Electron star ingredients

Matthew Stephenson
Stanford University*

I. SOLUTIONS OF THE SHEAR SECTOR MODES IN THE IR LIFSHITZ LIMIT

A. IR geometry and $k=0$ solutions

The geometry in the IR $(r \rightarrow \infty)$ approaches that of a pure Lifshitz geometry. In this limit we have

$$
\begin{align*}
& f(r) \rightarrow 1 / r^{2 z} \\
& g(r) \rightarrow g_{\infty} / r^{2} \\
& h(r) \rightarrow h_{\infty} / r^{z} . \tag{1}
\end{align*}
$$

The two differential equation in the shear sector are

$$
\begin{align*}
0= & Z_{1}^{\prime \prime}+2 k r^{2} h^{\prime} Z_{2}^{\prime}+\left(\frac{r g \sigma \mu}{2}+\frac{\omega^{2} f^{\prime}+2 k^{2} r f^{2}}{f\left(\omega^{2}-k^{2} r^{2} f\right)}\right) Z_{1}^{\prime}+\frac{g}{f}\left(\omega^{2}-k^{2} r^{2} f\right) Z_{1} \\
& +2 k r^{2} \sqrt{f} \mu\left(\frac{2 \omega^{2} h^{\prime 2}}{f\left(\omega^{2}-k^{2} r^{2} f\right)}+\frac{g \sigma}{\mu}\right) Z_{2}, \tag{2}\\
0= & Z_{2}^{\prime \prime}+\frac{1}{2}\left(\frac{f^{\prime}}{f}-\frac{g^{\prime}}{g}\right) Z_{2}^{\prime}-\frac{k h^{\prime}}{\omega^{2}-k^{2} r^{2} f} Z_{1}^{\prime}+\frac{g}{f}\left(\omega^{2}-k^{2} r^{2} f\right) Z_{2} \\
& -\left(\frac{2 \omega^{2} h^{\prime 2}}{f\left(\omega^{2}-k^{2} r^{2} f\right)}+\frac{g \sigma}{\mu}\right) Z_{2} \tag{3}
\end{align*}
$$

In the limit of $k \rightarrow 0$, the two equations decouple

$$
\begin{align*}
& 0=Z_{1}^{\prime \prime}+\left(\frac{r g \sigma \mu}{2}+\frac{f^{\prime}}{f}\right) Z_{1}^{\prime}+\frac{\omega^{2} g}{f} Z_{1}, \tag{4}\\
& 0=Z_{2}^{\prime \prime}+\frac{1}{2}\left(\frac{f^{\prime}}{f}-\frac{g^{\prime}}{g}\right) Z_{2}^{\prime}+\left(\frac{\omega^{2} g}{f}-\frac{2 h^{\prime 2}}{f}-\frac{g \sigma}{\mu}\right) Z_{2} . \tag{5}
\end{align*}
$$

[^0]and we can find the asymptotic IR Lifshitz behaviour of Z_{1} and Z_{2} to be
\[

$$
\begin{align*}
& Z_{1}=\left(1+\frac{i(z+1)}{2 z \sqrt{g_{\infty}}} \frac{1}{\omega r^{z}}\right) r e^{i \sqrt{g_{\infty}} \omega r^{z} / z} \tag{6}\\
& Z_{2}=\left(1+\frac{i z}{\sqrt{g_{\infty}}} \frac{1}{\omega r^{z}}\right) e^{i \sqrt{g_{\infty}} \omega r^{z} / z} \tag{7}
\end{align*}
$$
\]

which are series expansions of the full (irrelevant) solutions

$$
\begin{align*}
& Z_{1}=r^{1+z / 2} H_{\frac{z+2}{2 z}}^{(1)}\left(g_{\infty}^{1 / 2} \frac{\omega r^{z}}{z}\right) \tag{8}\\
& Z_{2}=r^{z / 2} H_{3 / 2}^{(1)}\left(g_{\infty}^{1 / 2} \frac{\omega r^{z}}{z}\right) . \tag{9}
\end{align*}
$$

We would now like to find the k-dependent corrections to the above solutions to analytically extract the hydrodynamical quasi-normal mode (QNM).

