I. SOLUTIONS OF THE SHEAR SECTOR MODES IN THE IR LIFSHITZ LIMIT

A. IR geometry and $k = 0$ solutions

The geometry in the IR $(r \to \infty)$ approaches that of a pure Lifshitz geometry. In this limit we have

$$f(r) \to 1/r^2$$

$$g(r) \to g_\infty/r^2$$

$$h(r) \to h_\infty/r^2.$$ (1)

The two differential equation in the shear sector are

$$0 = Z''_1 + 2k r^2 h' Z'_2 + \left(\frac{rg_\sigma \mu}{2} + \frac{\omega^2 f' + 2k^2 r f^2}{f (\omega^2 - k^2 r^2 f)} \right) Z'_1 + \frac{g}{f} (\omega^2 - k^2 r^2 f) Z_1$$

$$+ 2k r^2 \sqrt{f} \mu \left(\frac{2\omega^2 h'^2}{f (\omega^2 - k^2 r^2 f)} + \frac{g_\sigma}{\mu} \right) Z_2,$$ (2)

$$0 = Z''_2 + \frac{1}{2} \left(\frac{f'}{f} - \frac{g'}{g} \right) Z'_2 - \frac{kh'}{\omega^2 - k^2 r^2 f} Z'_1 + \frac{g}{f} (\omega^2 - k^2 r^2 f) Z_2$$

$$- \left(\frac{2\omega^2 h'^2}{f (\omega^2 - k^2 r^2 f)} + \frac{g_\sigma}{\mu} \right) Z_2.$$ (3)

In the limit of $k \to 0$, the two equations decouple

$$0 = Z''_1 + \left(\frac{rg_\sigma \mu}{2} + \frac{f'}{f} \right) Z'_1 + \frac{\omega^2 g}{f} Z_1,$$ (4)

$$0 = Z''_2 + \frac{1}{2} \left(\frac{f'}{f} - \frac{g'}{g} \right) Z'_2 + \left(\frac{\omega^2 g}{f} - \frac{2h'^2}{f} - \frac{g_\sigma}{\mu} \right) Z_2.$$ (5)
and we can find the asymptotic IR Lifshitz behaviour of Z_1 and Z_2 to be

$$Z_1 = \left(1 + \frac{i(z+1)}{2z\sqrt{g_\infty \omega r^z}}\right) r e^{i\sqrt{g_\infty \omega r^z}/z}$$

and

$$Z_2 = \left(1 + \frac{iz}{\sqrt{g_\infty \omega r^z}}\right) e^{i\sqrt{g_\infty \omega r^z}/z},$$

which are series expansions of the full (irrelevant) solutions

$$Z_1 = r^{1+z/2} H_{\frac{1+2}{2z}}^{(1)} \left(g_\infty^{1/2} r^{1/2} \frac{\omega r^z}{z}\right)$$

and

$$Z_2 = r^{z/2} H_{\frac{3}{2}}^{(1)} \left(g_\infty^{1/2} r^{1/2} \frac{\omega r^z}{z}\right).$$

We would now like to find the k-dependent corrections to the above solutions to analytically extract the hydrodynamical quasi-normal mode (QNM).

B. Cases with integer values of the exponent z

1. **Cases with exponents $z \geq 3$**

We would like to find analytic k-dependent corrections to Z_1 and Z_2 in the Lifshitz IR region. The corrections should be such that the limit of $k \to 0$ smoothly reproduces the above $k = 0$ results. On the other hand, the limit of $\omega \to 0$ is not analytic and our solutions will represent an asymptotic series in ω controlled by powers of r. Away from the in-falling boundary conditions at the horizon ($r \to \infty$), however, we expect that the limit of $\omega \to 0$ is defined as well. We anticipate the form

$$Z_1 = e^{i\sqrt{g_\infty \omega r^z}/z} P_1(r, \omega, k)$$

and

$$Z_2 = e^{i\sqrt{g_\infty \omega r^z}/z} P_2(r, \omega, k),$$

where P_1 and P_2 are polynomials in ascending powers of $1/r$.

