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I. SOLUTIONS OF THE SHEAR SECTOR MODES IN THE IR LIFSHITZ LIMIT

A. IR geometry and k = 0 solutions

The geometry in the IR (r — o0o) approaches that of a pure Lifshitz geometry. In this limit we

have

f(r) = 1/r*
g(r) = goo /72
h(r) = heo/77. (1)

The two differential equation in the shear sector are
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In the limit of £ — 0, the two equations decouple
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and we can find the asymptotic IR Lifshitz behaviour of Z; and Z5 to be
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which are series expansions of the full (irrelevant) solutions
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We would now like to find the k-dependent corrections to the above solutions to analytically

extract the hydrodynamical quasi-normal mode (QNM).

B. Cases with integer values of the exponent z

1. Cases with exponents z > 3

We would like to find analytic k-dependent corrections to Z; and Zs in the Lifshitz IR region.
The corrections should be such that the limit of & — 0 smoothly reproduces the above £ = 0
results. On the other hand, the limit of w — 0 is not analytic and our solutions will represent an
asymptotic series in w controlled by powers of r. Away from the in-falling boundary conditions at
the horizon (r — 00), however, we expect that the limit of w — 0 is defined as well. We anticipate

the form

Zy = V9= Ze Py (1w, k) (10)
Zy = V9= Z Py (1 ) k), (11)

where P; and P» are polynomials in ascending powers of 1/r.
We can first expand equations (2) and (3) in k*r2f < w?. Since we only work with z > 1, the
1-2)

expansion parameter tends to k2r2f = k2r2( — 0 in the IR. The expansion therefore makes

sense for all non-vanishing values of w and finite values of k. The limits of our approximation are

k2 < w?r?Y) and r — 00. (12)



On top of that, we are interested in the hydrodynamical QNMs, hence we may think of both w
and k as small. We find, up to O(k?),
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Using a power series expansion in 1/r for Z; and Z, shows that we can recursively solve differential

equations (13) and (14), order-by-order in r, with two series of form
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The non-zero terms in both series begin at order 1/7*~2. In the limit of ¥ — 0 we find that

9 =0y 1=by, 0=0,_1=0, a, = 2Z(Z;010) and b, = FW’ as required.

If we only seek the leading w and k behaviour it suffices to consider the series with three terms
between i = z — 2 and ¢ = z. In that case the equation (13) will be solved up to order O (%),
leaving terms of order O (%2) and higher unsolved. Equation (14) will be solved up to order O (%2),

leaving terms of order O (%3) and higher unsolved. Further extending polynomials P; o by n terms

is then able to solve the two differential equations by further n orders.

2. Special case with z = 2

A special case, which cannot be solved by the above ansatz is the case when z — 2 = 0, i.e.

z = 2. To solve the system we can use the following modified ansatz:
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It is clear that since equations (13) and (14) have no constant terms, the functions in the exponents
must equal, so it is sufficient to find a single f(r) for both Z; and Z5. To only find f(r), it is
sufficient to simply set Z; = 0 and use equation (14) to leading order in k. We are left with
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to which the full solution is [completely irrelevant, but it’s fun to play with special functions :-) |

Zy = rteziovier? [ClU <2+ Z\/f:ﬁ,ll, —i goowr2> +C2L32,W€Tﬂ (—i goowrz) , (19)
where U is the confluent hypergeometric function and L)(z) the Laguerre polynomial.

Analysing its asymptotics near r — oo, we find that Cy = 0 in order to only keep et 31V torms
(the in-falling b.c.). To match this solution onto the k& = 0 solution we must set O] = —goow?.
There is of course still the freedom of multiplying the entire solution by a constant. Expanding in

1/r we find
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Note that this structure is similar to the more usual AdS cases at finite temperature...

We can now use, as before, polynomials P 2 to find
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so that both (13) and (14) are satisfied to O(1/7?).

II. QUASI-NORMAL MODES

We would like to find the hydrodynamical QNM in the shear sector of the electron star back-

ground at T' = 0.



A. Flux with real w?

To find the conserved flux in this system, consider the off-shell Lagrangian

L2
Loff—shen = —5 (2" Aij Zj + Z; Bij Z; + non-derivative terms) (23)
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This Lagrangian is invariant under simultaneous global U(1) transformations of both Z; and Z,.
The reason for this is the cross-term Z3 B Z|. Assuming that (r,w? k) € R, the flux can then be

found to be
1
F =2 —ZTAHZi + ZlAHZi* + Z;AQQZé — ZQAQQZQ* + 5321 (ZTZQ — Z;Zl) . (27)

F is conserved along the radial direction, i.e. 9,F = 0.

