap as it does have its own axis.  

Consider the first row of the chart delineating the values for 𝑦 = 2𝑥 + 𝑥𝑖  when x equals 1. 

 

 

 

 

 



𝑦 = 2𝑥 + 𝑥𝑖 

x-value Real 

Part 2x 

y-value Resolved y i-value Resolved y-

conjugate 

Conjugate y-

value 

Conjugate i-

value 

1 2 2+i 3 i 1 2-i -i 

 

Had there been no imaginary component to the equation, we would be plotting points on a standard 

Cartesian xy-Plane.  The x input of 1 would provide a y axis output of 2.  The presence of the imaginary 

component, in this example equation defined by xi, will produce a magnitude of +i units to shift the xy 

point along the i-axis.  This is represented in the chosen points on the line through 3-Space defined by 

𝑦 = 2𝑥 + 𝑥𝑖 and partially plotted by the chart.  Because we have not resolved the i-axis, values remain 

in the complex hyperplane and we must plot these points as a shift toward the positive side of the i-axis 

without adding them to y-axis output.  This is done already when we use the xi-Complex Plane to 

represent single y-axis output values as two-dimensional points.  The resolved values would collapse 

the complex xiy-hyperplane back to a real space xy-Cartesian Plane.  The implications of this will be 

covered further, later in this paper. 

 

Also note had we been discussing the complex conjugate we would have subtracted the i values and 

shifted toward the negative side of the i-axis.  All of this is related to how the complex value i is 

resolved and whether its resolved value applies to the plane of occurrence, the central plane, or an 

adjoining subspace. 

 

You can explore this arrangement of the xiy-Hyperplane at 

https://www.desmos.com/calculator/9cwevwk3jk 

 

1.2.a 

We need not have an equation to plot points on the 

complex plane; we may plot individual points.  

Consider the graph at right which shows the plot of 

an arbitrary point 𝑦 = 3 + 4𝑖 and its complex 

conjugate 𝑦 = 3 − 4𝑖.   
 

Both points could be plotted alone, or as part of an 

equation which includes them in it's domain and 

range.  One such example equation containing 

these two given points 𝑦 = 𝑥 ± (𝑥 + 1)𝑖.  The 

points defined by this equation are complex points, 

and each is plotted as a two-dimensional y output 

plot in terms of x and i values. 

 

 

 

For the two points 𝑦 = 3 + 4𝑖 and 𝑦 = 3 − 4𝑖 they too can be plotted alone on a complex xiy-

Hyperplane, as shown in Figure 4b; showing the same two points plotted on the xiy—hyperplane. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the graph of Figure 4b had we eliminated the i-axis we 

would be left with the standard Cartesian Plane; the xy-

Plane. 

 

The example points 𝑦 = 3 + 4𝑖 and 𝑦 = 3 − 4𝑖 would be 

simplified to 𝑃1 = (𝑥, 𝑦) = (3,3) for both complex 

conjugate pairs.  This is shown in the graph of Figure 4c. 

 

Given the example equation, 𝑦 = 𝑥 + (𝑥 + 1)𝑖, the 

equivalent equation on the xy-plane is given by collapsing 

𝑦 = 𝑎 + 𝑏𝑖 to just 𝑦 = 𝑎, where 𝑎 is a function of 𝑥. 

 

For the example equation 𝑦 = 𝑥 ± (𝑥 + 1)𝑖 it will have a 

real part defined by 𝑦 = 𝑥, and an imaginary part defined 

by ±(𝑥 + 1)𝑖.  The two example points exist on the line defined by this equation and are notated as 

𝑃1 = (𝑥, 𝑖, 𝑦) = (3,4,3) and 𝑃2 = (𝑥, 𝑖, 𝑦) = (3, −4,3) for the instance of 𝑦 = 𝑓(3). 

 

Like the previous example we can express 𝑦 = 𝑥 ± (𝑥 + 1)𝑖 and the points it defines on an xiy-

Hyperplane.  Lets begin by plotting several of the points.  Remember that the values for y do not 

include addition or subtraction of the i-axis contributions, because being unresolved, they express a 

shift of the xy points along the i-axis.  The resolved values are added or subtracted to the y-axis output 

values and will be covered later in the section of resolution of the value i and the complex plane. 

 

Using the equation 𝑦 = 𝑥 + (𝑥 + 1)𝑖 from section 1.2.a, the Real portion of this equation is just the set 

of all linear points 𝑦 = 𝑥.  The Imaginary component for each point is a displacement on the i-axis by 



an amount  ±𝑏𝑖.  The points graphed for sake of simplicity will consider only the positive conjugate 

value. 

 

𝑦 = 𝑥 ± (𝑥 + 1)𝑖 

x-value Real 

Part x 

y-value Resolved y i-value Resolved y-

conjugate 

Conjugate y-

value 

Conjugate i-

value 

1 1 1+2i 3 2i -1 1-2i -2i 

2 2 2+3i 5 3i -1 2-3i -3i 

3 3 3+4i 7 4i -1 3-4i -4i 

4 4 4+5i 9 5i -1 4-5i -5i 

5 5 5+6i 11 6i -1 5-6i -6i 

6 6 6+7i 13 7i -1 6-7i -7i 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.3—The Complex Plane and Trigonometry: 

The math of Trigonometry for circular functions can be summed up in three identities.  Euler’s Formula 

is of particular importance among them. 

 

1.3.a: 

 

𝑒𝑖𝑥 = 𝑐𝑜𝑠(𝑥) + 𝑖𝑠𝑖𝑛(𝑥)  𝑒−𝑖𝑥 = 𝑐𝑜𝑠(𝑥) − 𝑖𝑠𝑖𝑛(𝑥) 

 

𝑒𝑖𝑥 ⋅ 𝑒−𝑖𝑥 = 1 = (𝑐𝑜𝑠(𝑥) + 𝑖𝑠𝑖𝑛(𝑥))(𝑐𝑜𝑠(𝑥) − 𝑖𝑠𝑖𝑛(𝑥)) = 𝑐𝑜𝑠2(𝑥) + 𝑠𝑖𝑛2(𝑥) 

 

In all of these instances the real part of the equation is represented by 𝑐𝑜𝑠(𝑥) while the imaginary part 

is represented by 𝑠𝑖𝑛(𝑥).  If the 𝑖 is eliminated from the equation these relations shift from circular to 

hyperbolic. 

 

The equations follow the same pattern as Traditional Complex numbers on the Complex Plane. 

 

Figure 5: 

 

𝑒𝑖𝑥 = 𝑐𝑜𝑠(𝑥) + 𝑖𝑠𝑖𝑛(𝑥)    𝑒−𝑖𝑥 = 𝑐𝑜𝑠(𝑥) − 𝑖𝑠𝑖𝑛(𝑥) 

 

𝑧 = 𝑎 + 𝑏𝑖     𝑧∗ = 𝑎 − 𝑏𝑖 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.4—Where does e Originate? 

Before examining the Null Algebra resolutions of i we must first consider where Euler's Formula 

derives the base value of e.  The value of e is derived from a Taylor Series expansion, or rather a 

special case of a Taylor Series expansion which is centered around the point x = 0, called a Maclaurin 

Series. 

 

1.4.a: 

The inputs for the Maclaurin series will evaluate the value of 𝑒𝑥centered around the point x = 0 

approximated as a sum of an infinite series as shown here below. 

 

For the function 𝑒𝑥 this is the general series solution for any value of x as: 

 

1.4.a.i: 

𝑒𝑥 = ∑ (
𝑓𝑛(0) ⋅ 𝑥𝑛

𝑛!
)

∞

𝑛=0

= 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
…. 

 

1.4.a.ii: 

For the specific solutions we may now evaluate 𝑒𝑥for any value of x simply by assigning values to it.  

Plugging in for x = 0 the expression will equal 1. 

 

𝑒𝑜 = ∑ (
𝑓𝑛(0)

𝑛!
)

∞

𝑛=0

= 1 +
0

1!
+

0

2!
+

0

3!
+ ⋯ = 1 

 

1.4.a.iii: 

The evaluation of the expression at x = 1 we are left with the base value of e itself. 

 

 

𝑒1 = ∑ (
𝑓𝑛(0)

𝑛!
)

∞

𝑛=0

= 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
…  =  1 + 1 +

1

2
+

1

6
+

1

24
+

1

120
… ≈ 2.71828 

 

As the number of terms added approaches infinity the value approaches ever closer to e. 

 

 

1.4.b: 

The number e shows up in circular trigonometry as the values 𝑒𝑖𝑥 and 𝑒−𝑖𝑥.  The value 𝑒𝑥 has an 

interesting property in that the function 𝑒𝑥 is the same value as its derivative, 𝑒𝑥. 

 

 

1.4.b.i: 

Given a function:  𝑦 = 𝑎𝑓(𝑥)  

 

We find its derivative is: �́� = (
𝑑

𝑑𝑥
𝑓(𝑥)) ⋅ 𝑎𝑓(𝑥) ⋅ 𝑙𝑛(𝑎) 

 

If 𝑦 = 𝑎𝑓(𝑥) = 𝑒𝑥 we shall find �́� = 𝑒𝑥 

 



When 𝑎 = 𝑒 ≈ 2.71828, then 𝑦 and  �́� are equal because 𝑙𝑛(𝑎) equal 1, and the derivative of x is also 

1. 

 

Thus: 𝑦 = 𝑒𝑥 and �́� = 𝑒𝑥 

 

 

1.4.c—How does this equate 𝑒𝑖𝑥 with cos(x) + i sin(x) ? 

 

As was just explored we may input any function into x and evaluate it using the general solution 

provided as a sum of an infinite series in 1.4.a.i.  If we input 𝑖𝑥 we may then evaluate for a general 

solution to 𝑒𝑖𝑥 or begin setting specific values for the x input in 𝑒𝑖𝑥.  If we set x = 0 the expression will 

still equal 1. 

 

1.4.c.i:  𝑒𝑖(0) = 𝑒0 = 1 

 

If instead we now set x = 1 for the function 𝑒𝑖𝑥 we are left with 𝑒𝑖.  Without knowing what the number 

i is we are left with seeking a method of approximating this value.  Centered around the point x = 0, 

using the Maclaurin Series defined earlier in equation 1.4.a.i we can simply plug in the value of i  and 

make our evaluation as the sum of an infinite series.  We simply replace the function value with i. 

 

1.4.c.ii:  

𝑒𝑖 = ∑ (
𝑓𝑛(0) ⋅ 𝑖𝑛

𝑛!
)

∞

𝑛=0

= 1 +
𝑖

1!
+

𝑖2

2!
+

𝑖3

3!
+

𝑖4

4!
+

𝑖5

5!
+

𝑖6

6!
+

𝑖7

7!
+

𝑖8

8!
… 

 

     = 1 + 𝑖 −
1

2
−

𝑖

6
+

1

24
+

𝑖

120
−

1

720
−

𝑖

5040
+

1

40,320
 

 

Using the complex plane, we can see 

what is happening to the value this 

infinite sum represents as more and 

more terms are considered.  You 

being in the origin and add in the first 

term, +1.  Then add in the second 

term; in this example adding a 

distance of i.  This will move the 

point from the position 𝑃1(𝑥, 𝑖) =
(1,0) to the 𝑃2(𝑥, 𝑖) = (1, 𝑖).  This is 

repeated as far as one can till a point 

is reached which is accepted as the 

limit of the sum of this infinite series.  

The Graph in Figure 6 shows this 

process with 𝑒𝑖 = 0.54027 +
0.8415𝑖. 
 

As additional terms are added the value will continue to grow ever closer to some value.  The more 

terms that are added the more accurate the approximation. 

 

 



This same process can be shown on the xiy-hyperplane.  See below here in Figure 7. 

Here we have the equation: 

 

𝑦 = 𝑒𝑖𝑥 where x = 1.  This will define 𝑦 to be a complex number x + bi, and found by the same 

Maclaurin series approximation used above. 

 

1.4.c.iii: 

𝑦 = 𝑒𝑖 = 𝑥 + 𝑏𝑖 = [(1 −
1

2
+

1

24
−

1

720
+

1

40,320
+. . . ) + (𝑖 −

𝑖

6
+

𝑖

120
−

𝑖

5040
+. . . )] 

 

≈ 0.54027 + 0.8415𝑖 

 

 
 

 

 

 

 

 

 

 

 

 



1.5—The Relationship of 𝑒𝑥 to trigonometric equations 𝑐𝑜𝑠(𝑥) and 𝑠𝑖𝑛(𝑥). 

 

More on Maclaurin Approximations of 𝑒𝑥 

We briefly discussed how the function 𝑒𝑥 can be approximated using a Maclauren Series.  Both the Maclauren and 

Taylor series are used to approximate the value of a given function around some specific x position.  The Maclaurin 

series is just a special case of the Taylor series wherein the approximation is centered around 𝑥 = 0.  This is provided 

by using 𝑎 = 0 in the below definition.  Thus when 𝑎 = 0 the below definition of a Taylor Series expansion is a 

Maclaurin Series expansion. 

 

1.5.a: 

Taylor Series Expansion: 

 

∑
𝑓𝑛(𝑎)

𝑛!

∞

𝑛=0

(𝑥 − 𝑎)𝑛 = 𝑓(𝑎) + 𝑓(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2+. . . +

𝑓𝑛(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 

 
1.5.b: 

Maclaurin Series Expansion: 

 

∑
𝑓𝑛(0)

𝑛!

∞

𝑛=0

(𝑥)𝑛 = 𝑓(0) + 𝑓(0)𝑥 +
𝑓′′(0)

2!
𝑥2+. . . +

𝑓𝑛(0)

𝑛!
𝑥𝑛 

 

 

Because the function 𝑒𝑥 is equal to its own derivative it is a unique case to test values of the Maclaurin series.  