We can first expand equations (2) and (3) in $k^2 r^2 f \ll \omega^2$. Since we only work with $z > 1$, the expansion parameter tends to $k^2 r^2 f = k^2 r^{2(1-z)} \to 0$ in the IR. The expansion therefore makes sense for all non-vanishing values of ω and finite values of k. The limits of our approximation are

$$k^2 \ll \omega^2 r^{2(z-1)}$$

and

$$r \to \infty.$$
On top of that, we are interested in the hydrodynamical QNMs, hence we may think of both ω and k as small. We find, up to $O(k^4)$,

$$0 = Z''_1 - \left(\frac{z+1}{r} + \frac{2(z-1)k^2}{\omega^2 r^{2z-1}} + \frac{2(z-1)k^4}{\omega^4 r^{4z-3}}\right)Z'_1 + g_\infty \left(\omega^2 r^{2(z-1)} - k^2\right)Z_1$$

$$- \frac{2\sqrt{z(z-1)}k}{r^{z-1}}Z'_2 + 4\sqrt{z(z-1)}\left(\frac{zk}{r^z} + \frac{(z-1)k^3}{\omega^2 r^{3z-2}}\right)Z_2$$

and

$$0 = Z''_2 - \frac{z-1}{r}Z'_2 + \left[\left(\omega^2 r^{2(z-1)} - k^2\right) - \frac{2z^2}{r^2} - \frac{2z(z-1)k^2}{\omega^4 r^{4z-2}}\right]Z_2$$

$$+ \frac{\sqrt{z(z-1)}k \left(\omega^2 r^{2(z-1)} + k^2\right)}{\omega^4 r^{3z-1}}Z'_1$$

(13)

(14)

Using a power series expansion in $1/r$ for Z_1 and Z_2 shows that we can recursively solve differential equations (13) and (14), order-by-order in r, with two series of form

$$P_1 = 1 + \sum_{i=z-2}^{\infty} \frac{a_i(\omega, k)}{r^i}$$

$$P_2 = 1 + \sum_{i=z-2}^{\infty} \frac{b_i(\omega, k)}{r^i}$$

(15)

The non-zero terms in both series begin at order $1/r^{z-2}$. In the limit of $k \to 0$ we find that $a_{z-2} = a_{z-1} = b_{z-2} = b_{z-1} = 0$, $a_z = \frac{i(z+1)}{2z\sqrt{g_\infty} \omega}$ and $b_z = \frac{-iz}{\sqrt{g_\infty} \omega}$, as required.

If we only seek the leading ω and k behaviour it suffices to consider the series with three terms between $i = z - 2$ and $i = z$. In that case the equation (13) will be solved up to order $O\left(\frac{1}{r}\right)$, leaving terms of order $O\left(\frac{1}{r^2}\right)$ and higher unsolved. Equation (14) will be solved up to order $O\left(\frac{1}{r^2}\right)$, leaving terms of order $O\left(\frac{1}{r^3}\right)$ and higher unsolved. Further extending polynomials $P_{1,2}$ by n terms is then able to solve the two differential equations by further n orders.

2. Special case with $z = 2$

A special case, which cannot be solved by the above ansatz is the case when $z - 2 = 0$, i.e. $z = 2$. To solve the system we can use the following modified ansatz:

$$Z_1 = e^{i\frac{\sqrt{g_\infty} \omega r^z}{z}} + f(r)P_1(r, \omega, k)$$

$$Z_2 = e^{i\frac{\sqrt{g_\infty} \omega r^z}{z}} + f(r)P_2(r, \omega, k).$$

(16)

(17)
It is clear that since equations (13) and (14) have no constant terms, the functions in the exponents must equal, so it is sufficient to find a single $f(r)$ for both Z_1 and Z_2. To only find $f(r)$, it is sufficient to simply set $Z_1 = 0$ and use equation (14) to leading order in k. We are left with

$$0 = Z''_2 - \frac{1}{r}Z'_2 + \left[g_\infty r^2 \left(\omega^2 - \frac{k^2}{r^2} \right) - \frac{8}{r^2} \right] Z_2$$

(18)

to which the full solution is [completely irrelevant, but it’s fun to play with special functions :-)]

$$Z_2 = r^4 e^{\frac{1}{2} i \omega \sqrt{g_\infty} r^2} \left[C_1 U \left(2 + \frac{i \sqrt{g_\infty} k^2}{4 \omega}, 4, -i \sqrt{g_\infty} \omega r^2 \right) + C_2 L^3_{-2 - i \sqrt{g_\infty} k^2} \left(-i \sqrt{g_\infty} \omega r^2 \right) \right],$$

(19)

where U is the confluent hypergeometric function and $L^\lambda_n(z)$ the Laguerre polynomial.