Now, in the UV part of the geometry the fields can be expanded as
7 =70 40222 40378 4
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where Zél) is related to the vev of the QF'T current J,, while ZF) is completely determined by the
sources of the T}, components of Zgo). The vev of T}, comes in at the order of r3. The value of
the flux at the AdS boundary is
lim F(r) = 2i lim (Z,An 21" — Z{ AnZy) +
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which along with the limiting values
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gives the conserved flux
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To impose the Dirichlet boundary conditions at the boundary we need to fix Zfo) and Zéo)
to some constants. However, to find only the QNMs, without the full Green’s functions, it is
particularly useful to set Z£O) = Zéo) = 0. Generally, the values of Zfo) and Zéo) can be thought
of as functions of w and k at some fixed physical parameters M, Q, i1, etc. describing the star
geometry. Given some propagating modes that satisfy Zfo) = Zéo) = 0, we can see that the flux

vanishes away from the light-cone (w? = ¢?k?) for such w(k). Therefore
For a quasinormal mode @(k) = F(w(k))=0 (32)

It is interesting to note that the flux actually diverges unless we set Z£0) = 0 or alternatively if
Z£0)Z£2)* — Z£2)Z§O)* vanishes.

We would like to use this fact to find QNMs from the IR part of the geometry. The question
we need to answer is therefore in what other cases can F = 07 We can always set Zfo) and Zéo) to

be real. Then the flux vanishes if Zf), Z§3) and Zél) are real as well. This is something we would,

however, not generically expect to be true.

B. Flux with complex frequency

We should look for the flux of w € C fluctuations to find the value of F on the QNMs. The

off-shell action is
2) L? 4 ! / /
Because only A1, Ags, Bi1 and Bsy are non-zero the symmetry of this action is

Zl(k‘) — eiaZZ' (k‘)

Zi(—k) = e Z;(—k) (34)



We are using —k for (—w, —k). The N6ther current (flux) is then

F =i { [ZU-R)Z(k) = Z1(~k)Z} (k)] [Ans (k) + Ana (—F)] +
+ [Z4(—k) Za(k) — Zo(—k) Z4(F)] [Aaa(k) + Aza(—F)]
+ Z1(=k)Zy(k) [B11(k) — Bi1(—k)] +

+ Z1(k)Za(~k) Ba1 (k) = Z(~k) Za(k) Bar(~h) | (35)
Now A1, Age and By are invariant under k — —k, whereas Boj(—k) = — B2 (k).

F=i {2A11(7€) (Z1(=k)Z1(k) — Z1(—k) Z1 (k)] + 2A02(k) [Z5(—k) Z2(k) — Zo(—k) Zy (k)] +

+ Bt () [Z1(~ k) Za(k) + 21 (k) Za(—R)] } (36)

Imagine that F(w, k) is a polynomial defined over the complex plane of which zeroes we denote
by @; (k). From our construction above I claim that these are the QNMSs of the electron star system.

Hence
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III. EXTERIOR OF THE STAR

Outside the star the geometry is that of the Reissner-Nordstrom-AdS. We have 6 = p=p =10

and
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Also, as everywhere along the geometry,
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IV. SMALL STAR LIMIT

The easiest case to tract analytically is the limit when the star becomes small. Fermionic
excitations in this scenario were analysed in [1].

The profile of the star is characterised by three functions &, p and p. They all reach their
maximum value in the IR at r — oo limit, where the geometry is pure Lifshitz. They monotonically
decrease with decreasing r and reach 6 = p = p = 0 at the boundary of the star (r = r5). The

small star limit is characterised by

M=ht —mP<1 (42)
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The correction to the Lifshitz geometry inside the star is
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Corrections to the pure Lifshitz geometry inside the star therefore become exponentially suppressed
for > 1 when A\ < 1. It is shown in [1] that fi, g1 and h; can be normalised in such a way that
to leading order in A the boundary of the star is at r; = 1, while the correction to the pure Lifshitz

geometry remains exponentially suppressed.

[1] S. A. Hartnoll, D. M. Hofman and D. Vegh, JHEP 1108 (2011) 096 [arXiv:1105.3197 [hep-th]].
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