Consider the below examples: 

 

1.5.c: 

 For 𝑓(𝑥) = 𝑒𝑥centered about point x = 0 

 

      The first several derivatives for 𝑒𝑥 

      𝑓(𝑥) = 𝑒𝑥 

      𝑓′(𝑥) =
𝑑

𝑑𝑥
𝑒𝑥 = 𝑒𝑥 

      𝑓′′(𝑥) =
𝑑

𝑑𝑥
𝑒𝑥 = 𝑒𝑥 

      𝑓′′′(𝑥) =
𝑑

𝑑𝑥
𝑒𝑥 = 𝑒𝑥 

      ⋮ 
 

 Provides the Maclaurin approximation: 

 

∑
𝑓𝑛(𝑎)

𝑛!

∞

𝑛=0

(𝑥 − 𝑎)𝑛 = 𝑓(𝑎) + 𝑓(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2+. . . +

𝑓𝑛(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 

 

with 𝑓(𝑥) = 𝑒𝑥 and 𝑎 = 0 

 

∑
(𝑒𝑥)𝑛(0)

𝑛!

∞

𝑛=0

(𝑥)𝑛 = 𝑒(0) + 𝑒(0)(𝑥) +
𝑒(0)

2!
(𝑥)2+. . . +

𝑒(0)

𝑛!
(𝑥)𝑛 

 



 𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+. .. 

 

The value one desires to evaluate the function x for, is simply plugged in directly for x. 

 

 

1.5.d—Expansion of 𝑒1: 

As this exponent implies, the number e is the value reached as the number of considered terms in the series 

approaches infinity, for 𝑥 = 1 in the function 𝑒𝑥 represented by the Maclaurin series infinite sum expansion 

∑
(𝑒𝑥)𝑛(0)

𝑛!
∞
𝑛=0 (𝑥)𝑛.  The sum will approach ever closer to e = 2.71828... 

 

 For 𝑓(𝑥) = 𝑒1  Centered about point x = 0 

 

 Begin with the formula derived in 1.5.c above which provides a generalized Maclaurin series 

 expansion for values of the function 𝑒𝑥. 

 

 𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+. .. 

 

 We are evaluating 𝑓(𝑥) = 𝑒1.  Replace each instance of x with the value 1. 

 

 𝑒1 = 1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
+

1

720
+

1

5040
+

1

40,320
+

1

362,880
. . . ≈ 2.71828. .. 

 

1.5.e—Expansion of 𝑒𝑖𝑥: 
The complex number i can be included in these approximations. 

 

 For 𝑒𝑖𝑥 centered around the point x = 0 we have the approximation: 

 

 𝑒𝑖𝑥 = 1 +
𝑖𝑥

1!
+

(𝑖𝑥)2

2!
+

(𝑖𝑥)3

3!
+

(𝑖𝑥)4

4!
+. .. 

 

 Using the structure shown here above we can evaluate for various values of x of the function 𝑒𝑖𝑥. If we 

 now evaluate the function for x = 0 we get 

 

 1.5.f: 

 𝑒𝑖(0) = 1 +
0

1!
+

(0)2

2!
+

(0)3

3!
+

(0)4

4!
+. . . = 1 

 

 

 Evaluating the function 𝑒𝑖𝑥 for x = 1 

 

 1.5.g: 

 𝑒𝑖 = 1 +
𝑖

1!
+

(𝑖)2

2!
+

(𝑖)3

3!
+

(𝑖)4

4!
+. ..= 1 + 𝑖 −

1

2
−

𝑖

6
+

1

24
+

𝑖

120
−

1

720
−

𝑖

5040
+

1

40,320
. . .. 

 

 𝑒𝑖 ≈ 0.54027 + 0.8415𝑖 

 

 

 

 

 



 

This was shown above in sections 1.4.c.ii and 1.4.c.iii.  These examples thus far, which include i, do 

not yet show the resolved value of i.  Thus we haven't yet explored what is actually implied by the 

presence of an i in an equation. 

 

 Evaluating for 𝑥 =
𝜋

2
 

 

 1.5.h: 

 𝑒𝑖
𝜋

2 = 1 +
𝑖

𝜋

2

1!
+

(𝑖
𝜋

2
)

2

2!
+

(𝑖
𝜋

2
)

3

3!
+

(𝑖
𝜋

2
)

4

4!
+. .. 

 

𝑒𝑖
𝜋
2 = 1 + 1.5708𝑖 − 1.2337 − 0.645964𝑖 + 0.2536695 + 0.0796926𝑖 − 0.02086348

− 0.00468175𝑖+. .. 
 

If we separate out the real and imaginary components of just these few terms listed here we can list this value as 

a complex number a + bi, such that, 

 

 𝑒𝑖
𝜋

2 = −0.00089398 + 0.99984685𝑖 ≈ 𝑖 

 

As more components considered in the Maclaurin series approaches an infinite number of terms, the value will 

approach 𝑒𝑖
𝜋

2 = 0 + 𝑖 = 𝑖.  This is consistent with the idea of each successive multiple of i being a rotation of 

90 degrees on the Complex Plane. 

 

 

 

 Evaluating 𝑥 = 𝜋 

 

 1.5.i 

 Pi radians trigonometrically represents 180 degrees on the unit circle.  This rotation on the 

 Complex Plane, represented by 𝑒𝑖𝑥 with 𝑥 = 𝜋 should represent a value of 180 degrees, or the point 

 on the complex plane defined by (x , i) = (-1 , 0). 

 

 

 𝑒𝑖𝜋 = 1 +
𝑖𝜋

1!
+

(𝑖𝜋)2

2!
+

(𝑖𝜋)3

3!
+

(𝑖𝜋)4

4!
+

(𝑖𝜋)5

5!
+

(𝑖𝜋)6

6!
+. .. 

 

 𝑒𝑖𝜋 = 1 + 3.14159𝑖 − 4.93480 − 5.16771278𝑖 + 4.058712 + 2.550164𝑖 − 1.33526 −
0.5992645𝑖+. .. 
 

 If we extend the number of terms out to n = 13 in the series we get the complex number a + bi such that 

 

 𝑒𝑖𝜋 = −0.99989 + 0.00001847847𝑖 ≈ −1 

 

 Again as the number of terms added to the Maclaurin series approaches infinity this value will approach 

 ever closer to 𝑒𝑖𝜋 = −1 + 0𝑖 = −1. 

 

 

 

 



1.6—Connecting 𝑒𝑖𝑥with the Unit Circle: 

The points which are defined by the spiraling in of successive summation of Maclaurin Series components 

provide approximations of 𝑒𝑖𝑥for various values of x, which are in fact points which all lay on an arc called the 

Unit Circle in the Complex Plane.  The distance of each point from the origin is always of magnitude 1.  The 

evaluation from 1.5.i gives us the relation 

 

 1.6.a: 

 𝑒𝑖𝜋 + 1 = 0 

 

Further we are given the relation known as Euler's Formula stating 

 

 1.6.b: 

 𝑒𝑖𝑥 = 𝑐𝑜𝑠(𝑥) + 𝑖𝑠𝑖𝑛(𝑥)   𝑒−𝑖𝑥 = 𝑐𝑜𝑠(𝑥) − 𝑖𝑠𝑖𝑛(𝑥) 

 

This provides an important Pythagorean identity that: 

 

 1.6.c: 

 𝑒𝑖𝑥 ⋅ 𝑒−𝑖𝑥 = 1 = 𝑐𝑜𝑠2(𝑥) + 𝑠𝑖𝑛2(𝑥) 

 

Because the points defined by the arc 𝑒𝑖𝑥all lay on the Unit Circle we may represent them with the Sine function 

(the imaginary portions) and the Cosine function (the real portion).   Because we will be resolving the complex 

plane it is necessary to understand exactly how it is that we link 𝑒𝑖𝑥 with trigonometric functions like Sine and 

Cosine.  Further as resolving the complex plane involves resolving i to real number, resolved values on the 

complex plane will inherently change from circular to hyperbolic functions. 

 

Compare the Maclaurin Series approximations for 𝑒𝑖𝑥 and 𝑒𝑥 shown here beside each other. 

 

 1.6.d: 

 𝑒𝑥 = 1 + 𝑥 +
𝑥2

2
+

𝑥3

6
+

𝑥4

24
+

𝑥5

120
+

𝑥6

720
+

𝑥7

5040
+

𝑥8

40,320
. .. 

 

 

 𝑒𝑖𝑥 = 1 + 𝑖𝑥 −
𝑥2

2
−

𝑖𝑥3

6
+

𝑥4

24
+

𝑖𝑥5

120
−

𝑥6

720
−

𝑖𝑥7

5040
+

𝑥8

40,320
. . .. 

 

 This similarities and differences can be seen even more clearly if we now evaluate for x = 1. 

 

 1.6.e: 

 𝑒1 = 1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
+

1

720
+

1

5040
+

1

40,320
. .. 

 

 𝑒𝑖 = 1 + 𝑖 −
1

2
−

𝑖

6
+

1

24
+

𝑖

120
−

1

720
−

𝑖

5040
+

1

40,320
. . .. 

 

Aside from the obvious difference of the missing i's, the values for 𝑒𝑥 are all positive whereas those for 𝑒𝑖𝑥have 

alternating positive and negative values for various nth components of the series. 

 

1.7—Separation of Terms 

The terms of the components for the series approximation of 𝑒𝑖𝑥 can be separated into two separate groups of 

terms, one real and one imaginary.  The i can then be factored out of the imaginary sub-group of terms.  We can 

then use the same pattern, identifying terms by their even and odd exponent value to regroup terms from the 

approximation of 𝑒𝑥 and 𝑒𝑖𝑥. 



 

 1.7.a.i: 

 𝑒𝑖𝑥 = (1 −
𝑥2

2
+

𝑥4

24
−

𝑥6

720
+

𝑥8

40,320
) + 𝑖 (𝑥 −

𝑥3

6
+

𝑥5

120
−

𝑥7

5040
+

𝑥9

362,880
. . . . ) 

 

 1.7.a.ii 

 𝑒𝑥 = (1 +
𝑥2

2
+

𝑥4

24
+

𝑥6

720
+

𝑥8

40,320
) + (𝑥 +

𝑥3

6
+

𝑥5

120
+

𝑥7

5040
+

𝑥9

362,880
) 

 

 

The question then is, Is there an equation whose Maclaurin Series approximation matches the grouped portions 

of either or both of these above sets?  We now examine the Maclaurin series expansions of cos(x) , sin(x) and 

i sin(x). 

 

1.7.b: 

Because the Maclaurin Series uses derivatives of the given functions we shall first list out the successive 

derivatives of these several functions. 

 

 

Function 𝑐𝑜𝑠(𝑥) 𝑠𝑖𝑛(𝑥) 𝑖𝑠𝑖𝑛(𝑥) 

1st Derivative −𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑥) 𝑖𝑐𝑜𝑠(𝑥) 

2nd Derivative −𝑐𝑜𝑠(𝑥) −𝑠𝑖𝑛(𝑥) −𝑖𝑠𝑖𝑛(𝑥) 

3rd Derivative 𝑠𝑖𝑛(𝑥) −𝑐𝑜𝑠(𝑥) −𝑖𝑐𝑜𝑠(𝑥) 

4th Derivative 𝑐𝑜𝑠(𝑥) 𝑠𝑖𝑛(𝑥) 𝑖𝑠𝑖𝑛(𝑥) 

⋮ ⋮ ⋮ ⋮ 
 

1.7.c: 

With this information we are free to begin constructing the Maclaurin Series approximations of these functions 

 

 1.7.c.i—Maclaurin Series Approximation of Cosine: 

 𝑓(𝑥) = 𝑐𝑜𝑠(𝑥) centered at x = 0 given by a = 0 

 

∑
𝑓𝑛(𝑎)

𝑛!

∞

𝑛=0

(𝑥 − 𝑎)𝑛 = 𝑓(𝑎) + 𝑓(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2+. . . +

𝑓𝑛(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 

 

∑
𝑓𝑛(0)

𝑛!

∞

𝑛=0

(𝑥)𝑛 = 𝑓(0) + 𝑓(0)𝑥 +
𝑓′′(0)

2!
𝑥2+. . . +

𝑓𝑛(0)

𝑛!
𝑥𝑛 

 

𝑐𝑜𝑠(𝑥) = 𝑐𝑜𝑠(0) − 𝑠𝑖𝑛(0) ⋅ 𝑥 −
𝑐𝑜𝑠(0) ⋅ 𝑥2

2
+

𝑠𝑖𝑛(0) ⋅ 𝑥3

6
+

𝑐𝑜𝑠(0) ⋅ 𝑥4

24
−

𝑠𝑖𝑛(0) ⋅ 𝑥5

120
−

𝑐𝑜𝑠(0) ⋅ 𝑥6

720
+

𝑠𝑖𝑛(0) ⋅ 𝑥7

5040
+ ⋯ 

 

𝑐𝑜𝑠(𝑥) = 1 − 0𝑥 −
𝑥2

2
+

0𝑥3

6
+

𝑥4

24
−

0𝑥5

120
−

𝑥6

720
+

0𝑥7

5040
+

𝑥8

40,320
−

0𝑥9

362,880
… 

 

𝑐𝑜𝑠(𝑥) = 1 −
𝑥2

2
+

𝑥4

24
−

𝑥6

720
+

𝑥8

40,320
−

𝑥10

3,628,800
+ ⋯ 

 

If you compare this to the values generated by the Maclaurin series approximation for 𝑒𝑖𝑥 and 𝑒𝑥 above in sections 

1.7.a.i and 1.7.a.ii you’ll notice this pattern matches for the real portion of the expansion for 𝑒𝑖𝑥.  Its close to the 



even exponential powers of the expansion of 𝑒𝑥, differing only in subtraction of every other term. 