B. Cases with integer values of the exponent z

1. Cases with exponents $z \geq 3$

We would like to find analytic k-dependent corrections to Z_{1} and Z_{2} in the Lifshitz IR region. The corrections should be such that the limit of $k \rightarrow 0$ smoothly reproduces the above $k=0$ results. On the other hand, the limit of $\omega \rightarrow 0$ is not analytic and our solutions will represent an asymptotic series in ω controlled by powers of r. Away from the in-falling boundary conditions at the horizon $(r \rightarrow \infty)$, however, we expect that the limit of $\omega \rightarrow 0$ is defined as well. We anticipate the form

$$
\begin{align*}
& Z_{1}=e^{i \sqrt{g_{\infty}} \omega r^{z} / z} r P_{1}(r, \omega, k) \tag{10}\\
& Z_{2}=e^{i \sqrt{g_{\infty}} \omega r^{z} / z} P_{2}(r, \omega, k), \tag{11}
\end{align*}
$$

where P_{1} and P_{2} are polynomials in ascending powers of $1 / r$.
We can first expand equations (2) and (3) in $k^{2} r^{2} f \ll \omega^{2}$. Since we only work with $z>1$, the expansion parameter tends to $k^{2} r^{2} f=k^{2} r^{2(1-z)} \rightarrow 0$ in the IR. The expansion therefore makes sense for all non-vanishing values of ω and finite values of k. The limits of our approximation are

$$
\begin{equation*}
k^{2} \ll \omega^{2} r^{2(z-1)} \quad \text { and } \quad r \rightarrow \infty \tag{12}
\end{equation*}
$$

On top of that, we are interested in the hydrodynamical QNMs, hence we may think of both ω and k as small. We find, up to $\mathcal{O}\left(k^{4}\right)$,

$$
\begin{align*}
0= & Z_{1}^{\prime \prime}-\left(\frac{z+1}{r}+\frac{2(z-1) k^{2}}{\omega^{2} r^{2 z-1}}+\frac{2(z-1) k^{4}}{\omega^{4} r^{4 z-3}}\right) Z_{1}^{\prime}+g_{\infty}\left(\omega^{2} r^{2(z-1)}-k^{2}\right) Z_{1} \\
& -\frac{2 \sqrt{z(z-1)} k}{r^{z-1}} Z_{2}^{\prime}+4 \sqrt{z(z-1)}\left(\frac{z k}{r^{z}}+\frac{(z-1) k^{3}}{\omega^{2} r^{3 z-2}}\right) Z_{2} \tag{13}
\end{align*}
$$

and

$$
\begin{align*}
0= & Z_{2}^{\prime \prime}-\frac{z-1}{r} Z_{2}^{\prime}+\left[g_{\infty}\left(\omega^{2} r^{2(z-1)}-k^{2}\right)-\frac{2 z^{2}}{r^{2}}-\frac{2 z(z-1) k^{2}\left(\omega^{2} r^{2(z-1)}+k^{2}\right)}{\omega^{4} r^{4 z-2}}\right] Z_{2} \\
& +\frac{\sqrt{z(z-1)} k\left(\omega^{2} r^{2(z-1)}+k^{2}\right)}{\omega^{4} r^{3 z-1}} Z_{1}^{\prime} \tag{14}
\end{align*}
$$

Using a power series expansion in $1 / r$ for Z_{1} and Z_{2} shows that we can recursively solve differential equations (13) and (14), order-by-order in r, with two series of form

$$
\begin{align*}
& P_{1}=1+\sum_{i=z-2}^{\infty} \frac{a_{i}(\omega, k)}{r^{i}} \\
& P_{2}=1+\sum_{i=z-2}^{\infty} \frac{b_{i}(\omega, k)}{r^{i}} \tag{15}
\end{align*}
$$

The non-zero terms in both series begin at order $1 / r^{z-2}$. In the limit of $k \rightarrow 0$ we find that $a_{z-2}=a_{z-1}=b_{z-2}=b_{z-1}=0, a_{z}=\frac{i(z+1)}{2 z \sqrt{g_{\infty} \omega}}$ and $b_{z}=\frac{i z}{\sqrt{g_{\infty} \omega}}$, as required.
If we only seek the leading ω and k behaviour it suffices to consider the series with three terms between $i=z-2$ and $i=z$. In that case the equation (13) will be solved up to order $\mathcal{O}\left(\frac{1}{r}\right)$, leaving terms of order $\mathcal{O}\left(\frac{1}{r^{2}}\right)$ and higher unsolved. Equation (14) will be solved up to order $\mathcal{O}\left(\frac{1}{r^{2}}\right)$, leaving terms of order $\mathcal{O}\left(\frac{1}{r^{3}}\right)$ and higher unsolved. Further extending polynomials $P_{1,2}$ by n terms is then able to solve the two differential equations by further n orders.

