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I. SOLUTIONS OF THE SHEAR SECTOR MODES IN THE IR LIFSHITZ LIMIT

A. IR geometry and k = 0 solutions

The geometry in the IR (r → ∞) approaches that of a pure Lifshitz geometry. In this limit we

have

f(r) → 1/r2z

g(r) → g∞/r2

h(r) → h∞/rz. (1)

The two differential equation in the shear sector are
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+
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In the limit of k → 0, the two equations decouple
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and we can find the asymptotic IR Lifshitz behaviour of Z1 and Z2 to be

Z1 =

(
1 +

i(z + 1)

2z
√
g∞

1

ωrz

)
rei

√
g∞ωrz/z (6)

Z2 =

(
1 +

iz
√
g∞

1

ωrz

)
ei
√
g∞ωrz/z, (7)

which are series expansions of the full (irrelevant) solutions

Z1 = r1+z/2H
(1)
z+2
2z

(
g1/2∞

ωrz

z

)
(8)

Z2 = rz/2H
(1)
3/2

(
g1/2∞

ωrz

z

)
. (9)

We would now like to find the k-dependent corrections to the above solutions to analytically

extract the hydrodynamical quasi-normal mode (QNM).

B. Cases with integer values of the exponent z

1. Cases with exponents z ≥ 3

We would like to find analytic k-dependent corrections to Z1 and Z2 in the Lifshitz IR region.

The corrections should be such that the limit of k → 0 smoothly reproduces the above k = 0

results. On the other hand, the limit of ω → 0 is not analytic and our solutions will represent an

asymptotic series in ω controlled by powers of r. Away from the in-falling boundary conditions at

the horizon (r → ∞), however, we expect that the limit of ω → 0 is defined as well. We anticipate

the form

Z1 = ei
√
g∞ωrz/zrP1(r, ω, k) (10)

Z2 = ei
√
g∞ωrz/zP2(r, ω, k), (11)

where P1 and P2 are polynomials in ascending powers of 1/r.

We can first expand equations (2) and (3) in k2r2f ≪ ω2. Since we only work with z > 1, the

expansion parameter tends to k2r2f = k2r2(1−z) → 0 in the IR. The expansion therefore makes

sense for all non-vanishing values of ω and finite values of k. The limits of our approximation are

k2 ≪ ω2r2(z−1) and r → ∞. (12)
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On top of that, we are interested in the hydrodynamical QNMs, hence we may think of both ω

and k as small. We find, up to O(k4),

0 = Z ′′
1 −

(
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r
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2(z − 1)k2
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+
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2
√
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Z ′
2 + 4

√
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+
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Z2 (13)

and
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2 − z − 1

r
Z ′
2 +

[
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(
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)
− 2z2
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−
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√
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Z ′
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Using a power series expansion in 1/r for Z1 and Z2 shows that we can recursively solve differential

equations (13) and (14), order-by-order in r, with two series of form

P1 = 1 +
∞∑

i=z−2

ai(ω, k)

ri

P2 = 1 +

∞∑
i=z−2

bi(ω, k)

ri
(15)

The non-zero terms in both series begin at order 1/rz−2. In the limit of k → 0 we find that

az−2 = az−1 = bz−2 = bz−1 = 0, az =
i(z+1)

2z
√
g∞ω and bz =

iz√
g∞ω , as required.

If we only seek the leading ω and k behaviour it suffices to consider the series with three terms

between i = z − 2 and i = z. In that case the equation (13) will be solved up to order O
(
1
r

)
,

leaving terms of order O
(

1
r2

)
and higher unsolved. Equation (14) will be solved up to order O

(
1
r2

)
,

leaving terms of order O
(

1
r3

)
and higher unsolved. Further extending polynomials P1,2 by n terms

is then able to solve the two differential equations by further n orders.