 

 

 1.7.c.ii—Maclaurin Series Expansion of Sine: 

 𝑓(𝑥) = 𝑠𝑖𝑛(𝑥) centered at x = 0 given by a = 0 

 

∑
𝑓𝑛(𝑎)

𝑛!

∞

𝑛=0

(𝑥 − 𝑎)𝑛 = 𝑓(𝑎) + 𝑓(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2+. . . +

𝑓𝑛(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 

 

∑
𝑓𝑛(0)

𝑛!

∞

𝑛=0

(𝑥)𝑛 = 𝑓(0) + 𝑓(0)𝑥 +
𝑓′′(0)

2!
𝑥2+. . . +

𝑓𝑛(0)

𝑛!
𝑥𝑛 

 

𝑠𝑖𝑛(𝑥) = 𝑠𝑖𝑛(0) + 𝑐𝑜𝑠(0) ⋅ 𝑥 −
𝑠𝑖𝑛(0) ⋅ 𝑥2

2
−

𝑐𝑜𝑠(0) ⋅ 𝑥3

6
+

𝑠𝑖𝑛(0) ⋅ 𝑥4

24
+

𝑐𝑜𝑠(0) ⋅ 𝑥5

120
−

𝑠𝑖𝑛(0) ⋅ 𝑥6

720
−

𝑐𝑜𝑠(0) ⋅ 𝑥7

5040
+ ⋯ 

 

𝑠𝑖𝑛(𝑥) = 0 + 𝑥 −
0 ⋅ 𝑥2

2
−

𝑥3

6
+

0 ⋅ 𝑥4

24
+

𝑥5

120
−

0 ⋅ 𝑥6

720
−

𝑥7

5040
+

0 ⋅ 𝑥8

40,320
+

𝑥9

362,880
− ⋯ 

 

𝑠𝑖𝑛(𝑥) = 𝑥 −
𝑥3

6
+

𝑥5

120
−

𝑥7

5040
+

𝑥9

362,880
−

𝑥11

39,916,800
+ ⋯ 

 

Once again if you compare this to the values generated by the Maclaurin series approximation for 𝑒𝑖𝑥 and 𝑒𝑥 above 

in sections 1.7.a.i and 1.7.a.ii you’ll notice this pattern matches the imaginary portion of the expansion for 𝑒𝑖𝑥 

except for a missing i to be factored out of the set.  It also close to that of odd exponential powers of 𝑒𝑥, differing 

only in subtraction of every other term. 
 

 

 1.7.c.iii—Maclaurin Series Expansion of 𝑖𝑠𝑖𝑛(𝑥): 

 Given the value of i is a constant it is simply a multiple of each component shown in 1.7.c.ii, and 

 factored out of the set. 

 

 𝑖𝑠𝑖𝑛(𝑥) 

  = 𝑖𝑥 − 𝑖
𝑥3

6
+ 𝑖

𝑥5

120
− 𝑖

𝑥7

5040
+ 𝑖

𝑥9

362,880
− 𝑖

𝑥11

39,916,800
+ ⋯ 

 

  = 𝑖 (𝑥 −
𝑥3

6
+

𝑥5

120
−

𝑥7

5040
+

𝑥9

362,880
−

𝑥11

39,916,800
+ ⋯ ) 

 

 This approximation matches the pattern found in the imaginary portion of the expansion of 𝑒𝑖𝑥 in section 

 1.7.a.i exactly. 

 

 

This implies the following.  The Expansion of 𝑒𝑖𝑥 given by the Maclaurin Series in section 1.7.a.i has a real portion 

which matches the Maclaurin Series approximation of Cosine detailed in section 1.7.c.i, and an imaginary portion 

which matches the Maclaurin Series approximation of Sine detailed section 1.7.c.iii.  This means these portions of the 

Maclaurin Series approximation of 𝑒𝑖𝑥 can be directly replaced by the 𝑐𝑜𝑠𝑥 and 𝑖𝑠𝑖𝑛𝑥 functions respectively 

yielding the Euler Formula equation. 

 

 



𝑒𝑖𝑥 = (1 −
𝑥2

2
+

𝑥4

24
−

𝑥6

720
+

𝑥8

40,320
) + 𝑖 (𝑥 −

𝑥3

6
+

𝑥5

120
−

𝑥7

5040
+

𝑥9

362,880
. . . . ) 

 

𝑒𝑖𝑥 = 𝑐𝑜𝑠(𝑥) + 𝑖𝑠𝑖𝑛(𝑥) 

 

If you take these same steps on a Maclaurin Series of expansion of 𝑒−𝑖𝑥 ultimately you will reach the 

conclusion that 𝑒−𝑖𝑥 = 𝑐𝑜𝑠(𝑥) − 𝑖𝑠𝑖𝑛(𝑥).  It is from here we obtain the Pythagorean identity: 

 

𝑒𝑖𝑥 ⋅ 𝑒−𝑖𝑥 = 1 = 𝑐𝑜𝑠2(𝑥) + 𝑠𝑖𝑛2(𝑥) 

 

 

1.8—Making Sense of the Maclaurin Series Expansion of 𝑒𝑥: 

The Maclaurin Series expansion of 𝑒𝑥 does not have a match in any of the terms thus far explored for the 

Cosine and Sine functions.  These come from a Maclaurin Series expansion on a different set of 

functions, the Hyperbolic Sine and Hyperbolic Cosine. 

 

If you consider the Maclaurin Series expansions of 𝑐𝑜𝑠ℎ(𝑥) and 𝑠𝑖𝑛ℎ(𝑥) and how they relate to 𝑒𝑥 

with the removal of i to form the trigonometric equations you will see this is indeed a departure from 

circular functions.  We are now using hyperbolic functions. 

 

The following chart shows the first several derivatives of 𝑒𝑥, 𝑐𝑜𝑠ℎ(𝑥) and 𝑠𝑖𝑛ℎ(𝑥) which are needed 

to create the Maclaurin Series of each: 

 

Function 𝑒𝑥 𝑐𝑜𝑠ℎ(𝑥) 𝑠𝑖𝑛ℎ(𝑥) 

1st Derivative 𝑒𝑥 𝑠𝑖𝑛ℎ(𝑥) 𝑐𝑜𝑠ℎ(𝑥) 

2nd Derivative 𝑒𝑥 𝑐𝑜𝑠ℎ(𝑥) 𝑠𝑖𝑛ℎ(𝑥) 

3rd Derivative 𝑒𝑥 𝑠𝑖𝑛ℎ(𝑥) 𝑐𝑜𝑠ℎ(𝑥) 

4th Derivative 𝑒𝑥 𝑐𝑜𝑠ℎ(𝑥) 𝑠𝑖𝑛ℎ(𝑥) 

⋮ ⋮ ⋮ ⋮ 
 

The first thing that should be obvious is the successive derivatives of cosh and sinh no longer have sign 

changes.  They are all positive. 

 

Here is the Maclaurin Expansion of 𝑒𝑥 re-printed from above. 

 

 1.8.a: 

 𝑒𝑥 = (1 +
𝑥2

2
+

𝑥4

24
+

𝑥6

720
+

𝑥8

40,320
) + (𝑥 +

𝑥3

6
+

𝑥5

120
+

𝑥7

5040
+

𝑥9

362,880
) 

 

Here is the Maclaurin Expansion of 𝑐𝑜𝑠ℎ(𝑥) centered around x = 0 with a = 0: 

 

 1.8.b: 

 𝑐𝑜𝑠ℎ(𝑥) =
𝑐𝑜𝑠ℎ(0)𝑥0

0!
+

𝑠𝑖𝑛ℎ(0)𝑥1

1!
+

𝑐𝑜𝑠ℎ(0)𝑥2

2!
+

𝑠𝑖𝑛ℎ(0)𝑥3

3!
+

𝑐𝑜𝑠ℎ(0)𝑥4

4!
+

𝑠𝑖𝑛ℎ(0)𝑥5

5!
+

𝑐𝑜𝑠ℎ(0)𝑥6

6!
+ ⋯ 

 𝑐𝑜𝑠ℎ(𝑥) = 1 +
𝑥2

2
+

𝑥4

24
+

𝑥6

720
+

𝑥8

40,320
… 

 

 



Here is the Maclaurin Expansion of 𝑠𝑖𝑛ℎ(𝑥) centered around x = 0 with a = 0: 

 

 1.8.c: 

 𝑠𝑖𝑛ℎ(𝑥) =
𝑠𝑖𝑛ℎ(0)𝑥0

0!
+

𝑐𝑜𝑠ℎ(0)𝑥1

1!
+

𝑠𝑖𝑛ℎ(0)𝑥2

2!
+

𝑐𝑜𝑠ℎ(0)𝑥3

3!
+

𝑠𝑖𝑛ℎ(0)𝑥4

4!
+

𝑐𝑜𝑠ℎ(0)𝑥5

5!
+

𝑠𝑖𝑛ℎ(0)𝑥6

6!
+ ⋯ 

 

 𝑠𝑖𝑛ℎ(𝑥) = 𝑥 +
𝑥3

6
+

𝑥5

120
+

𝑥7

5040
+

𝑥9

362,880
… 

 

Like was done for the circular trigonometric functions the even exponential group of 𝑒𝑥 is replaced 

with 𝑐𝑜𝑠ℎ(𝑥) and the odd exponential group of 𝑒𝑥 is replaced with 𝑠𝑖𝑛ℎ(𝑥).  This yields the following: 

 

 

 

 1.8.d: 

 𝑒𝑥 = (1 +
𝑥2

2
+

𝑥4

24
+

𝑥6

720
+

𝑥8

40,320
) + (𝑥 +

𝑥3

6
+

𝑥5

120
+

𝑥7

5040
+

𝑥9

362,880
) 

 

 𝑒𝑥 = 𝑐𝑜𝑠ℎ(𝑥) + 𝑠𝑖𝑛ℎ(𝑥) 

 

If you conduct the same Maclaurin Series expansion on 𝑒−𝑥 you will ultimately find 

 

 1.8.e: 

 𝑒−𝑥 = 𝑐𝑜𝑠ℎ(𝑥) − 𝑠𝑖𝑛ℎ(𝑥) 

 

From these two equations we obtain the Hyperbolic Pythagorean identity: 

 

 1.8.f: 

 𝑒𝑥 ⋅ 𝑒−𝑥 = 1 = 𝑐𝑜𝑠ℎ2(𝑥) − 𝑠𝑖𝑛ℎ2(𝑥) 

 

A note of caution here to reader.  The usage of the h on the ends of the hyperbolic trigonometric 

functions is a convention to separate them from their circular counterparts.  They are pronounced cosh 

and sinch.  However it is the Pythagorean relationship that 1 = 𝑐𝑜𝑠ℎ2(𝑥) − 𝑠𝑖𝑛ℎ2(𝑥) which makes 

them hyperbolic.  If function notation is written in a form which appears to indicate circular 

relationships (i.e. 𝑠𝑖𝑛(𝑥) and 𝑐𝑜𝑠(𝑥)) but the mathematics supports a relationship between them such 

that 1 = 𝑐𝑜𝑠2(𝑥) − 𝑠𝑖𝑛2(𝑥) then you are in fact using hyperbolic trigonometric functions which 

should be rewritten to include the h for proper nomenclature and avoid confusion. 

 

1.9—The relationship between the x, i and y axis, and the trigonometric functions. 

When considering the complex plane the real components associated with the Cosine function portion 

of the expansion of 𝑒𝑖𝑥 is directly associated with the (assuming we are speaking of the xy-Cartesion 

Plane) x-axis.  This axis has no i components and neither does the Cosine expansion.  The Sine 

function portion of the expansion of 𝑒𝑖𝑥 matches the complex components exactly for 𝑖𝑠𝑖𝑛(𝑥).  If we 

ignore the presence of i we can assume the relationship between the two axis remains the same and 

apply the Sine function to the non-complex vertical y axis.  This confirmed in that simple algebra 

allows us to define the Sine function as a real function in terms of Cosines: 

 

 

 



1.9.a: 

 𝑠𝑖𝑛(𝑥) = √1 − 𝑐𝑜𝑠2(𝑥) 

 

 

 

See Figure 8 for a graphic representation of this. 

 
 

 

 

2.1—Introduction to Resolving the Complex Plane: 

Before actually visualizing the resolution of the complex plane one must first understand the apparent 

discrepancies which arise in the successive multiples of powers of i between traditional Algebra and 

Null Algebra. 

 

Consider the first several such iterations: 

 

2.1.a: 

Traditional Algebra 𝑖 𝑖2 = −1 𝑖3 = −𝑖 𝑖4 = 1 𝑖5 = 𝑖 𝑖6 = −1 𝑖7 = −𝑖 

Null Algebra 𝑖 = ⨁1 𝑖2 = −1 𝑖3 = 1 𝑖4 = −1 𝑖5 = 1 𝑖6 = −1 𝑖7 = 1 

 

Null Algebra specifies 𝑖 = ⨁1 = 
0

0
.  The squaring of i is the squaring of a plus-and-minus number 

which results in a negative, of the squared magnitude.  Each higher power of i is identical to a 

subsequent repeat multiplication of 
0

0
.  (For a full explanation see Null Algebra, Section 2.b—The 

Negative Radical, Page 91 to 121).  In summary a negative argument for a square root is the product of 

the positive root of the magnitude of the argument inside the radical bar and the resolved root of ⨁1, as 

1̂ on the axis of occurrence and 1̌ on the corresponding subspace axis. 
 

Aside from the fact that Null algebra resolves and assigns real values to the number i and its successive 

multiples, it is clear from the above list more is going on than is understandable at first glance.  From the outset 



Null Algebra has assigned a value to i while traditional mathematics does not.  Likewise Null Algebra provides 

values for the odd powers of i while traditional maths does not.  After 𝑖2 the two sets will agree on the value 

reached only for every next fourth power of i. 

 

 

2.1.b: 

Let i be the Traditional Algebra value of √−1. 

