Cosmological constant

Matthew Stephenson

Stanford University
E-mail: matthewjstephenson@icloud.com

Contents

2 Cosmological laboratory

1 Strongly coupled hidden sector

Assume that our universe has a strongly coupled hidden sector on top of the visible (standard model) sector. They may be weakly coupled. The theory is defined in an evolving universe with a metric $g_{a b}$,

$$
\begin{equation*}
S=\frac{1}{16 \pi G_{4}} \int d^{4} x \sqrt{-g}\left[S_{v i s}+S_{h i d}+S_{i n t}\right] . \tag{1.1}
\end{equation*}
$$

Furthermore, we assume that the cosmological constant of the boundary has a zero cosmological constant!

We will assume that the hidden sector has a holographic dual and that the fourdimensional hyper-surface is embedded into a five dimensional bulk space time $G_{\mu \nu}$ with a metric

$$
\begin{equation*}
d s^{2}=-e^{2 \lambda(r)} d t^{2}+e^{2 \nu(r)} d r^{2}+\left(\frac{r}{L}\right)^{\alpha} d \vec{x}^{2} \tag{1.2}
\end{equation*}
$$

To find the embedding $t(r)$, we define the four un-normalised tangent vectors

$$
\begin{array}{ll}
R^{\mu}=\left(\frac{\partial t}{\partial r}, 0,0,0,1\right), & X^{\mu}=(0,1,0,0,0), \\
Y^{\mu}=(0,0,1,0,0), & Z^{\mu}=(0,0,0,1,0) . \tag{1.4}
\end{array}
$$

The normalised normal vector to the hyper-surface is

$$
\begin{equation*}
n_{\mu}= \pm \sqrt{\frac{e^{2 \lambda}}{e^{2(\lambda-\nu) t^{\prime 2}-1}}}\left(-1,0,0,0, t^{\prime}\right) . \tag{1.5}
\end{equation*}
$$

The induced metric can be written as

$$
\begin{equation*}
\gamma_{\mu \nu}=g_{\mu \nu}-n_{\mu} n_{\nu} \tag{1.6}
\end{equation*}
$$

and the extrinsic curvature as

$$
\begin{equation*}
K^{\mu \nu}=-\frac{1}{L} \gamma^{\mu \nu} . \tag{1.7}
\end{equation*}
$$

The junction equation (1.7) allows us to solve for $\partial t / \partial r$,

$$
\begin{equation*}
\frac{\partial t}{\partial r}= \pm \frac{r e^{2 \nu-\lambda}}{\sqrt{r^{2} e^{2 \nu}-\frac{1}{4} L^{2} \alpha^{2}}} \tag{1.8}
\end{equation*}
$$

The induced metric's line element is thus

$$
\begin{equation*}
d s^{2}=-\left(\frac{L^{2} \alpha^{2} e^{2 \nu}}{4 r^{2} e^{2 \nu}-L^{2} \alpha^{2}}\right) d r^{2}+\left(\frac{r}{L}\right)^{\alpha} d \vec{x}^{2} . \tag{1.9}
\end{equation*}
$$

The metric has no dependence on the function $\lambda(r)$.
We can now look for the time coordinate τ and the FRW scale factor $a(\tau)$ of the boundary space-time. The time coordinate is

$$
\begin{equation*}
\tau=\tau_{0} \pm \int d r \frac{L \alpha e^{\nu}}{\sqrt{4 r^{2} e^{2 \nu}-L^{2} \alpha^{2}}} \tag{1.10}
\end{equation*}
$$

In the late-time regime we have $r \gg 1$. Now, if $\lim _{r \rightarrow \infty} r^{2} e^{2 \nu}=0$ then τ would become imaginary. If $\lim _{r \rightarrow \infty} r^{2} e^{2 \nu}=\mathcal{O}(1)$, as in the AdS-Schwarzschild, the integral depends on the details of the function ν. In that case

$$
\begin{equation*}
\nu=-\frac{1}{2} \log \left[\left(\frac{r}{L}\right)^{2}\left(1-\left(\frac{r_{h}}{r}\right)^{4}\right)\right] \tag{1.11}
\end{equation*}
$$