2. Special case with z = 2

A special case, which cannot be solved by the above ansatz is the case when z − 2 = 0, i.e.

z = 2. To solve the system we can use the following modified ansatz:

Z1 = e
i
√

g∞ωrz

z
+f(r)rP1(r, ω, k) (16)

Z2 = e
i
√

g∞ωrz

z
+f(r)P2(r, ω, k). (17)
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It is clear that since equations (13) and (14) have no constant terms, the functions in the exponents

must equal, so it is sufficient to find a single f(r) for both Z1 and Z2. To only find f(r), it is

sufficient to simply set Z1 = 0 and use equation (14) to leading order in k. We are left with

0 = Z ′′
2 − 1

r
Z ′
2 +

[
g∞r2

(
ω2 − k2

r2

)
− 8

r2

]
Z2 (18)

to which the full solution is [completely irrelevant, but it’s fun to play with special functions :-) ]

Z2 = r4e
1
2
iω

√
g∞r2

[
C1U

(
2 +

i
√
g∞k2

4ω
, 4,−i

√
g∞ωr2

)
+ C2L

3

−2− i
√
g∞k2

4ω

(
−i

√
g∞ωr2

)]
, (19)

where U is the confluent hypergeometric function and Lλ
n(z) the Laguerre polynomial.

Analysing its asymptotics near r → ∞, we find that C2 = 0 in order to only keep e+
1
2
iω

√
g∞r2 terms

(the in-falling b.c.). To match this solution onto the k = 0 solution we must set C1 = −g∞ω2.

There is of course still the freedom of multiplying the entire solution by a constant. Expanding in

1/r we find

Z2 = −g∞ω2r4e
1
2
i
√
g∞ωr2U

[
2 +

i
√
g∞k2

4ω
, 4,−i

√
g∞ωr2

]
= e

1
2
i
√
g∞ωr2

(
−i

√
g∞ωr2

)− i
√
g∞k2

4ω [1 + ...]

= exp

{
i
√
g∞ω

2

(
r2 − k2

2ω2
log
(
−i

√
g∞ωr2

))}
[1 + ...] . (20)

Therefore

ef(r) =
(
−i

√
g∞ωr2

)− i
√
g∞k2

4ω = e−
i
√
g∞k2

4ω
log(−i

√
g∞ωr2). (21)

Note that this structure is similar to the more usual AdS cases at finite temperature...

We can now use, as before, polynomials P1,2 to find

Z1 = e
1
2
i
√
g∞ωr2− i

√
g∞k2

4ω
log(−i

√
g∞ωr2)r

(
1−

√
2k

r
+

12iω2 − 12
√
g∞ωk2 + ig∞k4

16
√
g∞ω3r2

−
32iω2k − 4

√
g∞ωk3 + ig∞k5

8
√
2g∞ω3r3

+ ...

)
Z2 = e

1
2
i
√
g∞ωr2− i

√
g∞k2

4ω
log(−i

√
g∞ωr2)

(
1 +

k√
2ω2r

+
32iω2 − 4

√
g∞ωk2 + ig∞k4

16
√
g∞ω3r2

+ ...

)
(22)

so that both (13) and (14) are satisfied to O(1/r2).

II. QUASI-NORMAL MODES

We would like to find the hydrodynamical QNM in the shear sector of the electron star back-

ground at T = 0.
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A. Flux with real ω2

To find the conserved flux in this system, consider the off-shell Lagrangian

Loff−shell =
L2

κ2
(
Z ′∗
i AijZ

′
j + Z∗

i BijZ
′
j + non-derivative terms

)
(23)

where

A11 =

√
f

4r2
√
g (ω2 − k2r2f)

, A22 = −
√
f

2
√
g
, A12 = A21 = 0, (24)

B11 =
(rf ′ − 2f)

2ω2r3
√
fg

, B21 = − k (rf ′ + 2f)

2rµ
√
g (ω2 − k2r2f)

, B12 = B22 = 0. (25)

(26)

This Lagrangian is invariant under simultaneous global U(1) transformations of both Z1 and Z2.

The reason for this is the cross-term Z∗
2B21Z

′
1. Assuming that (r, ω2, k) ∈ R, the flux can then be

found to be

F = 2i

[
−Z∗

1A11Z
′
1 + Z1A11Z

′∗
1 + Z∗

2A22Z
′
2 − Z2A22Z

′∗
2 +

1

2
B21 (Z

∗
1Z2 − Z∗

2Z1)

]
. (27)

F is conserved along the radial direction, i.e. ∂rF = 0.