Analysing its asymptotics near $r \to \infty$, we find that $C_2 = 0$ in order to only keep $e^{\frac{1}{2} i \omega \sqrt{g_\infty} r^2}$ terms (the in-falling b.c.). To match this solution onto the $k = 0$ solution we must set $C_1 = -g_\infty \omega^2$.

There is of course still the freedom of multiplying the entire solution by a constant. Expanding in $1/r$ we find

$$Z_2 = -g_\infty \omega^2 r^4 e^{\frac{1}{2} i \omega \sqrt{g_\infty} r^2} U \left[2 + \frac{i \sqrt{g_\infty} k^2}{4 \omega}, 4, -i \sqrt{g_\infty} \omega r^2 \right]$$

$$= e^{\frac{1}{2} i \sqrt{g_\infty} \omega r^2} \left(-i \sqrt{g_\infty} \omega r^2 \right)^{-i \sqrt{g_\infty} k^2} [1 + ...]$$

$$= \exp \frac{i \sqrt{g_\infty} \omega}{2} \left(r^2 - \frac{k^2}{2 \omega^2} \log \left(-i \sqrt{g_\infty} \omega r^2 \right) \right) [1 + ...].$$

(20)

Therefore

$$e^{f(r)} = \left(-i \sqrt{g_\infty} \omega r^2 \right)^{-i \sqrt{g_\infty} k^2} = e^{-i \sqrt{g_\infty} \omega r^2} \log \left(-i \sqrt{g_\infty} \omega r^2 \right).$$

(21)

Note that this structure is similar to the more usual AdS cases at finite temperature...

We can now use, as before, polynomials $P_{1,2}$ to find

$$Z_1 = e^{\frac{1}{2} i \sqrt{g_\infty} \omega r^2} \left(-i \sqrt{g_\infty} \omega r^2 \right)^{\frac{k^2}{4 \omega}} \log \left(-i \sqrt{g_\infty} \omega r^2 \right) \left(1 - \frac{\sqrt{2} k}{r} + \frac{12 i \omega^2 - 12 \sqrt{g_\infty} \omega k^2 + i g_\infty k^4}{16 g_\infty \omega^3 r^2} + ... \right)$$

$$- \frac{32 i \omega^2 k - 4 \sqrt{g_\infty} \omega k^3 + i g_\infty k^5}{8 \sqrt{2} g_\infty \omega^3 r^3} + ...$$

$$Z_2 = e^{\frac{1}{2} i \sqrt{g_\infty} \omega r^2} \left(-i \sqrt{g_\infty} \omega r^2 \right)^{\frac{k^2}{4 \omega}} \log \left(-i \sqrt{g_\infty} \omega r^2 \right) \left(1 + \frac{k}{\sqrt{2} \omega^2 r} + \frac{32 i \omega^2 - 4 \sqrt{g_\infty} \omega k^2 + i g_\infty k^4}{16 g_\infty \omega^3 r^2} + ... \right)$$

(22)

so that both (13) and (14) are satisfied to $\mathcal{O}(1/r^2)$.

II. QUASI-NORMAL MODES

We would like to find the hydrodynamical QNM in the shear sector of the electron star background at $T = 0$.

\textbf{A. Flux with real }\omega^2

To find the conserved flux in this system, consider the off-shell Lagrangian

\[
\mathcal{L}_{\text{off-shell}} = \frac{L^2}{\kappa^2} \left(Z_i^\dagger A_{ij} Z_j^\prime + Z_i^\dagger B_{ij} Z_j^\prime + \text{non-derivative terms} \right)
\]

(23)

where

\[
A_{11} = \frac{\sqrt{f}}{4r^2 \sqrt{g} (\omega^2 - k^2 r^2 f)}, \quad A_{22} = -\frac{\sqrt{f}}{2 \sqrt{g}}, \quad A_{12} = A_{21} = 0,
\]

\[
B_{11} = \frac{(rf' - 2f)}{2\omega^2 r^3 \sqrt{\nu g}}, \quad B_{21} = -\frac{k (rf' + 2f)}{2r \mu \sqrt{g} (\omega^2 - k^2 r^2 f)}, \quad B_{12} = B_{22} = 0.
\]

(24)

This Lagrangian is invariant under simultaneous global \(U(1)\) transformations of both \(Z_1\) and \(Z_2\). The reason for this is the cross-term \(Z_1^\dagger B_{21} Z_2^\prime\). Assuming that \((r, \omega^2, k) \in \mathbb{R}\), the flux can then be found to be

\[
\mathcal{F} = 2i \left[-Z_1 A_{11} Z_1^\prime + Z_1 A_{11} Z_1^{\dagger*} + Z_2 A_{22} Z_2^\prime - Z_2 A_{22} Z_2^{\dagger*} + \frac{1}{2} B_{21} (Z_1^* Z_2 - Z_2^* Z_1) \right].
\]

(27)

\(\mathcal{F}\) is conserved along the radial direction, i.e. \(\partial_r \mathcal{F} = 0\).