Let i be the Null Algebra value of √−1. 

 

Then, 

 

𝑖𝑛 = 𝐢𝑛  ∀𝑛 ⟶ 𝑛 = 𝑆𝑚(2 + 4𝑚) 

 

The two terms are equal for all n defined by the Sequence 𝑆𝑚(2 + 4𝑚) from m  = 0 to infinity. 

 

2.2.—Powers of i and angular rotations: 

Returning to the complex plane consider the list of successive multiples of i for traditional 

mathematics.  When plotting points on the complex plane there is a rotating effect, seen in the 

Maclaurin Series approximations, as they approach a specific value.  It was already shown that when 

plotting each successive component of the Maclaurin Series approximation of 𝑒𝑖𝑥, for 𝑥 = 𝜋, caused a 

spiraling effect which provides the point 𝑒𝑖𝜋 = 𝑎 + 𝑏𝑖 = −1 + 0𝑖 = −1 as the number of terms 

considered approaches infinity. 

 

Each successive multiplication of i amounts to a rotation of 90° on the complex plane and the unit 

circle.  The below chart and Figure 9 shows this rotation. 

 

 

 

2.2.a: 

Power of i Angular Rotation Point Notation 

𝑖0 = 1 0° Rotation 𝑃1(1,0𝑖) 

𝑖1 = 𝑖 90° Rotation 𝑃2(0, 𝑖) 

𝑖2 = −1 180° Rotation 𝑃3(−1,0𝑖) 

𝑖3 = −𝑖 270° Rotation 𝑃4(0, −𝑖) 

𝑖4 = 1 360° Rotation 𝑃5(1,0𝑖) 

Pattern continues in repetition. 

 

 

 

 

2.2.b: 

To introduce the unique way of visualizing the Complex 

Plane within the precepts of Null Algebra and Null 

Calculus consider the implications of viewing the entire 

Complex Plane with no real part.  Figure 10 shows this 

adaptation to the Complex Plane. 

 

 



Key Points: 

In this next section consider the following key points as they are explained. 

 1. There is a Reversal of signs shown on what is now the ii-axis in Figure 10.   

  This was previously shown as the Real Axis. 

 

 2. Squaring a complex number is multiplication by its Complex Conjugate. 

 3. There is only one side to the i-axis. 

 4. Any number on the i-axis is only half of a number.  Their full nature is not properly 

  conveyed in traditional descriptions of complex numbers.  These numbers are paired 

  numbers, not in the form of 𝑎 ± 𝑏𝑖 but rather 𝑎⨁𝑏𝑖 
 

 5. The Complex Plane is a composite of several planes forced into a two directional 

  Cartesian Plane, which holds these paired values defined in Null Algebra and Null 

  Calculus as real numbers, themselves plotted on an expanded hyperplane. 

 

 

2.3—Plotting Complex numbers and Identifying i: 

The real axis on the complex plane can be thought of as being real only because it exists as a square of 

imaginary components.  This is significant in resolution of the complex plane to a real and subspace 

hyperplane. 

 

For the moment we shall re-explore the Null Algebra resolution of i.  The format for a Complex 

number is: 

 

2.3.a: 

 𝑧 = 𝑎 + 𝑏𝑖 and z* = 𝑎 − 𝑏𝑖 
 

Where a is the real component and b is the coefficient representing the magnitude of the imaginary 

component.  Any complex number whether adding (+𝑏𝑖) or subtracting (−𝑏𝑖) the imaginary 

component will have a complex conjugate. 

 

Figure 11: 

Given a number 𝑧 = 𝑎 + 𝑏𝑖 there shall exist a 

complex conjugate z* = 𝑎 − 𝑏𝑖. 
 

The squaring of a complex number is not 

conducted in the same fashion as an integer. An 

integer such as +4 is squared by multiplying it by 

itself.  For example: 

 

 2.3.a.i: 

 42 = 4 ⋅ 4 = 16 

 

 −42 = −4 ⋅ −4 = 16 

 

 

 

 



Complex numbers are squared by multiplying them by their complex conjugate: 

 

 2.3.a.ii: 

 Given 𝑧 = 𝑎 + 𝑏𝑖  
 

 Then:  𝑧2 ≠ 𝑧 ⋅ 𝑧 

  z2 = 𝑧 ⋅ 𝑧* = (𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖) = 𝑎2 + 𝑏2 

 

It is possible a given complex number may have a 0 magnitude imaginary component which wen 

squared is indistinguishable from squaring of a real number. 

 

 2.3.a.iii: 

 

 2 ⋅ 2 = 4 ≡ 𝑧 ⋅ z* =  (2 + 0𝑖) ⋅ (2 − 0𝑖) = 4 − 0𝑖 = 4 

 

2.3.b: 

Because squaring a value is identical to multiplying a value by itself, the application of squaring 

complex numbers via multiplication by complex-conjugate must be equivalent to this standard process 

of multiplying a value by itself.  This implies that the imaginary component of a complex number, 

regardless of whether positive (+𝑏𝑖) or negative (−𝑏𝑖) is only half of a number; both halves must be 

considered when squaring.  It implies that the vertical i-axis does not really have separate positive and 

negative sides, but rather is only single sided, using + and - signs to plot both halves of a single 

number.  This further implies that a given complex number 𝑎 ± 𝑏𝑖 is not accurate.  Instead this should 

be written as 𝑎 ⊕ 𝑏𝑖, indicating the 𝑏𝑖 component is a plus-and-minus number whose partner halves 

are resolvable from one-another for accurate calculations.  Because the separate halves of a given 

complex-number are connected its convenient to illustrate the deeper nature of the complex plane by 

labeling the opposite sides of the i-axis as 𝑖̂ and 𝑖̌ rather using + and - values. 

 

2.3.b.i: 

We can specify and isolate the complex number i by 

setting 

 

 a = 0 and b = 1 

 

i then is a complex number which when squared, is 

multiplied by its complex conjugate giving it a 

value of a negative sign with magnitude of 1.  This 

also implies that i itself must already have a 

magnitude of 1 as the magnitude of the squared 

value also equals 1; not 0 or any other value greater 

or less than one.  See Figure 12 here. 

 

 

 

 

 

 

 

 



Key Points: 

 

1. Both values i and -i have a magnitude of 1. 

2. They are two connected halves of the same number on a single sided i-axis. 

3. These two values can be represented as the resolved i number values 𝑖̂ and 𝑖̌. 
4. 𝑖2 is the product of 𝑖̂ and 𝑖̌. 
5. The magnitude of each  𝑖̂ and 𝑖̌ are one on the complex plane. 

6. The magnitude of 𝑖2 remains 1. 

 

 

On Complex Plane: 𝑖 ⋅ −𝑖 = −𝑖2 =  +1  Requiring   𝑖2 =  −1 

 

   ↓ 

 

Resolved on real axis: 1̂ ⋅ 1̌ = +1 ⋅ −1  Requiring Resolved  1̂ ⋅ 1̌ = 𝑖2 = −1 

 

 

2.4—Identifying i: 

The next step is to identify what i actually is as a number.  Several properties can be clearly identified 

from the previous section and its equations. 

 

• i is a complex number 

• It has two halves, 𝑖̂ and 𝑖 representative of 𝑧 and z*  

• The two halves of i are written on the complex plane as either +i and -i, or as  𝑖̂ and 𝑖. 
• i and its complex conjugate have a magnitude of 1. 

• 𝑖2 maintains a magnitude of 1. 

• The single numeric value which is equal to i must somehow be simultaneously positive-and-

negative to represent the two halves to the complex number i. 

• The complex number i must have a magnitude of 1 and maintain a magnitude of 1 when 

squared despite sign change. 

 

The only value which matches these specifications is 
0

0
.  This value is traditionally called the 

indeterminate form.  For a full description on the resolution of this expression's various possible values 

see text on Null Algebra (https://vixra.org/abs/2103.0131).  This section will focus on the solutions 

value to 
0

0
, +1 and -1, and their relationship to the complex plane. 

 

2.4.a—The number 0: 

Zero is a unique value.  Every number has an infinite set of numbers to its left and right on a number 

line.  Zero however is the only value which has an infinite number of only negative values to its one 

side on a number line, and an infinite number of only positive number to its opposite side on a number 

line.  This includes an infinite number of infinitesimally small fractions between whole number 

integers.  Thus there are an infinite number of negative fractions between -1 and 0, as well as an 

infinite number of positive fractions between 0 and +1. 

 

2.4.b—Is 0 positive or negative? 

Traditional Mathematics declares 0 is neither positive nor negative.  However since 0 is part of both the 

positive and negative sides of any number-line it is actually simultaneously positive-and-negative.  



Notice that marking 0 with a positive or negative sign effectively changes nothing for traditional 

mathematics. 

 

Positive 0:  +0  This is a value of 0 and the sign as no effect 

 

 

 2.4.b.i: 

 

 +0 = −0 +0 ≢ −0 

 

 2 + 0 = 2 2 − 0 = 2 
+0

2
= 0  2 ⋅ (+0) = 0 

 

   Below, even though we use −0, there is no change in value.  The reader is  

   reminded that although +0 ≢ −0, for the use of 0 in traditional mathematics  

   +0 = −0.  

 

 

Negative 0:   −0 The magnitudinal change is 0.  The sign effectively doesn't matter and is simply  

   resolved to 0.  It is still there but as 0 represents a non-change in value it also  

   lacks the capacity to change the sign of any values its interacting with, except  

   when in the indeterminate form. 

 

 2.4.b.ii: 

 +0 = −0 +0 ≢ −0 

 

 2 + (−0) = 2 + 0 = 2  2 − (−0) = 2 − 0 = 2  
−0

2
= 0 =

0

2
= 0 

 

 2 ⋅ −0 = 2 ⋅ 0 = 0 

 

Division by 0 will result in sign changes for naught.  See text Null Algebra on properties of null math 

naught and 0. 

 
+2

+0
= +∞ = +𝜂0  

−2

+0
= −∞ = −𝜂0 

−2

−0
= +∞ = +𝜂0 

+2

−0
= −∞ = −𝜂0 

 

Multiplication of 0 with 0 also requires no special consideration.  Again there is no magnitudinal 

change and both +0 and −0 occupy the same point.  The sign is simply resolved to positive, or 

unsigned. 

 

 2.4.b.iii 

 0 ⋅ 0 = 0 −0 ⋅ 0 = −0 = 0  0 ⋅ −0 = −0 = 0  −0 ⋅ −0 = 0 

 

2.4.c: 

Where the sign of 0 matters most is when it interacts with itself in division.   Because the numerator 

and denominator have the same magnitude, though it’s a magnitude of 0, the expression can be 

interpreted as asking how many times a complete set of 0 size can fit into a complete set of size 0.  The 

answer is 1 time as the set is already that size.  The sign of the expression will depend upon the sign of 

both the numerator and denominator.  This is different from considering the same expression as asking 



how many times something of size 0 can be divided into 0 parts which yields and infinity.  In this 

situation we are considering the former concept rather than the later.  For the reasoning behind this and 

a full explanation of the resolution of all values of the indeterminate form, as well as when each applies 

see Null Algebra (https://vixra.org/abs/2103.0131).   We have already shown that 0 is both positive-

and-negative.  Maintaining focus on positive-and-negative status, the possible arrangement of the signs 

for the indeterminate and its resolved value are shown here below. 

 

 

 

2.4.c.i: 
+0

+0
= 1  

−0

+0
= −1  

+0

−0
= −1  

−0

−0
= 1 

 

 

So which of these is a valid interpretation of the expression?  They all are simultaneously and must all 

be considered.  Because each 0 is simultaneously plus-and-minus both +1 and -1 must simultaneously 

be held as legitimate evaluations of 
0

0
.  Thus 

0

0
 is a plus-and-minus number of magnitude 1. 

 

2.4.c.ii: 
0

0
=⊕ 1 

 

Continuing Key Points: 

 

1. This feature is identical to the paired halves of complex number ⊕ 𝑏𝑖, marked on the 

 complex plane as +𝑏𝑖 and −𝑏𝑖 
 

2. (
0

0
)

2

≡ (+
0

0
⋅ −

0

0
) = −

0

0
= −1̂ = −1   If the value of 

0

0
 is not resolved to ⊕ 1 squaring it 

 maintains a magnitude of 1 as its form remains unchanged.  It does however pick up a negative 

 as detailed in the next key points. 

 

3. This implies  
0

0
 is a complex number ⊕ 1  resolvable to 1̂ and 1̌ which are synonymous with 

 +bi = +1i = i   and -bi = -1i = -i. 

 

4. This further implies that because (
0

0
)

2

≡ (+
0

0
⋅ −

0

0
) = −

0

0
= −1̂ = −1, the squaring of 

0

0
 is 

 the squaring of a positive and negative number, requiring its complex conjugate halves must be 

 multiplied together.  Thus when RESOLVING 
0

0
 to ⊕ 1 before squaring it still maintains its 

 magnitude of 1 but now directly implies multiplication of complex conjugate halves, resulting 

 in the same value obtained in key point note 2 above. 

 

(
0

0
)

2

= (⊕ 1)2 = 1̂ ⋅ 1̌ = 1 ⋅ −1 = −1 

 

5. All of this implies that 
0

0
= 𝑖 

6. The upper quadrants of the Complex Plane apply to equations within which the occurrence of 



 an i-multiple is generated, whilst the lower quadrants apply to the subspace of the generating 

 equation. 

 

 

 

3.1—Resolving ⊕ Numbers: 

If you have the presence of a 
0

0
 in an equation you can, depending on the circumstances replace the 

value with a ⊕1.  Further the key points show the properties of 
0

0
 make it identical to the complex 

number i. 

 

For specifics on the circumstances which dictate the appropriate resolution of the various values of 
0

0
, 

as well as a detailed description on resolution of ⊕ numbers from negative root arguments see Null 

Algebra text (https://vixra.org/abs/2103.0131). 