Now, in the UV part of the geometry the fields can be expanded as

Z1 = Z
(0)
1 + r2Z

(2)
1 + r3Z

(3)
1 + . . .

Z2 = Z
(0)
2 + rZ

(1)
2 + . . . , (28)

where Z
(1)
2 is related to the vev of the QFT current Jµ, while Z

(2)
1 is completely determined by the

sources of the Tµν components of Z
(0)
1 . The vev of Tµν comes in at the order of r3. The value of

the flux at the AdS boundary is

lim
r→0

F(r) = 2i lim
r→0

(
Z1A11Z

′∗
1 − Z∗

1A11Z
′
1

)
+

+ 2iA22(0)
(
Z

(0)∗
2 Z

(1)
2 − Z

(0)
2 Z

(1)∗
2

)
+ iB21(0)

(
Z

(0)∗
1 Z

(0)
2 − Z

(0)
1 Z

(0)∗
2

)
(29)

which along with the limiting values

lim
r→0

A11 = − lim
r→0

√
f

4r2
√
g (ω2 − k2r2f)

= lim
r→0

c

4 (ω2 − c2k2) r2

lim
r→0

A22 = − lim
r→0

√
f

2
√
g
= − c

2

lim
r→0

B21 = − lim
r→0

k (rf ′ + 2f)

2rµ
√
g (ω2 − k2r2f)

=
3cM̂

2µ̂

k

ω2 − c2k2
(30)
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gives the conserved flux

F = ic

[
1

ω2 − c2k2

(
lim
r→0

1

r

(
Z

(0)
1 Z

(2)∗
1 − Z

(2)
1 Z

(0)∗
1

)
+

3

2

(
Z

(0)
1 Z

(3)∗
1 − Z

(3)
1 Z

(0)∗
1

))
+Z

(0)
2 Z

(1)∗
2 − Z

(0)∗
2 Z

(1)
2 +

3Mk

2µ̂ (ω2 − c2k2)

(
Z

(0)∗
1 Z

(0)
2 − Z

(0)
1 Z

(0)∗
2

)]
. (31)

To impose the Dirichlet boundary conditions at the boundary we need to fix Z
(0)
1 and Z

(0)
2

to some constants. However, to find only the QNMs, without the full Green’s functions, it is

particularly useful to set Z
(0)
1 = Z

(0)
2 = 0. Generally, the values of Z

(0)
1 and Z

(0)
2 can be thought

of as functions of ω and k at some fixed physical parameters M̂ , Q̂, µ̂, etc. describing the star

geometry. Given some propagating modes that satisfy Z
(0)
1 = Z

(0)
2 = 0, we can see that the flux

vanishes away from the light-cone (ω2 = c2k2) for such ω(k). Therefore

For a quasinormal mode ω̃(k) =⇒ F (ω̃(k)) = 0 (32)

It is interesting to note that the flux actually diverges unless we set Z
(0)
1 = 0 or alternatively if

Z
(0)
1 Z

(2)∗
1 − Z

(2)
1 Z

(0)∗
1 vanishes.

We would like to use this fact to find QNMs from the IR part of the geometry. The question

we need to answer is therefore in what other cases can F = 0? We can always set Z
(0)
1 and Z

(0)
2 to

be real. Then the flux vanishes if Z
(2)
1 , Z

(3)
1 and Z

(1)
2 are real as well. This is something we would,

however, not generically expect to be true.

B. Flux with complex frequency

We should look for the flux of ω ∈ C fluctuations to find the value of F on the QNMs. The

off-shell action is

S(2) =
L2

κ2

∫
d4kdr

{
Z ′
i(−k)Aij(k)Z

′
j(k) + Zi(−k)Bij(k)Z

′
j(k) + · · ·

}
(33)

Because only A11, A22, B11 and B21 are non-zero the symmetry of this action is

Zi(k) → eiαZi(k)

Zi(−k) → e−iαZi(−k) (34)
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We are using −k for (−ω,−k). The Nöther current (flux) is then

F = i
{ [

Z ′
1(−k)Z1(k)− Z1(−k)Z ′

1(k)
]
[A11(k) +A11(−k)] +

+
[
Z ′
2(−k)Z2(k)− Z2(−k)Z ′

2(k)
]
[A22(k) +A22(−k)]

+ Z1(−k)Z1(k) [B11(k)−B11(−k)] +

+ Z1(k)Z2(−k)B21(k)− Z1(−k)Z2(k)B21(−k)
}

(35)

Now A11, A22 and B11 are invariant under k → −k, whereas B21(−k) = −B21(k).