$$
\text { 2. } \quad \text { Special case with } z=2
$$

A special case, which cannot be solved by the above ansatz is the case when $z-2=0$, i.e. $z=2$. To solve the system we can use the following modified ansatz:

$$
\begin{align*}
& Z_{1}=e^{\frac{i \sqrt{g_{\infty}} \omega r^{z}}{z}+f(r)} r P_{1}(r, \omega, k) \tag{16}\\
& Z_{2}=e^{\frac{i \sqrt{g_{\infty}} \omega r}{z}}+f(r) \tag{17}\\
& P_{2} \\
& (r, \omega, k)
\end{align*}
$$

It is clear that since equations (13) and (14) have no constant terms, the functions in the exponents must equal, so it is sufficient to find a single $f(r)$ for both Z_{1} and Z_{2}. To only find $f(r)$, it is sufficient to simply set $Z_{1}=0$ and use equation (14) to leading order in k. We are left with

$$
\begin{equation*}
0=Z_{2}^{\prime \prime}-\frac{1}{r} Z_{2}^{\prime}+\left[g_{\infty} r^{2}\left(\omega^{2}-\frac{k^{2}}{r^{2}}\right)-\frac{8}{r^{2}}\right] Z_{2} \tag{18}
\end{equation*}
$$

to which the full solution is [completely irrelevant, but it's fun to play with special functions :-)]

$$
\begin{equation*}
Z_{2}=r^{4} e^{\frac{1}{2} i \omega \sqrt{g_{\infty}} r^{2}}\left[C_{1} U\left(2+\frac{i \sqrt{g_{\infty}} k^{2}}{4 \omega}, 4,-i \sqrt{g_{\infty}} \omega r^{2}\right)+C_{2} L_{-2-\frac{i \sqrt{g_{\infty}} k^{2}}{4 \omega}}\left(-i \sqrt{g_{\infty}} \omega r^{2}\right)\right], \tag{19}
\end{equation*}
$$

where U is the confluent hypergeometric function and $L_{n}^{\lambda}(z)$ the Laguerre polynomial.
Analysing its asymptotics near $r \rightarrow \infty$, we find that $C_{2}=0$ in order to only keep $e^{+\frac{1}{2} i \omega \sqrt{g_{\infty}} r^{2}}$ terms (the in-falling b.c.). To match this solution onto the $k=0$ solution we must set $C_{1}=-g_{\infty} \omega^{2}$. There is of course still the freedom of multiplying the entire solution by a constant. Expanding in $1 / r$ we find

$$
\begin{align*}
Z_{2} & =-g_{\infty} \omega^{2} r^{4} e^{\frac{1}{2} i \sqrt{g_{\infty}} \omega r^{2}} U\left[2+\frac{i \sqrt{g_{\infty}} k^{2}}{4 \omega}, 4,-i \sqrt{g_{\infty}} \omega r^{2}\right] \\
& =e^{\frac{1}{2} i \sqrt{g_{\infty}} \omega r^{2}}\left(-i \sqrt{g_{\infty}} \omega r^{2}\right)^{-\frac{i \sqrt{g_{\infty}} k^{2}}{4 \omega}}[1+\ldots] \\
& =\exp \left\{\frac{i \sqrt{g_{\infty}} \omega}{2}\left(r^{2}-\frac{k^{2}}{2 \omega^{2}} \log \left(-i \sqrt{g_{\infty}} \omega r^{2}\right)\right)\right\}[1+\ldots] . \tag{20}
\end{align*}
$$

Therefore

$$
\begin{equation*}
e^{f(r)}=\left(-i \sqrt{g_{\infty}} \omega r^{2}\right)^{-\frac{i \sqrt{g_{\infty}} k^{2}}{4 \omega}}=e^{-\frac{i \sqrt{g_{\infty}} k^{2}}{4 \omega} \log \left(-i \sqrt{g_{\infty}} \omega r^{2}\right) .} \tag{21}
\end{equation*}
$$