 

3.1.a: 

Thus the value of i: √−1 = 𝑖 = 
0

0
 = ⊕ 1 

 

This is the form numbers take when calculated as the root of a negative argument.  For example: 

 

3.1.b: 

√−4  =  ⊕ 2 =  2𝑖 ≐  2̂  ≐ 2 
 

Note that, ⊕ , means saying a number is a plus-and-minus number, the equivalent to saying it is the 

imaginary only part of a complex number, without specifying + or - but rather requiring it be both 

simultaneously. 

 

3.1.c: 

𝑧 = 𝑎 + 𝑏𝑖 = 𝑎 + (⊕ 𝑏) 

 

 

This is another indicator that the i-axis does not really have a + and - side, but rather a single side using 

these convenient signs to denote the positions of the paired halves of each single ⊕ number.  To 

perform most operations with plus-and-minus numbers you must resolve them to their appropriate 

single sign value.  For full explanation of this process see Null Algebra section on resolving ⊕ 

numbers with subspace transformations (https://vixra.org/abs/2103.0131). 

 

If we assume we are using equations of the form 𝑦 = 𝑓(𝑥) we know we are in the xy-plane.  Null 

Algebra tells us we then have the Adjoining xu-Subspace Plane, and the Co-Adjoining sy-Subspace 

Plane.  There are additional outputs included on these planes obtained through transformations on the 

given 𝑦 = 𝑓(𝑥) equation. 

 

3.1.d—Example Function: 

 

Consider the given equation: 

    3.1.d.i:   

    𝑦 = 2𝑥 + √−(𝑥) 



 

Fort this example we will consider only the positive solution to the radical (square roots still produce ± 

solutions) and both the + and - aspects of the ⊕ numbers which the negative argument in this example 

will produce.  We have an equation which is structured to provide y-axis output values in the form of 

complex numbers, having a real part defined by 2x and an imaginary part defined by √−(𝑥) for the 

domain of x > 0.  Lets examine several of the values of the output generated by positive integer inputs.  

Note in some instances decimals in the chart below have been heavily truncated. 

 

𝑦 = 2𝑥 + √−(𝑥) 

x-value Real 

Part x 

y-value Resolved y i-value Resolved y-

conjugate 

Conjugate y-

value 

Conjugate i-

value 

1 2 2+i 3 i 1 2-i -i 

2 4 4+1.414i 5.414 1.414i 2.585 4-1.414i -1.414i 

3 6 6+1.732i 7.732 1.732i 4.2679 6-1.732i -1.732i 

4 8 8+2i 10 2i 6 8-2i -2i 

5 10 10+2.236i 12.236 2.236i 7.7639 10-2.236i -2.236i 

6 12 12+2.449i 14.449 2.449i 9.5505 12-2.449i -2.449i 

 

These values would traditionally be plotted on the complex plane, showing the y output values (an 

output plot) as two dimensional points of the form 𝑥 + 𝑏𝑖 plotted in the graph below on the xi-plane. 

 

 

 



Although we have only specified positive result of the radical, the roots of the negative numbers have 

both +bi components and a negative, -bi, partner.  The complex conjugate graph of 𝑦 = 2𝑥 − √−(𝑥) is 

shown below in Figure 13a.  The subtraction of the i term is coming from the negative complex 

conjugate, not from the ± aspect of the radical bar in this example.  This is because we are limiting 

consideration to only the positive result of the radical solutions.  

 

 

 

 

The function and its graph can be expanded to the xyi-hyperplane seen below in the graphs of Figures 

14, 14a and 14b.  As was shown in the previous examples these graphs are true input-output graphs 

displaying the full characteristics of the complex points with x-axis inputs, and output values on the i 

and y axes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.2—Resolving the Complex numbers as plus-and-minus numbers: 

We now consider resolving the ⊕ numbers which complex i-multiples represent.  Because this 

equation example is of the form 𝑦 = 2𝑥 + √−(𝑥) = 𝑎 + 𝑏𝑖 the complex, imaginary values are being 

added to the real a component defined in this example by 2x to produce an output on the y-axis.  The 

addition sign is present as we are only considering the positive solutions to the radical.  The root of the 

negative arguments will produce ⊕ numbers.  As they are occurring on the XY-Plane as a result of an 

𝑦 = 𝑓(𝑥) equation, they will resolve to positive, up, values on this plane.  The process of resolving the 

up as well as the down values will generate a line graph through an actual three-directional, xys-

volume. 

 

The imaginary bi components defined by √−(𝑥) in the given example equation,  𝑦 = 2𝑥 + √−(𝑥) will 

resolve to up values on the xy-plane and simultaneously to down values on the co-adjoining subspace 

sy-plane. 

 

To see this relationship we must resolve the ⊕ values.  Note that the xi-plane is what we get when we 

stretch the x-axis into a plane whose new perpendicular axis represents additions and subtractions to x-

inputs as complex, i-multiple pairs.  This creates a plane representing two-dimensional numbers which 

can be used to represent input, or output values.   

 

When we resolve the xi-plane the values are no longer representative of two dimensional output y-

values.  Instead you will have real x-value inputs, which are paired with subspace, s-value inputs and 

actual y-value outputs. 

 

3.2.a: 

Given the example equation 𝑦 = 2𝑥 + √−(𝑥) where  𝑏 = √|𝑥| 
 

Then:  𝑦 = 2𝑥 + √−(𝑥) = 𝑦 = 2𝑥 + 𝑏𝑖 ≐ 𝑦 = 2𝑥 + (⊕ 𝑏) 

 

     ≐ 𝑦 = 2𝑥 + �̂� ≐ 𝑦 = 2𝑥 + �̇�  on the yx-plane 

 

The full process and reasoning behind this see Null Algebra Text (https://vixra.org/abs/2103.0131). 

 

The example equation has i-multiples being generated from the x-axis input values.  This side of the 

equation defines the y-axis output variable.  Because these inputs are two dimensional due to the nature 

of i-multiples we must account for their complex conjugate, the resolved down values which pertain to 

the s-axis in this example, and also define the y-axis output.  The sy-equaiton is provided by the 

subspace transform below. 

 

𝑦 = 2
𝛯

𝜍𝑠
𝑥 + √− (

𝛯

𝜍𝑠
𝑥)  → 𝑦 = −

2

𝑠
+ √− (−

1

𝑠
) → 𝑦 = −

2

𝑠
+ √

1

𝑠
 

 

Equations 𝑦 = 2𝑥 + √−(𝑥) and 𝑦 = −
2

𝑠
+ √

1

𝑠
 are related to each other and the complex plane.  The 

resolution of the set of complex points defined by 𝑦 = 2𝑥 + √−(𝑥) on the xiy-hyperplane necessitates 

their resolved values lie on the xys-hyperplane. 

 



From Null Algebra we know ⊕ numbers resolve to their positive magnitude value on the dimensional 

plane in which they originate.  For the equation 𝑦 = 2𝑥 + √−(𝑥) the originating dimension is the xy-

plane.  Null Algebra also provides that the resolved partner to these positive, up, vales will lie on the 

co-adjoining subspace plane, the sy-plane.  Here will be the negative, down, conjugate values to the up 

values resolved on the xy-plane.  They are negative in terms of the variable assigned to the dimension 

which is generating their presence.  This is crucial to understanding the higher multiples of in which 

appear to diverge between traditional and null algebra math disciplines.  When dealing with an 

equation of the form 𝑦 = 𝑓(𝑥) which is generating complex number outputs, the changes made in 

resolving the i-multiples will apply their positive component to the real portion of the x input first. 

 

Key Points Continued: 

 

1. One must ultimately choose how to view these types of equations.  You can keep the 

 unresolved i values and use traditional complex analysis which has many important 

 applications in fields such as Quantum Mechanics and analyzing the alternating current in 

 circuitry.  This unresolved status is not wrong in anyway.  It is merely how the math looks 

 when the subspace axis containing the down components is forced into a 2D plane with an 

 apparent two sided, + and - side, i-axis representing both paired halves in relation only to x 

 (assuming equations are initially evaluated on the xy-plane). 

 

 The resolved values of i-simply provide the real number output equivalents for the value of i-

 multiples occurring in a given equation.  This is done by including the co-adjoining subspace 

 plane attached to the central plane (the real space plane on which the occurrence of an i-

 multiple arises from a given equation), as one hyperplane surface, containing both resolved 

 complex conjugates. 

 

2. The i-axis though traditionally drawn with a + and - side is really a single sided axis plotting 

 paired halves of bi numbers. 

 

3. Thereby it is better to mark the i-axis with 𝑖̂ and 𝑖̌. 
 

4. The up-values apply to the axis where the ⊕ number originated in this example.  The down-

 value applies to the subspace of the axis from where the ⊕ originates. 

 

5. These concepts mean if a ⊕ number originates on the xy-plane for equations of the form 

 

 y = a + bi        =        𝑓1(𝑥) + √−𝑓2(𝑥) 

 

 The upper two quadrants of xi-plane apply to x-axis, whilst the lower two quadrants apply to 

 the s-axis, as its values are seen in terms of x.   i.e. They require a subspace transform to be 

 seen in terms of s. 

 

6. s is the negative reciprocal of x.  This accounts for the apparent discrepancies of higher values 

 of i-multiples. 

 

 For example the unresolved 𝑖3 = −𝑖 
 Resolved this value is +1, on the s-axis, while its value in terms of x is -1. 

 



 −𝑖 =  −𝑖̂ =  +𝑖̌ =  +1̌ 

 

 

4.1—Multiples of i: 

Let’s return to two concepts.  We´ll re-examine the chart showing the differences between the 

traditional, unresolved values of various i-multiples, and the Null Algebra resolved values for those 

same instances.  We will then compare those values to the traditional xi-plane and the resolved version 

of the same. 

 

4.1.a: 

𝑖𝑛 𝑖1 𝑖2 𝑖3 𝑖4 𝑖5
≡𝑖1 𝑖6

≡𝑖2 𝑖7
≡𝑖3  

 

Pattern 

Continues 

Traditional Algebra i -1 -i +1 i -1 -i 

Null Algebra ⊕1 → 1̂ 

       → 1̌ 

-1 +1 -1 +1 -1 +1 

 

Clearly something more is going on than just saying values like 𝑖3 = −𝑖 are simply unresolved; for 

these higher exponential values we cannot just swap in a +1 for i.  Values like 𝑖4 appear to be in 

disagreement, equaling +1 in Traditional Algebra and -1 in Null Algebra.  And yet, every fourth power 

of i after 𝑛 = 2 results in identical values between the two systems. 

 

4.1.b: 

-1 = 𝑖2
≡ 𝑖6

≡ 𝑖10
≡ 𝑖14

≡ …. 
 

Recall that on the xi-plane each such subsequent power of i is identical to a 90-degree turn.  We begin 

an exploration of this effect and how its interpretation resolves the apparent discrepancy in 4.1.a above, 

at the position of x = 1, the complex number z = x + bi = 1 + 0i = 1. 

  

This point (x , bi) = (1 , 0) is identical to x = 1 = 𝑖0.  This is 

the point x = 1 on an angle of 0°.  It exists on the x-axis 

telling us we are on the Real axis.  We shall assume these 

points are being generated by an equation on the xy-plane, 

of the form y = a + bi = 𝑓1(𝑥) + √−(𝑓2(𝑥)).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A rotation of 90 is represented by 𝑖1 and the complex number a + bi = 0 + 1i = i.   

This is the point (x , bi) = (0 , i). 

 

 

 

 

This point, the value 𝑖1 = 𝑖 is an unresolved value.  It is a 

positive i value with a magnitude of 1.  This imaginary 

value is the complex number y = z = a+bi = 0 + i = i.  It 

has a complex conjugate z* having the same magnitude 

but opposite sign, given by y = z* = a-bi = 0 - i = -i.    

This value is the point (x , bi) = (0 , -i), and is covered in a 

moment below. 

 

 

 

 

Null Algebra has shown i to be associated with 
0

0
 and its resolved value ⊕1, which resolves to 1̂ = +1 

on the axis of occurrence of the i-multiple.  The complex conjugate resolves to 1̌ = −1.   This is the 

value of the subspace as seen in terms of the variable representing the axis of occurrence. 

 

The given situation for i1 is that this represents 𝑧 = 0 + 𝑖 on the xi-plane, a positive i-multiple added to 

the x variable.  The resolved version of this value is shown here: 

 

4.1.c: 

Given a value 𝑧 = 𝑎 + 𝑏𝑖, with a = 0 and b = 1 the resolved value is: 

 

𝑧 = 𝑥 + 𝑏𝑖 
𝑧 = 0 + 𝑖   →    𝑧 = 0 + 1̂      →    𝑧 = 0 + 1   →    𝑧 = 1 

 

As we are assuming the equation generating the i-multiples is of the form y = f(x) we can simply 

replace the usage of z with y.  Shown here below. 

 

𝑦 = 𝑥 + 𝑏𝑖 
𝑦 = 0 + 𝑖   →    𝑦 = 0 + 1̂      →    𝑦 = 0 + 1   →    𝑦 = 1 

 

Note that the complex conjugate implied to exist is the value given below: 

 

4.1.d: 

𝑧 = 𝑥 − 𝑏𝑖 
 

Because we are discussing the instance of i1 which is the value 

 

𝑦 = 0 + 𝑖   =     0 + 1̂   =   1 

 

we can obtain the complex conjugate by assigning the down value to i as we resolve it. 

 

 



𝑦 = 𝑧 = 0 + 𝑖   →    𝑧∗ = 0 + 1̌    →    𝑧∗ = 0 − 1   →    𝑧∗ = −1 

 

𝑦 = 0 + 𝑖   →    𝑦∗ = 0 + 1̌    →    𝑦∗ = 0 − 1   →    𝑦∗ = −1 

 

Recall that these values, being the down component, are representative of the value added to the s 

variable but shown here in terms of x.  Thus this value exists on the s-axis subspace.  The Null Algebra 

subspace transformations show the s-axis is the negative reciprocate of the x-axis. 