If, however, $r^{2} e^{2 \nu} \gg \frac{1}{4} L^{2} \alpha^{2}$, we find that

$$
\begin{equation*}
\tau=\tau_{0}+\frac{L \alpha}{2} \log r . \tag{1.12}
\end{equation*}
$$

This result does not depend on the details of two functions specifying the metric.
Finally, we are able to write down the late- τ hyper-surface metric

$$
\begin{equation*}
d s^{2}=-d \tau^{2}+a(\tau)^{2} d \vec{x}^{2} \tag{1.13}
\end{equation*}
$$

where the scale factor is

$$
\begin{equation*}
a(\tau)=e^{\frac{1}{2 L} \tau} . \tag{1.14}
\end{equation*}
$$

The Hubble time is

$$
\begin{equation*}
H=\frac{\dot{a}}{a}=\frac{1}{2 L}, \tag{1.15}
\end{equation*}
$$

which can be written in terms of the vacuum energy density, $H^{2}=8 \pi G_{4} \rho_{V} / 3$. Furthermore, $\rho_{V}=3 /\left(32 \pi L G_{5}\right)$ and $\Lambda=8 \pi G_{4} \rho_{V}$, which gives us an effective cosmological constant on the brane, which is universal for all theories [of some type]. The cosmological constant is

$$
\begin{equation*}
\Lambda=\frac{3}{4 L^{2}}, \tag{1.16}
\end{equation*}
$$

and is provided in the dual description solely by the dynamics of the strongly coupled hidden sector. In reality $\Lambda \approx 10^{-52} \mathrm{~m}^{-2}$ or $\Lambda \sim 10^{-121} M_{P}^{2}=10^{-121} 10^{38} \mathrm{GeV}^{2}=10^{-83} \mathrm{GeV}^{2}$ in $c=h=1$ units. Thus $L^{2} \sim 10^{83} \mathrm{GeV}^{-2}$ and $L^{4} \sim 10^{166} \mathrm{GeV}^{-4}$. Assume $1 / \ell_{s}=M_{p}$, so

$$
\begin{equation*}
\frac{L^{4}}{\ell_{s}^{4}} \sim 10^{166} \cdot 10^{76}=10^{242} \tag{1.17}
\end{equation*}
$$

or

$$
\begin{equation*}
L \sim 10^{26} \mathrm{~m} \tag{1.18}
\end{equation*}
$$

The diameter of the sphere which is the observable universe is $8.8 \times 10^{26} \mathrm{~m}$.
In the standard AdS/CFT example with D3 branes the supergravity description is applicable in the regime

$$
\begin{equation*}
\frac{L^{4}}{\ell_{s}^{4}} \sim g_{s} N \sim g_{Y M}^{2} N=\lambda \gg 1 \tag{1.19}
\end{equation*}
$$

Hence, $\Lambda \sim \frac{1}{\ell_{s}^{2} \sqrt{\lambda}}$

$$
\begin{equation*}
\Lambda \sim \frac{1}{L^{2}} \ll \frac{1}{\ell_{s}^{2}} \tag{1.20}
\end{equation*}
$$

This is not a very strong bound, but at least we know that the cosmological constant needs to be much smaller that the string scale.

Gubser states that the cut-off of the theory can be measured as the energy of a fundamental string stretched form the Planck brane to the horizon of AdS_{5} when measure in time τ. This is equivalent to separating one D3 brane from the rest so that the string tension give the mass of the heaviest W boson. Now, since at large τ requires large r, by UV/IR the dual theory should be able to access the extreme UV degrees of freedom. Hence, we require

$$
\begin{equation*}
\Lambda_{\text {cut-off }} \sim \frac{L}{\alpha^{\prime}} \sim \frac{L}{\ell_{s}^{2}}, \tag{1.21}
\end{equation*}
$$

so for supergravity in the bulk to be a good approximation

$$
\begin{equation*}
\Lambda \sim \frac{1}{L^{2}} \sim \frac{1}{\ell_{s}^{4} \Lambda_{\text {cut-off }}^{2}} \ll \frac{1}{\ell_{s}^{2}} \Longrightarrow 1 \ll \ell_{s}^{2} \Lambda_{\text {cut-off }}^{2} \tag{1.22}
\end{equation*}
$$