Note that this structure is similar to the more usual AdS cases at finite temperature...
We can now use, as before, polynomials $P_{1,2}$ to find

$$
\begin{align*}
Z_{1}= & e^{\frac{1}{2} i \sqrt{g_{\infty}} \omega r^{2}-\frac{i \sqrt{g_{\infty}} k^{2}}{4 \omega} \log \left(-i \sqrt{g_{\infty}} \omega r^{2}\right)} r\left(1-\frac{\sqrt{2} k}{r}+\frac{12 i \omega^{2}-12 \sqrt{g_{\infty}} \omega k^{2}+i g_{\infty} k^{4}}{16 \sqrt{g_{\infty}} \omega^{3} r^{2}}\right. \\
& \left.-\frac{32 i \omega^{2} k-4 \sqrt{g_{\infty}} \omega k^{3}+i g_{\infty} k^{5}}{8 \sqrt{2 g_{\infty}} \omega^{3} r^{3}}+\ldots\right) \\
Z_{2}= & e^{\frac{1}{2} i \sqrt{g_{\infty}} \omega r^{2}-\frac{i \sqrt{g_{\infty} k^{2}}}{4 \omega} \log \left(-i \sqrt{g_{\infty}} \omega r^{2}\right)}\left(1+\frac{k}{\sqrt{2} \omega^{2} r}+\frac{32 i \omega^{2}-4 \sqrt{g_{\infty}} \omega k^{2}+i g_{\infty} k^{4}}{16 \sqrt{g_{\infty}} \omega^{3} r^{2}}+\ldots\right) \tag{22}
\end{align*}
$$

so that both (13) and (14) are satisfied to $\mathcal{O}\left(1 / r^{2}\right)$.

II. QUASI-NORMAL MODES

We would like to find the hydrodynamical QNM in the shear sector of the electron star background at $T=0$.

A. Flux with real ω^{2}

To find the conserved flux in this system, consider the off-shell Lagrangian

$$
\begin{equation*}
\mathcal{L}_{\text {off-shell }}=\frac{L^{2}}{\kappa^{2}}\left(Z_{i}^{\prime *} A_{i j} Z_{j}^{\prime}+Z_{i}^{*} B_{i j} Z_{j}^{\prime}+\text { non-derivative terms }\right) \tag{23}
\end{equation*}
$$

where

$$
\begin{array}{lll}
A_{11}=\frac{\sqrt{f}}{4 r^{2} \sqrt{g}\left(\omega^{2}-k^{2} r^{2} f\right)}, & A_{22}=-\frac{\sqrt{f}}{2 \sqrt{g}}, & A_{12}=A_{21}=0 \\
B_{11}=\frac{\left(r f^{\prime}-2 f\right)}{2 \omega^{2} r^{3} \sqrt{f g}}, & B_{21}=-\frac{k\left(r f^{\prime}+2 f\right)}{2 r \mu \sqrt{g}\left(\omega^{2}-k^{2} r^{2} f\right)}, & B_{12}=B_{22}=0 \tag{25}
\end{array}
$$

This Lagrangian is invariant under simultaneous global $U(1)$ transformations of both Z_{1} and Z_{2}. The reason for this is the cross-term $Z_{2}^{*} B_{21} Z_{1}^{\prime}$. Assuming that $\left(r, \omega^{2}, k\right) \in \mathbb{R}$, the flux can then be found to be

$$
\begin{equation*}
\mathcal{F}=2 i\left[-Z_{1}^{*} A_{11} Z_{1}^{\prime}+Z_{1} A_{11} Z_{1}^{\prime *}+Z_{2}^{*} A_{22} Z_{2}^{\prime}-Z_{2} A_{22} Z_{2}^{\prime *}+\frac{1}{2} B_{21}\left(Z_{1}^{*} Z_{2}-Z_{2}^{*} Z_{1}\right)\right] \tag{27}
\end{equation*}
$$

\mathcal{F} is conserved along the radial direction, i.e. $\partial_{r} \mathcal{F}=0$.
Now, in the UV part of the geometry the fields can be expanded as

$$
\begin{align*}
& Z_{1}=Z_{1}^{(0)}+r^{2} Z_{1}^{(2)}+r^{3} Z_{1}^{(3)}+\ldots \\
& Z_{2}=Z_{2}^{(0)}+r Z_{2}^{(1)}+\ldots \tag{28}
\end{align*}
$$

where $Z_{2}^{(1)}$ is related to the vev of the QFT current J_{μ}, while $Z_{1}^{(2)}$ is completely determined by the sources of the $T_{\mu \nu}$ components of $Z_{1}^{(0)}$. The vev of $T_{\mu \nu}$ comes in at the order of r^{3}. The value of the flux at the AdS boundary is