 

4.1.e: 

𝑥 = −
1

𝑠
  𝑠 = −

1

𝑥
 

 

If the magnitude of the down portion of the i-multiple is 1 we are dealing with the down portion of the 

number i itself.  This is the value of -1, seen from the x-axis in terms of x.  On the s-axis, this value in 

terms of s is the negative reciprocate.  Thus the same value on the s-axis, in terms of the s variable, is 

+1, and corresponds to the resolved 𝑖3 value.  This concept will be returned to in a moment. 

 

For example if plotting 𝑦 = (𝑥 − 1) + √−(𝑥) for 𝑥 = 1 you get the following graphs.  See Figure 17 

below.  The imaginary plane is an output graph.  The Cartesian plane is standard input-output. 

 

 
 

If using the example equation from before, 𝑦 = 2𝑥 + √−(𝑥) when x = 1 we have the situation shown 

below.  On the left is the output graph of y in terms of x and i, showing y = 2 + i.  The same instance is 

shown on the right but on the xiy-hyperplane. 

 



 
 

4.1.f: 

The graphs shown in Figure 18 illustrate how functions of the form y = f(x) can be graphed in the three 

directions on an xiy-hyperplane.  This was done earlier as well, depicted in the graphs of Figures 14, 

14a and 14b.  In those examples the value of 𝑓(2) was considered. 

 

𝑓(2) = 2(2) + √−2  =  4 + 1.414𝑖  =  4 + (1.414) ⋅ 1̂  =  5̇. 414 

 

For a review look again at the graphs of Figure 14 and consider this explanation: The value 4 + 1.414𝑖 

was shown plotted in the output graph of 𝑦 = 2𝑥 + √−(𝑥), Figure 13, in section 3.1.d above.  The 

complex conjugate of this point is shown in the output graph of the same function of Figure 13.a.  The 

full three direction xiy-hyperplane of this function was shown in Figure 14.  The imaginary portion 

defined by √−(𝑥) is shown in Figure 14.a, and the real portion, 2x, is shown in Figure 14.b.  Both 

Figures 14a and 14b are rotations of the three directional plane to look directly downward along the y 

and i axis respectively showing the corresponding two directional planes which remain seen.  What we 

are seeing now is the resolution of the i-multiple.  The imaginary component obtained when x = 2 has 

been resolved to its positive, up, component for the central plane and axis of occurrence defined by the 

format of an 𝑦 = 𝑓(𝑥) equation.  It is then added to the real part producing a single value for y on the 

xy central plane.  The dotted value above the 5 indicates this value is the result of a resolved i-multiple 

and is a way of tracking that i-multiples were present in obtaining this solution.  We will graph this 

resolved result toward the conclusion of this paper which will show the xys-volume, as well as the xy, 

and sy hyperplanes. 

 

 

4.1.g—Titles for Real and Subspace Planes: 

 

Given an equation of the form 𝑦 = 𝑓(𝑥) 

 

XY-Plane  Central Plane   YU-Plane Adjoining Subspace 

SY-Plane  Co-Adjoining Subspace XS-Plane Anterior Subspace 

XU-Plane  Posterior Subspace  SU-Plane Transverse Plane   

 

 



4.2—𝑖2, The 180-degree rotation: 

𝑖2 and each subsequent fourth multiple of it, 𝑖(2+4𝑛) for 

0 ≤ 𝑛 < ∞, will equal -1 for both traditional Algebra and 

Null Algebra.  It is identical to a rotation of 180° on the xi-

plane. 

 

The traditional Algebra interpretation of this value is from 

the definition which requires it exist as 𝑖2 = −1.  It has 

also been shown to be the limit of the Maclaurin 

approximation of 𝑒𝑖𝜋 which details a spiraling motion that 

ever more closely approaches x = -1 on the xi-plane. 

 

The Null Algebra resolution of this point equals -1 as well 

but for a different reason. 

 

Because the resolved 
0

0
 = ⊕1 represents two paired values, a 1̂ and a 1̌ equivalent to the complex 

number and complex conjugate pairs of z and z*, the square of both sets is identical to multiplying the 

conjugate halves together: 

 

4.2.a: 

𝑖2 = (⊕ 1)2 = 1̂ ⋅ 1̌ = +1 ⋅ −1 = −1 

 

Again though the 𝑖2 = −1 as a resolved value is the value seen from the x-axis, in terms of the x 

variable, on the xy-plane, the plane we have specified for these examples where equations are 

generating i-multiples.  This point is special for another reason.  Further rotations will move into the 

lower two quadrants of the xi-plane which we have already specified pertains to the complex conjugate 

pairs of the xi-plane.  These values when resolved exist on the given subspace of the generating 

equation.  In this example that subspace is the s-axis.  Though the value of 𝑖2 = −1 as seen from the x-

axis, the s-axis equivalent, its negative magnitude counterpart, is +1.  Consider the following resolution 

of the xi-plane viewed as only complex components.  This point is a transition from the upper 

quadrants which represent positive resolved values added to x and the lower quadrants that represent 

the negative resolved values applied to the s-axis.  After moving beyond the 180 degree rotation values 

of the resolved Null Algebra powers of i will be those of the values on the s-axis, but still viewed in 

terms of the x variable unless a transform is applied to them.  Those same values seen on the 

unresolved xi-plane will show the values as they are seen in terms of xi variables from the xi-plane.  

See Figure 20 below. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

4.3: i3—270-Degree Rotation: 

We now make a rotation of 270° to the point 𝑧∗ = 𝑥 − 𝑏𝑖  →   𝑧∗ = 0 − 𝑖 = 𝑖3.  The value 𝑖3 = −1 is 

on the xi-plane but we know this representation of z*, is the down component of a ⊕ number as seen 

from the x-axis, the origin point for the generation of the i-multiples in the given example.  That value 

is applied to the s-axis when resolved; a down as seen in terms of the x variable, but the negative 

reciprocate, an up viewed in terms of the s-variable.  The chart of values shown before in section 4.1.a, 

shows the traditional value of 𝑖3 = −𝑖, but also specifies the resolved Null Algebra value of 𝑖3 = 1. 

 

Key Points: 

 

The +1 of i3 is the +1 of the s-axis. 

 

From the xi-plane: 

As unresolved values on the xi-plane we may resolve both directly as the  occurrence of 𝑖 =
0

0
 = ⊕1 = 𝑖̂ 

on the x-axis.  The one-up value applies to the x axis value.  The one-down will apply to the s-axis.  

The entire lower two quadrants of the complex plane will apply to the s-axis. 

 

Thus from the xi-plane, an equation of the form 𝑦 = 𝑓(𝑥) generating i-multiple values will resolve 

such values to a positive-up magnitude component which pertains to the xy-plane, and conjugate 

negative-down magnitude component which pertains to the sy-plane.  For the value  𝑖 =
0

0
 = ⊕1, the 

value will resolve to  1̂ ≐ 1 . 



 

For 𝑦 = √𝑥 with 𝑥 = −1 

 

y = i = ⊕1 = 1̂ ≐ 1 

 

For the same equation,  𝑦 = √𝑥 with 𝑥 = −1, the down value will pertain to the s-axis.  From the 

perspective of the xi-plane which is used to display two-dimensional xi output values representing y, 

this is the complex conjugate -i.  From the perspective of the xi-plane this value will resolve to -1. 

 

Because the given function generating the i-multiples is of the form 𝑦 = 𝑓(𝑥) the entire xi-plane 

pertains to the y-axis but remains in terms of the x-variable whose inputs are generating the i-multiples.  

Thus, the down component must also pertain to the y-axis.  But in resolving the ⊕1 to its single signed 

values we find from Null Algebra that the positive-up component pertains to the axis and plane where 

the i-multiple is generated, while its complex conjugate applies to a subspace.  That subspace axis in 

this example, as the negative-down value must also pertain to the y-axis, is the s-axis subspace of the x-

axis.  Performing a transform on down value seen in terms of x, will provide the same value as seen in 

terms of the s-axis.  Thus the down value in terms of the x-variable which is associated with the xy-

plane is also an up value in its own right seen in terms of s variable and the sy-plane.  This is consistent 

with the x and s variables being negative reciprocals of each other.  This is in keeping with any 

occurrence of an i being in fact two paired values shown unresolved as ⊕1. 

 

The resolution of the xi-plane shows all values in terms of the xi-plane variables, including the -i found 

at a rotation of 270 degrees defined by i3.  Because this down value must be on the s-axis of the sy-

plane, to see this value in terms of s rather than x we must perform a subspace transform on the axis 

variables of the xi-plane, producing the si-subspace plane. 

 

This +i at the bottom of the si-plane is the value provided when calculating the resolved value, Null 

Algebra solution for 𝑖3 = 1.  This graph of the si-plane reveals something else as well.  The value of 

𝑖2 = −1 on the xi-axis.  It is not until after we pass 180 degrees of rotation that the si-plane values take 

over, and yet the conjugate subspace value for 𝑥 = −1, remains 𝑠 = +1 which is shown in the graph of 

Figure 22.  This effect will occur again at 360 degree rotation.  The value 𝑖4 = +1 applies to the xi-

plane.  Until you pass the 360 degrees of rotation you have not yet moved back into the upper 

quadrants which pertain to the xi-plane.  The Null Algebra resolved solution for 𝑖4 = −1 applies to the 

si-plane and will require a subspace transform to show its corresponding conjugate value on the xi-

plane, which is +1. 

 



We see not only is the s-axis reversed of the x-axis, but the i-axis is also present and reversed.  These 

two planes, the xi-plane and si-plane share the same i-axis from different perspectives.  What it is that 

makes the complex plane, complex, is that the xi and si-planes are in reality the xys-hyperplane for any 

equation of the form 𝑦 = 𝑓(𝑥) generating i-multiple components. 

 

 

4.4: i4-360 degree rotation. 

The rotation to 360 moves back to the point 𝑦 = 𝑎 + 𝑏𝑖 = 1 + 0𝑖 = 1.  This is the point 𝑦 = (𝑥, 𝑖) =
(1,0).  We make this specification as a reminder that when discussing the traditional form of the 

complex plane we are looking at an output plot, showing two dimensional points representing the 

variable y, assuming the equation generating the i-multiples was of the form 𝑦 = 𝑓(𝑥). 

 

The rotation to this point proceeds through the lower quadrants of the xi-plane and, even when coming 

to a rest on this exact point, has not yet moved into the upper quadrants of the xi-plane.  Though this 

point is identical in value to a 0 degree rotation, a point whose value pertained to the central plane and 

the x-axis, the 360 degree rotation represented by i4 will pertain to the s-axis and the corresponding 

subspace plane.  Like was shown in section 4.3, the value we obtain from the Null Algebra resolved 

value for 𝑖4 = −1 pertains to the value as it appears on the s-axis of the si-plane.  As seen in terms of 

the x variable from the xi-plane this value is the negative reciprocate of the s-axis value and obtainable 

through a subspace transform, generating a +1. 

 

Given the subspace transform for the x-axis is: 𝑥 = −
1

𝑠
 

For s = -1,  x = 1 

 

This value of +1 is the value shown in traditional algebra and trigonometry for i4.  Thus we provide the 

following augmented chart for the multiples of i as they are interpreted from traditional algebra, and 

their resolved values. 

 

4.4.a—Values of i multiples and their relation to Algebra and Null Algebra: 

 

Blue Values: Values directly obtained from the Null Algebra resolutions of i-multiples. 

Red Values: The Red values show the resolved value as seen in terms of the x-axis on the xi-plane.   

Green Values:  The Green values show the resolved values on the si-plane in terms of the s-axis. 

The agreement between the Null Algebra resolutions and the variable to which they refer are 

highlighted. 

 

𝑖𝑛 𝑖1 𝑖2 𝑖3 𝑖4 𝑖5
≡𝑖1 𝑖6

≡𝑖2 𝑖7
≡𝑖3 

Pattern 

Continues 

Traditional Algebra i -1 -i +1 i -1 -i 

Null Algebra 

 

 

⊕1 → 𝑖̂ 

       → 1̌ 

+1 
 at occurrence 

-1 +1 -1 +1 -1 +1 

Resolved variable in 

terms of x 
+1 -1 -1 +1 +1 -1 -1 

Resolved variable in 

terms of s 
-1 +1 +1 -1 -1 +1 +1 

 

 



Figure 23: 

 
 

 

 

 

 



5.0—Resolution of the Complex Plane: 

Using the information provided in the previous sections we are now ready to resolve an i-multiple 

generating equation of the form y = f(x), not to an xiy-hyperplane, but to the xys-hyperplane, a subspace 

volume though which the actual xys-points of such an equation are plotted. 

 

5.1—The equation: 

We will begin with an example equation already used to define xiy-points. 

 

5.1.a: 

𝑦 = 2𝑥 + √−(𝑥) 

 

We will be focusing on the xys-hyperplane.  This equation makes clear, it is the y variable which is a 

two dimensional number, existing as the sum of a real part and imaginary part, itself composed of 

complex conjugate pairs over the positive domain of 0 < 𝑥 < ∞ for this equation.  Both the real and 

imaginary parts vary with the input of the x-variable. 

 

A simple subspace transform on the x-variable will generate the 𝑦 = 𝑓(𝑠) equation which corresponds 

to the example equation in 5.1.a. 

 

5.1.b: 

𝑦 = −
2

𝑠
+ √

1

𝑠
 

 

We will begin by examining these two separate equations as they both represent the value of y. 