F = i
{
2A11(k)

[
Z ′
1(−k)Z1(k)− Z1(−k)Z ′

1(k)
]
+ 2A22(k)

[
Z ′
2(−k)Z2(k)− Z2(−k)Z ′

2(k)
]
+

+B21(k) [Z1(−k)Z2(k) + Z1(k)Z2(−k)]
}

(36)

Imagine that F(ω, k) is a polynomial defined over the complex plane of which zeroes we denote

by ω̃i(k). From our construction above I claim that these are the QNMs of the electron star system.

Hence

F(ω, k) =
∞∏
i=1

(ω − ω̃i(k)) (37)

III. EXTERIOR OF THE STAR

Outside the star the geometry is that of the Reissner-Nordström-AdS. We have σ̂ = ρ̂ = p̂ = 0

and

f =
c2

r2
− M̂r +

r2Q̂2

2
, g =

c2

r4f
, h = µ̂− rQ̂. (38)

Also, as everywhere along the geometry,

µ(r) =
h(r)√
f(r)

. (39)

Equations (2) and (3) become

0 = Z ′′
1 + 2kr2h′Z ′

2 +
ω2f ′ + 2k2rf2

f (ω2 − k2r2f)
Z ′
1 +

g

f

(
ω2 − k2r2f

)
Z1

+ 2kr2
√

fµ

(
2ω2h′2

f (ω2 − k2r2f)

)
Z2, (40)

0 = Z ′′
2 +

1

2

(
f ′

f
− g′

g

)
Z ′
2 −

kh′

ω2 − k2r2f
Z ′
1 +

g

f

(
ω2 − k2r2f

)
Z2

− 2ω2h′2

f (ω2 − k2r2f)
Z2 (41)
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IV. SMALL STAR LIMIT

The easiest case to tract analytically is the limit when the star becomes small. Fermionic

excitations in this scenario were analysed in [1].

The profile of the star is characterised by three functions σ̂, ρ̂ and p̂. They all reach their

maximum value in the IR at r → ∞ limit, where the geometry is pure Lifshitz. They monotonically

decrease with decreasing r and reach σ̂ = ρ̂ = p̂ = 0 at the boundary of the star (r = rs). The

small star limit is characterised by

λ2 ≡ h2∞ − m̂2 ≪ 1 (42)

where λ2 = 64/3m̂2/3(1−m̂2)2/3

(2m̂4−7m̂2+6)2/3
1

β̂2/3
. Therefore at an arbitrary m̂, the small star limit is achieved by

taking large β̂. The exponent z becomes

z =
1

1− m̂2
+

λ2

(1− m̂2)2
+ . . . (43)

The correction to the Lifshitz geometry inside the star is

f =
1

r2z

(
1 + f1

1

r|α|
+ . . .

)
g =

g∞
r2

(
1 + g1

1

r|α|
+ . . .

)
h =

h∞
rz

(
1 + h1

1

r|α|
+ . . .

)
(44)

where

|α| =
m̂
√

3 (2− m̂2)√
1− m̂2

1

λ
− 1− 1

2 (1− m̂2)
+ . . . (45)

and

g∞ =
6− 7m̂2 + 2m̂4

6 (1− m̂2)2
+

(
6− 7m̂2 + 2m̂4

) (
1 + 4m̂2

)
12m̂2 (1− m̂2)3

λ2 + . . . (46)

Corrections to the pure Lifshitz geometry inside the star therefore become exponentially suppressed

for r > 1 when λ ≪ 1. It is shown in [1] that f1, g1 and h1 can be normalised in such a way that

to leading order in λ the boundary of the star is at rs = 1, while the correction to the pure Lifshitz

geometry remains exponentially suppressed.

[1] S. A. Hartnoll, D. M. Hofman and D. Vegh, JHEP 1108 (2011) 096 [arXiv:1105.3197 [hep-th]].
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