$$
\begin{align*}
\lim _{r \rightarrow 0} \mathcal{F}(r)= & 2 i \lim _{r \rightarrow 0}\left(Z_{1} A_{11} Z_{1}^{\prime *}-Z_{1}^{*} A_{11} Z_{1}^{\prime}\right)+ \\
& +2 i A_{22}(0)\left(Z_{2}^{(0) *} Z_{2}^{(1)}-Z_{2}^{(0)} Z_{2}^{(1) *}\right)+i B_{21}(0)\left(Z_{1}^{(0) *} Z_{2}^{(0)}-Z_{1}^{(0)} Z_{2}^{(0) *}\right) \tag{29}
\end{align*}
$$

which along with the limiting values

$$
\begin{align*}
& \lim _{r \rightarrow 0} A_{11}=-\lim _{r \rightarrow 0} \frac{\sqrt{f}}{4 r^{2} \sqrt{g}\left(\omega^{2}-k^{2} r^{2} f\right)}=\lim _{r \rightarrow 0} \frac{c}{4\left(\omega^{2}-c^{2} k^{2}\right) r^{2}} \\
& \lim _{r \rightarrow 0} A_{22}=-\lim _{r \rightarrow 0} \frac{\sqrt{f}}{2 \sqrt{g}}=-\frac{c}{2} \\
& \lim _{r \rightarrow 0} B_{21}=-\lim _{r \rightarrow 0} \frac{k\left(r f^{\prime}+2 f\right)}{2 r \mu \sqrt{g}\left(\omega^{2}-k^{2} r^{2} f\right)}=\frac{3 c \hat{M}}{2 \hat{\mu}} \frac{k}{\omega^{2}-c^{2} k^{2}} \tag{30}
\end{align*}
$$

gives the conserved flux

$$
\begin{align*}
\mathcal{F}=i c & {\left[\frac{1}{\omega^{2}-c^{2} k^{2}}\left(\lim _{r \rightarrow 0} \frac{1}{r}\left(Z_{1}^{(0)} Z_{1}^{(2) *}-Z_{1}^{(2)} Z_{1}^{(0) *}\right)+\frac{3}{2}\left(Z_{1}^{(0)} Z_{1}^{(3) *}-Z_{1}^{(3)} Z_{1}^{(0) *}\right)\right)\right.} \\
& \left.+Z_{2}^{(0)} Z_{2}^{(1) *}-Z_{2}^{(0) *} Z_{2}^{(1)}+\frac{3 M k}{2 \hat{\mu}\left(\omega^{2}-c^{2} k^{2}\right)}\left(Z_{1}^{(0) *} Z_{2}^{(0)}-Z_{1}^{(0)} Z_{2}^{(0) *}\right)\right] \tag{31}
\end{align*}
$$

To impose the Dirichlet boundary conditions at the boundary we need to fix $Z_{1}^{(0)}$ and $Z_{2}^{(0)}$ to some constants. However, to find only the QNMs, without the full Green's functions, it is particularly useful to set $Z_{1}^{(0)}=Z_{2}^{(0)}=0$. Generally, the values of $Z_{1}^{(0)}$ and $Z_{2}^{(0)}$ can be thought of as functions of ω and k at some fixed physical parameters $\hat{M}, \hat{Q}, \hat{\mu}$, etc. describing the star geometry. Given some propagating modes that satisfy $Z_{1}^{(0)}=Z_{2}^{(0)}=0$, we can see that the flux vanishes away from the light-cone $\left(\omega^{2}=c^{2} k^{2}\right)$ for such $\omega(k)$. Therefore

$$
\begin{equation*}
\text { For a quasinormal mode } \tilde{\omega}(k) \quad \Longrightarrow \quad \mathcal{F}(\tilde{\omega}(k))=0 \tag{32}
\end{equation*}
$$

It is interesting to note that the flux actually diverges unless we set $Z_{1}^{(0)}=0$ or alternatively if $Z_{1}^{(0)} Z_{1}^{(2) *}-Z_{1}^{(2)} Z_{1}^{(0) *}$ vanishes.