 

5.1.c     𝑦 = 𝑓(𝑥): 

For simplicity will focus on only the positive values of the x-variable.  These values constitute the 

extended x-axis domain as the structure of the equation will generate negative arguments for the 

radical.  These arguments will produce solutions of the form: 

 

 5.1.c.i: 

 √−𝑛 =⊕ 𝑏 ≐ �̂�  where  �̂� = +√|𝑛| 
 

Radical bars still produce answers which are ±.  Again for simplicity we will only concern ourselves 

with the positive value solution from the radical. 

 

 

5.1.d: 

The equation 𝑦 = 2𝑥 + √−(𝑥) will produce for positive values of x, values of y in the form of  

 

 5.1.d.i: 

 y = a + bi 

 

The resolved solutions for the 𝑦 = 𝑓(𝑥) equation will plot onto the xy-plane as: 

 

 5.1.d.ii: 

 y = 𝑎 + 𝑏𝑖 = 𝑎 + �̂� = 𝑎 + �̇� Where �̇� is the resolved positive value of magnitude b. 



 

The y value will no longer be a two dimensional xi value but will instead be a single 𝑓(𝑥) value of the 

form 𝑎 + �̇�. 

 

5.1.e: 

The 𝑦 = 2𝑥 + √−(𝑥) is generating i-multiples for the positive values of the x-variable, which is being 

resolved to the positive-up value of the plus-and-minus b-magnitude of that i-multiple.  The negative-

down value of the plus-and-minus number, generated by 𝑦 = 2𝑥 + √−(𝑥), for each positive x-variable 

input, are plotted on the co-adjoining subspace sy-plane. 

 

This requires usage of the 𝑦 = 𝑓(𝑠)equation: 

 

 5.1.e.i: 

 𝑦 = −
2

𝑠
+ √

1

𝑠
 

 

The conjugate value for y, which corresponds to each y = a + bi number, and is of the form y = a - bi, is 

plotted on this sy-plane.  Because we are now dealing with s-axis inputs we must use the s-variable 

value which corresponds to the x-variable value that was generated the y = a + bi number on the 𝑦 =

2𝑥 + √−(𝑥) equation. 

 

These input values of s are of the format 

 

 5.1.e.ii: 

 𝑠 = −
1

𝑥
 

 

This is the subspace transformation equation which relates x and s variable inputs.  The chart below 

displays several values for all variables being considered.  For 𝑥 = 2, the corresponding s-axis input is 

𝑠 = −
1

2
. 

 

When the corresponding s-variable is used it will generate from the equation 𝑦 = −
2

𝑠
+ √

1

𝑠
, a value for 

y of the form: 

 

 5.1.e.iii: 

 y = 𝑎 + 𝑏𝑖 = 𝑎 + �̌� = 𝑎 − �̇� 

 

   ↓ 

      = 𝑎 − �̂� = a - bi 

 

The value obtained for the down conjugate pairs, when solving for y using the values which correspond 

to the given x inputs will generate an unresolved value for y in terms of s, which is equivalent to 𝑦 =
𝑎 − 𝑏𝑖.  The real and imaginary parts for y will be identical, differing only by the + sign in the 𝑦 =
𝑓(𝑥) equation, and the − sign in the 𝑦 = 𝑓(𝑠) equation.  Their resolved values will then differ by the 

addition or subtraction of the resolved i-multiple value.  Like the 𝑓(𝑥) equation the resolved value of 

the 𝑓(𝑠) equation will produce a single value of y of the form below: 



 

 

 5.1.e.iv: 

 𝑦 = 𝑎 − �̇� Where �̇� is the resolved positive value of magnitude b, subtracted, because it is  

   the down value associated with the corresponding generating value form the f(x)  

   equation. 

 

5.2—Equivalence with y: 

The values of y will differ based on the resolved solutions.  This should not be surprising as even the 

unresolved values differ.  Consider the single point denoted here below for the value x = 2. 

 

 5.2.a: 

 For x = 2 and  𝑦 = 2𝑥 + √−(𝑥)  𝑦 = −
2

𝑠
+ √

1

𝑠
 

 

   Then: 𝑠 = −
1

2
 

 

 𝑦 = 2(2) + √−(4)  → 𝑦 = 4 + 1.414𝑖  →  𝑦 = 4 + 1̂. 414  →  𝑦 = 5.414 

 

 𝑦 = −
2

−
1

2

+ √
1

−
1

2

  →  𝑦 = 4 + 1.414𝑖  →  𝑦 = 4 + 1̌. 414  →  𝑦 = 4 − 1.414  →  𝑦 = 2.586 

 

Despite this we still have the situation that: 

 

 5.2.b: 

   2𝑥 + √−(𝑥)  =  y  =  −
2

𝑠
+ √

1

𝑠
 

 

This implies that for the value of x = 2, which produces the resolved value of y = 5.414, there must be 

some value on the sy-plane for the s-variable which will generate y = 5.414.  An examination of the 

graphs generating these values will find this is true. 

 

 5.2.b.i: 

   For 𝑠 = −0.2729191 … you will find y = 5.414. 

 

   The decimal value for s here has been heavily truncated. 

 

This situation exists for all values shared between the two equations, 𝑦 = 2𝑥 + √−(𝑥) and 𝑦 = −
2

𝑠
+

√
1

𝑠
.  Though the values for x and s inputs will likely be different, there shall exist inputs for each 

variable which generate the same y output value.  This must be as both the x and s equation are related 

and share the output y axis. 

 

Consider below the chart of several values for the various variables and the subsequent two directional 

graphs of the xy-plane and the sy-plane. 

 

 



 

 

5.3—The xys-graph: 

𝑦 = 2𝑥 + √−(𝑥) and 𝑦 = −
2

𝑠
+ √

1

𝑠
 

 

x Input x real part of 

y value. 

x imaginary 

and resolved 

y output for 

y = f(x) 

s input from s 

= -1/x 

s real part of 

y value 

s imaginary 

and resolved 

y output for 

y = f(s) 

1 2 i 

1 

2 + i 

3 

-1 2 i 

-1 

1 

2 4 1.414i 

1.414 

4 + 1.414i 

5.414 
−

1

2
 

4 1.414i 

-1.414 

2.586 

3 6 1.732i 

1.732 

6 + 1.732i 

7.732 
−

1

3
 

6 1.732i 

-1.732 

4.268 

4 8 2i 

2 

8 + 2i 

10 
−

1

4
 

8 2i 

-2 

6 

5 10 2.236i 

2.236 

10 + 2.236i 

12.236 
−

1

5
 

10 2.236i 

-2.236 

7.764 

6 12 2.449i 

2.449 

12 + 2.449i 

14.449 
−

1

6
 

12 2.449i 

-2.449 

9.551 

7 14 2.645i 

2.645 

14 + 2.645i 

16.645 
−

1

7
 

14 2.645i 

-2.645 

11.355 

8 16 2.828i 

2.828 

16 + 2.828i 

18.828 
−

1

8
 

16 2.828i 

-2.828 

13.172 

9 18 3i 

3 

18 + 3i 

21 
−

1

9
 

18 3i 

-3 

15 

10 20 3.162i 

3.162 

20 + 3.162i 

23.162 
−

1

10
 

20 3.162i 

-3.162 

16.838 

 

5.3.a 

Figure 24 below shows several values for the graph of the xy-plane defined by the equation 𝑦 = 2𝑥 +

√−(𝑥).  Consider the second row of values from the chart in section 5.3 above: 

 

2 4 1.414i 

1.414 

4 + 1.414i 

5.414 
−

1

2
 

4 1.414i 

-1.414 

2.586 

 

These are the values for the 𝑓(𝑥) and 𝑓(𝑠) functions when x = 2.  The value for y resolves to 5.414 on 

the xy-plane but to 2.586 on the sy-plane.  Despite this because the y-axis is shared by both equations 

and both equations are equal to y, the y variable must have some x-input which also produces y = 2.586.  

Both of these points are shown below in the graphs of Figure 24, 24b and 24c. 

 

𝑦 = 𝑓(𝑥)   𝑦 = 𝑓(𝑥) 

𝑦 = 𝑓(2) = 5.414  𝑦 = 𝑓(0.8359) = 2.586 

 

 



 

 

 

5.3.b: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Now consider the equation 𝑦 = −
2

𝑠
+ √

1

𝑠
.  When x = 2 in the y = f(x) equation, the corresponding value 

which generates the down value and complex conjugate to it for the y output is given by 𝑠 = −
1

2
.  

When 𝑠 = −0.5 the y-axis output is 2.586.  Likewise, because the 𝑓(𝑥) and 𝑓(𝑠) equations both equal 

y there must be a value at which y equals 5.414 for some s-axis input.  They are shown below in the 

Graphs of Figures 25, 25b and 25c. 

 

5.3.c: 

2 4 1.414i 

1.414 

4 + 1.414i 

5.414 
−

1

2
 

4 1.414i 

-1.414 

2.586 

 

𝑦 = 𝑓(𝑠)   𝑦 = 𝑓(𝑠) 

𝑦 = 𝑓(−0.5) = 2.586 𝑦 = 𝑓(−0.27292) = 5.414 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6.0—Building up the xys-volume from the original xiy-graph 

This section will revisit some of the graphs already explored as we use them to produce the fully 

resolved complex plane, a real volume composed of real-space and subspace axis.  We will continue 

using the example equation 𝑦 = 2𝑥 + √−(𝑥) and the implied co-adjoining subspace equation it 

implies, 𝑦 = −
2

𝑠
+ √

1

𝑠
. 

 

The graph of the function 𝑦 = 2𝑥 + √−(𝑥) produces i-multiples for the positive values of the x-

variable.  For the positive domain of x this leaves y in the form of a complex number such that 𝑦 = 𝑎 +
𝑏𝑖.  We have thoroughly explored this concept.  Now we will consider the full domain and range of this 

equation and its co-adjoining subspace equation, their union and their resolution to a real volume from 

the subspace plane. 

 

6.1.a       𝑦 = 2𝑥 + √−(𝑥) for domain 0 < 𝑥 < ∞ 

This is the positive domain of x which generates the i-multiples.   For the moment we will re-explore its 

form on the graph of the complex plane.  Here is shown the output graph of 𝑦 = 2𝑥 + √−(𝑥) over the 

positive domain of x. 

 

Figure 26: 

 

This is the output graph of the equation y = 2x + √−(x) shown on the complex plane for the positive 

domain of x.  The points plotted here are the values of the y axis, shown as two dimensional points 

composed of real x values and imaginary i values.  To make this point clearer, here in Figure 26 the real 

x axis is shown to be points composed of 2x values.  The point shown on this horizontal real axis is 

twice the actual x axis value used to generate it.  It is the real portion of the y axis that is plotted here.  

Likewise the vertical i-axis has been replaced with a label for √−(x) indicating that values plotted here 

are the imaginary components of the y value, and the point plotted is the i-multiple value of the root of 

the x value that generated it. 

 

6.1.b—The Negative Domain—Graph of 𝑦 = 2𝑥 + √−(𝑥) for domain −∞ < 𝑥 ≤ 0 

The other portion of the x-domain, the negative values of x will not generate any i-multiples and so can 

be graphed outright on a standard Cartesian plane.  It is shown below in Figure 27. 

 



Figure 27: 

Here we see the negative domain for the x inputs.  

Because there were no i-multiples being generated it was 

graphable on the Cartesian plane.  Each point here is 

composed of only real values, showing x-axis inputs and 

y-axis outputs. 

 

There isn’t much special to this part of the equation and it 

will meet up nicely with the resolved version of the 

equation representing the positive domain. 

 

6.1.c 

The graphs of the positive and negative domain of the 

example function 𝑦 = 2𝑥 + √−(𝑥) cannot simply be 

connected up.  The first graph provided in 6.1.a shows the 

domain of the x inputs which produce i-multiples.  The 

points are representations of two dimensional output 

values of the y axis in the form of 𝑦 = 𝑎 + 𝑏𝑖, whereas 

the graph of 6.1.b shows the negative domain of the x 

variable plotting points on a true Cartesian Plane which 

shows both actual input values for x and output values for 

y. 

 

It is necessary to convert the i-multiple values to real value equivalences before joining up the two 

halves.  This will follow the Null Algebra resolutions for ⨁ numbers to their positive up components 

on the real space axis, the axis of occurrence in this example. 

 

For 0 < 𝑥 < ∞ 𝑦 = 2𝑥 + √−(𝑥) let 𝑏 = √|𝑥| 
 

 Then: 𝑦 = 2𝑥 + �̂� 

 

This is graphed here at right in Figure 28: 

 

Figure 28: 

 

If you compare this graph with the one in 6.1.a, you’ll see 

they are similar but clearly show different ways to express 

the same data set.  It is the graph of 6.1.c (the resolved 

range for the positive domain of the x input) which must be 

used to unite with the graph of 6.1.b (the unproblematic 

point sets generated for the negative domain of x) to display 

the full domain of x and the full range of y. 

 

 

 

 

 

 



6.1.d: 

Graph of the full domain and full range of 𝑦 = 2𝑥 + √−(𝑥) on the xy-plane, is shown below in Figure 

29.  Note we are specifying the xy-plane.  We will considered the fully resolved domain and range on 

the sy-plane in a moment. 

 

Variable Sample Point Sets 

x -4 -3 -2 -1 

y -6 -4.268 -2.586 -1 

 

 

x 0 1 2 

y 0 2(1) + 1̂ 

3̇ 

2(2) + 1̂. 414 

5̇. 414 

 

 

x 3 4 

y 2(3) + 1̂. 732 

7̇. 732 

2(4) + 2̂ 

10̇ 

 

 

 

6.2: 

The graph of Figure 29 shown in 6.1.d allows us to look 

at the complete equation of 𝑦 = 2𝑥 + √−(𝑥), with its 

resolved i-multiples on the xy-plane, a standard Cartesian 

Plane.  However it ignores another important aspect, the 

resolution of the down components which correspond to 

the complex conjugate pairs of the i-multiples being 

generated for the positive domain of x.   