Rough estimate of the string scale near the Planck scale gives

$$
\begin{equation*}
\Lambda \ll M_{p}^{2} \tag{1.23}
\end{equation*}
$$

which is much better than the QFT calculation giving

$$
\begin{equation*}
\Lambda \sim G_{4} M_{p}^{4}=\hbar c M_{p}^{2} \tag{1.24}
\end{equation*}
$$

The Ricci tensor is given by

$$
\begin{equation*}
R_{a b}=\frac{3}{2 L^{2}} \operatorname{diag}\left[-1, e^{\sqrt{2} t / L}, e^{\sqrt{2} t / L}, e^{\sqrt{2} t / L}\right], \tag{1.25}
\end{equation*}
$$

and the Ricci scalar is given by

$$
\begin{equation*}
R=\frac{6}{L^{2}} . \tag{1.26}
\end{equation*}
$$

The Einstein's equation without higher-curvature terms should be satisfied in the late universe with small curvatures. If we use the holographic stress-energy tensor expression, from which the embedding equation was derived,

$$
\begin{equation*}
R^{\mu \nu}-\frac{1}{2} R \gamma^{\mu \nu}+\mathcal{O}\left(R^{2}\right)=\frac{2}{L} 8 \pi G_{5} T_{v i s}^{\mu \nu}+\frac{2}{L} 8 \pi G_{5} T_{\text {hid }}^{\mu \nu}, \tag{1.27}
\end{equation*}
$$

should contain higher-curvature terms. However, in order for each term to be sub-leading, we require

$$
\begin{equation*}
|R| \gg\left|R^{2}\right| \Longrightarrow 1 \gg \frac{1}{L^{2}} \Longrightarrow L^{2} \gg 1 \tag{1.28}
\end{equation*}
$$

The validity of the Einstein-Hilbert action on the boundary thus imposes a stronger bound on the effective cosmological constant

$$
\begin{equation*}
\Lambda \sim \frac{1}{L^{2}} \ll 1 \tag{1.29}
\end{equation*}
$$

2 Cosmological laboratory

Given the bulk metric

$$
\begin{equation*}
d s^{2}=-e^{2 \lambda(r)} d t^{2}+e^{2 \nu(r)} d r^{2}+\left(\frac{r}{L}\right)^{2 \beta} d \vec{x}^{2}, \tag{2.1}
\end{equation*}
$$

the induced metric is

$$
\begin{equation*}
d s^{2}=-\left(\frac{\beta^{2} L^{2} e^{2 \nu}}{r^{2} e^{2 \nu}-\beta^{2} L^{2}}\right) d r^{2}+\left(\frac{r}{L}\right)^{2 \beta} d \vec{x}^{2} \tag{2.2}
\end{equation*}
$$

Hence the boundary time is

$$
\begin{equation*}
\tau=\tau_{0} \pm \int d r \frac{\beta L e^{\nu}}{\sqrt{r^{2} e^{2 \nu}-\beta^{2} L^{2}}} \tag{2.3}
\end{equation*}
$$

and the scale factor

$$
\begin{equation*}
a(\tau)=\left(\frac{r(\tau)}{L}\right)^{\beta} \tag{2.4}
\end{equation*}
$$

Our goal is to reconstruct the bulk metric from our choice of $a(\tau)$. We assume that the foliation function $r(\tau)$ is invertible, so that

$$
\begin{equation*}
\frac{d \tau(r)}{d r}=\frac{L \beta e^{\nu(r)}}{\sqrt{r^{2} e^{2 \nu(r)}-\beta^{2} L^{2}}} \Longrightarrow \frac{d r(\tau)}{d \tau}=\frac{\sqrt{r(\tau)^{2} e^{2 \nu(\tau)}-\beta^{2} L^{2}}}{L \beta e^{\nu(\tau)}}, \tag{2.5}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\frac{d \log r(\tau)}{d \tau}=\frac{\sqrt{r(\tau)^{2} e^{2 \nu(\tau)}-\beta^{2} L^{2}}}{\beta L r(\tau) e^{\nu(\tau)}} . \tag{2.6}
\end{equation*}
$$