We would like to use this fact to find QNMs from the IR part of the geometry. The question we need to answer is therefore in what other cases can $\mathcal{F}=0$? We can always set $Z_{1}^{(0)}$ and $Z_{2}^{(0)}$ to be real. Then the flux vanishes if $Z_{1}^{(2)}, Z_{1}^{(3)}$ and $Z_{2}^{(1)}$ are real as well. This is something we would, however, not generically expect to be true.

B. Flux with complex frequency

We should look for the flux of $\omega \in \mathbb{C}$ fluctuations to find the value of \mathcal{F} on the QNMs. The off-shell action is

$$
\begin{equation*}
S^{(2)}=\frac{L^{2}}{\kappa^{2}} \int d^{4} k d r\left\{Z_{i}^{\prime}(-k) A_{i j}(k) Z_{j}^{\prime}(k)+Z_{i}(-k) B_{i j}(k) Z_{j}^{\prime}(k)+\cdots\right\} \tag{33}
\end{equation*}
$$

Because only A_{11}, A_{22}, B_{11} and B_{21} are non-zero the symmetry of this action is

$$
\begin{align*}
Z_{i}(k) & \rightarrow e^{i \alpha} Z_{i}(k) \\
Z_{i}(-k) & \rightarrow e^{-i \alpha} Z_{i}(-k) \tag{34}
\end{align*}
$$

We are using $-k$ for $(-\omega,-k)$. The Nöther current (flux) is then

$$
\begin{align*}
\mathcal{F}= & i\left\{\left[Z_{1}^{\prime}(-k) Z_{1}(k)-Z_{1}(-k) Z_{1}^{\prime}(k)\right]\left[A_{11}(k)+A_{11}(-k)\right]+\right. \\
& +\left[Z_{2}^{\prime}(-k) Z_{2}(k)-Z_{2}(-k) Z_{2}^{\prime}(k)\right]\left[A_{22}(k)+A_{22}(-k)\right] \\
& +Z_{1}(-k) Z_{1}(k)\left[B_{11}(k)-B_{11}(-k)\right]+ \\
& \left.+Z_{1}(k) Z_{2}(-k) B_{21}(k)-Z_{1}(-k) Z_{2}(k) B_{21}(-k)\right\} \tag{35}
\end{align*}
$$

Now A_{11}, A_{22} and B_{11} are invariant under $k \rightarrow-k$, whereas $B_{21}(-k)=-B_{21}(k)$.

$$
\begin{align*}
\mathcal{F}= & i\left\{2 A_{11}(k)\left[Z_{1}^{\prime}(-k) Z_{1}(k)-Z_{1}(-k) Z_{1}^{\prime}(k)\right]+2 A_{22}(k)\left[Z_{2}^{\prime}(-k) Z_{2}(k)-Z_{2}(-k) Z_{2}^{\prime}(k)\right]+\right. \\
& \left.+B_{21}(k)\left[Z_{1}(-k) Z_{2}(k)+Z_{1}(k) Z_{2}(-k)\right]\right\} \tag{36}
\end{align*}
$$

Imagine that $\mathcal{F}(\omega, k)$ is a polynomial defined over the complex plane of which zeroes we denote by $\tilde{\omega}_{i}(k)$. From our construction above I claim that these are the QNMs of the electron star system. Hence

$$
\begin{equation*}
\mathcal{F}(\omega, k)=\prod_{i=1}^{\infty}\left(\omega-\tilde{\omega}_{i}(k)\right) \tag{37}
\end{equation*}
$$

III. EXTERIOR OF THE STAR

Outside the star the geometry is that of the Reissner-Nordström-AdS. We have $\hat{\sigma}=\hat{\rho}=\hat{p}=0$ and

$$
\begin{equation*}
f=\frac{c^{2}}{r^{2}}-\hat{M} r+\frac{r^{2} \hat{Q}^{2}}{2}, \quad \quad g=\frac{c^{2}}{r^{4} f}, \quad h=\hat{\mu}-r \hat{Q} \tag{38}
\end{equation*}
$$