 

These values are not shown here as they exist on the co-adjoining subspace sy-plane.  We began with 

an example equation of the form 𝑦 = 𝑓(𝑥).  The co-adjoining subspace whose equation is implied from 

the given equation and has the down conjugate values is of the form 𝑦 = 𝑓(𝑠).  It is shown here below. 

(See Null Algebra text at https://vixra.org/abs/2103.0131 for a full description on how to obtain this 

equation and reasoning for its existence.) 

 

6.2.a: 

𝑦 =
Ξ

𝜍𝑠
 (2𝑥) + 

Ξ

𝜍𝑠
 √−(𝑥)        ⟶        𝑦 = −

2

𝑠
+ √

1

𝑠
 

 

The graph below begins with the negative domain for the s variable over the domain of −∞ < 𝑠 < 0.  

This will generate i-multiples for this equation.  They will be plotted unresolved on the complex plane 

shown here in Figure 30. 

 

 

 



For 𝑦 = −
2

𝑠
+ √

1

𝑠
  over the domain of −∞ < 𝑠 < 0 

 

Let 𝑏 = √|𝑠|  Then   𝑦 = −
2

𝑠
+

𝑖

𝑏
 

 

Figure 30: 

 
 

 

Because we began with a known 𝑦 = 𝑓(𝑥) equation we need not explore the 𝑦 = 𝑓(𝑠) equation on the 

complex plane output plot for the domain which generates i-multiples on that equation.  It is provided 

here to illustrate a couple of features.  First is that it actually exists.  It’s entirely possible to receive a 

given equation of the form 𝑦 = 𝑓(𝑠).  If that occurs though know that the s-axis remains the subspace 

of the x-axis.  The s-axis is a time-like space axis setting the location in the space of time were events 

marked out on the x-axis occur.  We move along the x-axis in real space as a true degree of freedom.  

This not so with the s-axis. 

 

Because the s-axis represents that space of time and bound to the x-axis in a unique way, it will still 

take the down values when i-multiples occur on the 𝑦 = 𝑓(𝑠) equation, even if you began with the 𝑦 =
𝑓(𝑠) equation.  From this perspective the transforms will generate the real-space equation on the 

central plane from the co-adjoining subspace plane. 

 

Thus the s-axis is a subspace axis.  Even if beginning with an equation of the form 𝑦 = 𝑓(𝑠) it remains 

a subspace.  The place of occurrence for the equation, whether generating the i-multiplies or not, is the 

real space equation on the central plane of the form 𝑦 = 𝑓(𝑥). 

 

Consider Figure 31 which shows the unresolved output plot on the complex plane for both 𝑦 = 2𝑥 +

√−(𝑥) and 𝑦 = −
2

𝑠
+ √

1

𝑠
.  Again in the comparison we are showing only the positive output for the 

root, the positive valued conjugate on both of the equations. 

 

 



 
 

6.2.b: 

Though the graphs of si-plane shown in figure 30 is accurate on the complex plane we need to convert 

it into the 𝑦 = 𝑓(𝑠) equation for the negative domain.  Because this is a subspace equation for the 

corresponding 𝑦 = 𝑓(𝑥), it will take the down values when resolving the i-multiples.  It is shown here 

below in Figure 32. 

 

For 𝑦 = −
2

𝑠
+ √

1

𝑠
  over the domain of −∞ < 𝑠 < 0 

 

Let 𝑏 = √|𝑠|  Then   𝑦 = −
2

𝑠
+ (⊕

1

𝑏
)    ⟶    −

2

𝑠
+

1

�̌�
   ⟶    −

2

𝑠
−

1

�̇�
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6.2.c: 

The rest of the domain for 𝑦 = −
2

𝑠
+ √

1

𝑠
  from 0 ≤ 𝑠 < ∞, is simply given by the positive inputs for s.  

The vertical asymptote at s = 0 is resolvable to 0. 

 

For  𝑦 = 𝑓(𝑠) = 𝑓(0)  =      −
2

0
+ √

1

0
 =       −𝜂0 + √𝜂0      =      −𝜂0 + 𝜂0 = 0  

 

The graph for the positive domain of s is shown here in figure 33: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.d: 

The graph of 𝑦 = −
2

𝑠
+ √

1

𝑠
 for the full range and domain of both variables is shown in Figure 34, 

uniting the graphs of 6.2.b and 6.2.c. 

 

 
 



6.3.a 

Consider the comparison between the full graphs of 𝑦 = 2𝑥 + √−(𝑥) and 𝑦 = −
2

𝑠
+ √

1

𝑠
  shown here 

in Figure 35. 

 

 
All that remains is to unite these two graphs, which share output values on the y-axis, into an equation 

of the form 𝑦 = 𝑓(𝑥 , 𝑠).  The temptation here may be to directly unite them as shown in 6.3.a.i. 

 

6.3.a.i: 

𝑦 = [2𝑥 + √−(𝑥)] + [−
2

𝑠
+ √

1

𝑠
] 

 

This graph treats both x and s as free variables.  The s-variable as a subspace of x maps the locations of 

where the x-values of points on the xy-graph occur at the value of the corresponding s-value on the sy-

plane. This can also be seen as a plane which shows the various y values for all combinations of x and 

s.  The actual graph should depict a line through the xys-volume and must be solved for parametrically, 

while the 𝑦 = 𝑓(𝑥 , 𝑠) equation of 6.3.a.i is a plane through the xys-volume. 

 

The graph shown in Figure 36 shows the graph of 𝑦 = [2𝑥 + √−(𝑥)] + [−
2

𝑠
+ √

1

𝑠
] for the negative 

domain of x and the full domain of s.  Figure 37 shows the same equation graphed over the resolved 

positive domain of x, with the fully resolved domain of s.  It is separated to allow a less restrictive 

viewing of the planes mapped out by the function using x and s as free variables. 

 



 

 

 

 



 

The graphs of Figures 36 and 37 show all possible combinations of the family equations defined by 

𝑦 = [2𝑥 + √−(𝑥)] + [−
2

𝑠
+ √

1

𝑠
].  The specific equation for which s is a variable whose values are a 

subspace to and defined by x is included within these planes.  To plot the specific 𝑦 = 𝑓(𝑥, 𝑠) equation 

implied by the given 𝑦 = 𝑓(𝑥) equation we will parametrically substitute the values for the x input, the 

y output and the corresponding s subspace values.  

 

6.3.b: 

Given the 𝑦 = 𝑓(𝑥, 𝑠) equation  𝑦 = [2𝑥 + √−(𝑥)] + [−
2

𝑠
+ √

1

𝑠
] 

 

Let 𝑥 = 𝑡  With subspace 𝑠 = −
1

𝑥
 then 𝑠 = −

1

𝑡
 

 

Substitutions provide:    𝑦 = [2(𝑡) + √−(𝑡)] + [−
2

−
1

𝑡

+ √
1

−
1

𝑡

] 

 

      𝑦 = [2(𝑡) + √−𝑡] + [2𝑡 + √−𝑡] 
 

      𝑦 = 4𝑡 + 2(√−𝑡) 

 

6.3.b.i: 

We now have a set of three parametric equations which will plot out xys points.  The point for the y 

value was formed from a 𝑦 = 𝑓(𝑥, 𝑠) equation.  The 𝑦 = 𝑓(𝑥, 𝑠) equation, had two separate 

components, one for x and one for s which had i-multiples being generated for certain portions of the 

domains.  These occurred for the positive domain of x and the negative domain of s, and yet with the 

expanded full domain for each variable, the y value shared output points for both the 𝑦 = 𝑓(𝑥) and 𝑦 =
𝑓(𝑠) equations. 

 

The parametric equation for y must still represent this quality.  Note also that we have sought to use the 

parameter t, but have the negative of the parameter in the radical bar for the y equation. 

 

We need to first examine the resolved values of this –t inside the radical bar. 

 

Let 𝑏 = √|𝑡|  Then for this example when the domain is: 0 < 𝑡 < ∞ the parameter is  

    negative and generates i-multiples.  Then the equation becomes 

 

    𝑦 = 4𝑡 + 2(√−𝑡) = 4𝑡 + 2𝑏 ≡ 4𝑡 + 2�̂� 

 

Though the usage of the negative domain of t did not generate any i-multiples, this magnitude of 𝑏 =

√|𝑡|, is identical to the positive up resolved value of ⨁𝑏 = √−𝑡.  Because we may apply this positive 

value here, the negative down component will be applied with the positive domain of t which does 

generate i-multiples.  This is an analog to instances of ± values of radicals, which though both are 

mathematically valid solutions, usually only one of them will apply to a given situation. 

 

 



Let 𝑏 = √|𝑡|  Then for 0 < 𝑡 < ∞ 

 

𝑦 = 4𝑡 + 2(√−𝑡) = 4𝑡 + 2(⨁𝑏) ≡ 4𝑡 + 2�̌� ≡ 4𝑡 − 2𝑏 

 

 

 

    For  −∞ < 𝑡 ≤ 0 

 

𝑦 = 4𝑡 + 2(√−𝑡) = 4𝑡 + 2𝑏 ≡ 4𝑡 + 2�̂� 

 

6.3.b.ii: 

Thus we make the following adaptations to the set of parametric equations. 

 

The line graph of the equation 𝑦 = [2𝑥 + √−(𝑥)] + [−
2

𝑠
+ √

1

𝑠
] through the xys subspace hyperplane 

is defined parametrically. 

 

The unresolved parametric equation set is: 〈𝑥, 𝑦 , 𝑠〉 =  〈𝑡 , [ 4𝑡 + 2(√−𝑡)] , −
1

𝑡
〉 

 

For −∞ < 𝑡 < 0 Using: 𝑏 = √|𝑡| ⟶ 4𝑡 + 2(√−𝑡) 

       4𝑡 + 2𝑏 ≡ 4𝑡 + 2�̂� 

 

   Resolved: 

      〈𝑥, 𝑦 , 𝑠〉 =  〈𝑡 , [ 4𝑡 + 2(√−𝑡)] , −
1

𝑡
〉 

      No special considerations for negative domain. 

 

 

 

For 𝑡 = 0  〈𝑥, 𝑦 , 𝑠〉 =  〈0 , 0 , −𝜂〉 =  〈0 , 0 , 0̇〉 
 

 

 

 

For 0 < 𝑡 < ∞ Using: 𝑏 = √|𝑡| ⟶ 4𝑡 + 2(√−𝑡)  

       4𝑡 + 2(⨁𝑏)   ≡   4𝑡 + 2�̌�   ≡   4𝑡 − 2𝑏 

 

   Resolved: 

 

  〈𝑥, 𝑦 , 𝑠〉 =  〈𝑡 , [ 4𝑡 + 2(√−𝑡)] , −
1

𝑡
〉   ≡   〈𝑡 , [ 4𝑡 − 2(√𝑡)] , −

1

𝑡
〉 

 

The final resolution here is representative of the positive domain generating an ⨁ whose 

magnitude is likewise represented by 𝑏 = √|𝑡|.  Because in this domain, 0 < 𝑡 < ∞, the 

value generated from the root of negative t, the value ⨁𝑏 = √−𝑡, will resolve to the 

negative down value, such that ⨁𝑏 ⟶ �̌� ≐ −𝑏, we may replace the –t with the positive 

square of b, and given we are only concerning ourselves with the positive solution to the 



radical bars, preplace the + sign with a – sign to account for the down resolution of the 

generated i-multiple.  This will allow it to be easily graphed. 

 

Figure 38 below shows various angles of the graph of 〈𝑥, 𝑦 , 𝑠〉 =  〈𝑡 , [ 4𝑡 + 2(√−𝑡)] , −
1

𝑡
〉. 

 

Figure 38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



From these various rotations of the xys graph, given by 〈𝑥, 𝑦 , 𝑠〉 =  〈𝑡 , [ 4𝑡 + 2(√−𝑡)] , −
1

𝑡
〉, we can 

see the view of the xy plane is identical to the graph of 𝑦 = 2𝑥 + √−𝑥 shown in Figure 29.  Likewise 

the view of the sy plane is identical to the graph of 𝑦 = −
2

𝑠
+ √

1

𝑠
 shown in Figure 34. 

 

This represents a full expansion of the domain and range of an equation which generates multiplies.  It 

illustrates how the resolution of such an equation, in this case the equation 𝑦 = 2𝑥 + √−𝑥, can be 

represented as a three directional xys equation provided by 〈𝑥, 𝑦 , 𝑠〉 =  〈𝑡 , [ 4𝑡 + 2(√−𝑡)] , −
1

𝑡
〉. 

 

Remember though there are additional directional axis for a 𝑦 = 𝑓(𝑥) equation which were not 

explored in this example.  The u-axis is the subspace of the y-axis and could have been included with 

any of the other axis.  For instance we could have plotted the xsu volume as 

 〈𝑥, 𝑠 , 𝑢〉 = 〈𝑡, −
1

𝑡
 , −

1

4𝑡+2(√−𝑡)
〉.  We could additionally have chosen to include the A-axis, or even 

directional time.  Usually directional time is itself represented by t.  In such a case it would be 

necessary to replace the parameter with a different variable. 

 

A third expansion to this mathematical discipline, Null Algebra Extension III, will explore an example 

which will necessitate exploration of the u-axis in addition to x, y and s using the example expression 

𝑖𝑖.  This value is evaluated in traditional Algebra to be ≈ 0.20788.  We will explore the Null Algebra 

application of the solution which shows values that include 0.20788, depending on which dimensional 

plane is being viewed.  We’ll explore this value as part of an equation, 𝑦 = √𝑥
√𝑥

 for which 𝑦 = 𝑖𝑖 is 

but one point obtained when 𝑥 = −1.  This third extension will focus on the Null Algebra solutions to 

complex exponents. 

 

 

 