We know that

$$
\begin{equation*}
r(\tau)=L a(\tau)^{1 / \beta}, \tag{2.7}
\end{equation*}
$$

which means that we can solve for

$$
\begin{equation*}
e^{2 \nu(\tau)}=\frac{\beta^{2}}{a(\tau)^{2 / \beta}\left(1-L^{2}\left(\frac{d \log r(\tau)}{d \tau}\right)^{2}\right)}=\frac{\beta^{2}}{a(\tau)^{2 / \beta}\left[1-\left(\frac{L}{\beta} \frac{d \log a(\tau)}{d \tau}\right)^{2}\right]} . \tag{2.8}
\end{equation*}
$$

Hence, we know both $r(\tau)$ and $\nu(\tau)$, which are required for the metric, assuming we are able to invert $r(\tau)$ to find $\tau(r)$. The function $\lambda(r)$ is left undetermined. The bulk metric can be written in terms of new coordinates (t, τ, \vec{x}),

$$
\begin{equation*}
d s^{2}=-e^{2 \lambda(\tau)} d t^{2}+\frac{\beta^{2} L^{2}\left(\frac{d \log a(\tau)}{d \tau}\right)^{2}}{\beta^{2}-L^{2}\left(\frac{d \log a(\tau)}{d \tau}\right)^{2}} d \tau^{2}+a(\tau)^{2} d \vec{x}^{2} \tag{2.9}
\end{equation*}
$$

or

$$
\begin{equation*}
d s^{2}=-e^{2 \lambda(\tau)} d t^{2}+\frac{\beta^{2} L^{2} \dot{a}(\tau)^{2}}{\beta^{2} a(\tau)^{2}-L^{2} \dot{a}(\tau)^{2}} d \tau^{2}+a(\tau)^{2} d \vec{x}^{2} . \tag{2.10}
\end{equation*}
$$

In terms of the Hubble parameter,

$$
\begin{equation*}
H \equiv \frac{\dot{a}}{a}, \tag{2.11}
\end{equation*}
$$

the metric is

$$
\begin{equation*}
d s^{2}=-e^{2 \lambda(\tau)} d t^{2}+\frac{\beta^{2} L^{2} H(\tau)^{2}}{\beta^{2}-L^{2} H(\tau)^{2}} d \tau^{2}+a(\tau)^{2} d \vec{x}^{2} . \tag{2.12}
\end{equation*}
$$

We can think of λ as parametrising a family of different metrics, which all give FRW on the boundary. We should set $\beta=1$, most likely without the loss of generality, so that the metric is

$$
\begin{equation*}
d s^{2}=-e^{2 \lambda(\tau)} d t^{2}+\frac{L^{2} H(\tau)^{2}}{1-L^{2} H(\tau)^{2}} d \tau^{2}+a(\tau)^{2} d \vec{x}^{2} \tag{2.1.1}
\end{equation*}
$$

To simplify the metric, we could make the standard choice of $\lambda=-\nu$,

$$
\begin{equation*}
d s^{2}=-\frac{a(\tau)^{2 / \beta}\left(\beta^{2}-L^{2} H(\tau)^{2}\right)}{\beta^{4}} d t^{2}+\frac{\beta^{2} L^{2} H(\tau)^{2}}{\beta^{2}-L^{2} H(\tau)^{2}} d \tau^{2}+a(\tau)^{2} d \vec{x}^{2} . \tag{2.14}
\end{equation*}
$$

The simplest choice we can make is to take $\beta=1$, and $e^{2 \lambda}=(r / L)^{2}$. The bulk metric is then

$$
\begin{equation*}
d s^{2}=a(\tau)^{2}\left(-d t^{2}+d \vec{x}^{2}\right)+\frac{L^{2} H(\tau)^{2}}{1-L^{2} H(\tau)^{2}} d \tau^{2} . \tag{2.15}
\end{equation*}
$$