Also, as everywhere along the geometry,

$$
\begin{equation*}
\mu(r)=\frac{h(r)}{\sqrt{f(r)}} \tag{39}
\end{equation*}
$$

Equations (2) and (3) become

$$
\begin{align*}
0= & Z_{1}^{\prime \prime}+2 k r^{2} h^{\prime} Z_{2}^{\prime}+\frac{\omega^{2} f^{\prime}+2 k^{2} r f^{2}}{f\left(\omega^{2}-k^{2} r^{2} f\right)} Z_{1}^{\prime}+\frac{g}{f}\left(\omega^{2}-k^{2} r^{2} f\right) Z_{1} \\
& +2 k r^{2} \sqrt{f} \mu\left(\frac{2 \omega^{2} h^{\prime 2}}{f\left(\omega^{2}-k^{2} r^{2} f\right)}\right) Z_{2} \tag{40}\\
0= & Z_{2}^{\prime \prime}+\frac{1}{2}\left(\frac{f^{\prime}}{f}-\frac{g^{\prime}}{g}\right) Z_{2}^{\prime}-\frac{k h^{\prime}}{\omega^{2}-k^{2} r^{2} f} Z_{1}^{\prime}+\frac{g}{f}\left(\omega^{2}-k^{2} r^{2} f\right) Z_{2} \\
& -\frac{2 \omega^{2} h^{\prime 2}}{f\left(\omega^{2}-k^{2} r^{2} f\right)} Z_{2} \tag{41}
\end{align*}
$$

IV. SMALL STAR LIMIT

The easiest case to tract analytically is the limit when the star becomes small. Fermionic excitations in this scenario were analysed in [1].

The profile of the star is characterised by three functions $\hat{\sigma}, \hat{\rho}$ and \hat{p}. They all reach their maximum value in the IR at $r \rightarrow \infty$ limit, where the geometry is pure Lifshitz. They monotonically decrease with decreasing r and reach $\hat{\sigma}=\hat{\rho}=\hat{p}=0$ at the boundary of the star $\left(r=r_{s}\right)$. The small star limit is characterised by

$$
\begin{equation*}
\lambda^{2} \equiv h_{\infty}^{2}-\hat{m}^{2} \ll 1 \tag{42}
\end{equation*}
$$

where $\lambda^{2}=\frac{6^{4 / 3} \hat{m}^{2 / 3}\left(1-\hat{m}^{2}\right)^{2 / 3}}{\left(2 \hat{m}^{4}-7 \hat{m}^{2}+6\right)^{2 / 3}} \frac{1}{\hat{\beta}^{2 / 3}}$. Therefore at an arbitrary \hat{m}, the small star limit is achieved by taking large $\hat{\beta}$. The exponent z becomes

$$
\begin{equation*}
z=\frac{1}{1-\hat{m}^{2}}+\frac{\lambda^{2}}{\left(1-\hat{m}^{2}\right)^{2}}+\ldots \tag{43}
\end{equation*}
$$

The correction to the Lifshitz geometry inside the star is

$$
\begin{align*}
& f=\frac{1}{r^{2 z}}\left(1+f_{1} \frac{1}{r^{|\alpha|}}+\ldots\right) \\
& g=\frac{g_{\infty}}{r^{2}}\left(1+g_{1} \frac{1}{r^{|\alpha|}}+\ldots\right) \\
& h=\frac{h_{\infty}}{r^{z}}\left(1+h_{1} \frac{1}{r^{|\alpha|}}+\ldots\right) \tag{44}
\end{align*}
$$

where

$$
\begin{equation*}
|\alpha|=\frac{\hat{m} \sqrt{3\left(2-\hat{m}^{2}\right)}}{\sqrt{1-\hat{m}^{2}}} \frac{1}{\lambda}-1-\frac{1}{2\left(1-\hat{m}^{2}\right)}+\ldots \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{\infty}=\frac{6-7 \hat{m}^{2}+2 \hat{m}^{4}}{6\left(1-\hat{m}^{2}\right)^{2}}+\frac{\left(6-7 \hat{m}^{2}+2 \hat{m}^{4}\right)\left(1+4 \hat{m}^{2}\right)}{12 \hat{m}^{2}\left(1-\hat{m}^{2}\right)^{3}} \lambda^{2}+\ldots \tag{46}
\end{equation*}
$$

Corrections to the pure Lifshitz geometry inside the star therefore become exponentially suppressed for $r>1$ when $\lambda \ll 1$. It is shown in [1] that f_{1}, g_{1} and h_{1} can be normalised in such a way that to leading order in λ the boundary of the star is at $r_{s}=1$, while the correction to the pure Lifshitz geometry remains exponentially suppressed.
[1] S. A. Hartnoll, D. M. Hofman and D. Vegh, JHEP 1108 (2011) 096 [arXiv:1105.3197 [hep-th]].

[^0]: * matthewjstephenson@icloud.com