Now, in the UV part of the geometry the fields can be expanded as

\[
Z_1 = Z_1^{(0)} + r^2 Z_1^{(2)} + r^3 Z_1^{(3)} + \ldots
\]

\[
Z_2 = Z_2^{(0)} + r Z_2^{(1)} + \ldots,
\]

(28)

where \(Z_2^{(1)}\) is related to the vev of the QFT current \(J_\mu\), while \(Z_1^{(2)}\) is completely determined by the sources of the \(T_{\mu\nu}\) components of \(Z_1^{(0)}\). The vev of \(T_{\mu\nu}\) comes in at the order of \(r^3\). The value of the flux at the AdS boundary is

\[
\lim_{r \to 0} \mathcal{F}(r) = 2i \lim_{r \to 0} \left(Z_1 A_{11} Z_1^{\dagger*} - Z_2 A_{22} Z_2^{\dagger*} \right) + 2i A_{22}(0) \left(Z_2^{(0)*} Z_2^{(1)} - Z_2^{(0)} Z_2^{(1)*} \right) + \frac{1}{2} B_{21}(0) \left(Z_1^{(0)*} Z_2 - Z_1^{(0)} Z_2^{(0)*} \right)
\]

(29)

which along with the limiting values

\[
\lim_{r \to 0} A_{11} = -\lim_{r \to 0} \frac{\sqrt{f}}{4r^2 \sqrt{g} (\omega^2 - k^2 r^2 f)} = \frac{c}{4 \sqrt{g} (\omega^2 - c^2 k^2)}
\]

\[
\lim_{r \to 0} A_{22} = \frac{\sqrt{f}}{2 \sqrt{g}} = -\frac{c}{2}
\]

\[
\lim_{r \to 0} B_{21} = \lim_{r \to 0} \frac{k (rf' + 2f)}{2r \mu \sqrt{g} (\omega^2 - k^2 r^2 f)} = \frac{3c \dot{M}}{2 \mu} \frac{k}{\omega^2 - c^2 k^2}
\]

(30)
gives the conserved flux

\[
F = \mathcal{I} \left[\frac{\omega^2 - c^2 k^2}{c^2} \left(\lim_{r \to 0} \frac{1}{r} \left(Z_1^{(0)} Z_1^{(2)*} - Z_1^{(2)*} Z_1^{(0)} \right) + \frac{3}{2} \left(Z_1^{(0)} Z_1^{(3)*} - Z_1^{(3)*} Z_1^{(0)} \right) \right) + Z_2^{(0)} Z_2^{(1)*} - Z_2^{(1)*} Z_2^{(0)} + \frac{3 M k}{2 \hat{\mu} (\omega^2 - c^2 k^2)} \left(Z_1^{(0)*} Z_2^{(0)} - Z_1^{(0)} Z_2^{(0)*} \right) \right].
\] (31)

To impose the Dirichlet boundary conditions at the boundary we need to fix \(Z_1^{(0)} \) and \(Z_2^{(0)} \) to some constants. However, to find only the QNMs, without the full Green’s functions, it is particularly useful to set \(Z_1^{(0)} = Z_2^{(0)} = 0 \). Generally, the values of \(Z_1^{(0)} \) and \(Z_2^{(0)} \) can be thought of as functions of \(\omega \) and \(k \) at some fixed physical parameters \(\hat{M}, \hat{Q}, \hat{\mu}, \) etc. describing the star geometry. Given some propagating modes that satisfy \(Z_1^{(0)} = Z_2^{(0)} = 0 \), we can see that the flux vanishes away from the light-cone \((\omega^2 = c^2 k^2) \) for such \(\omega(k) \). Therefore

For a quasinormal mode \(\tilde{\omega}(k) \) \quad \rightarrow \quad F (\tilde{\omega}(k)) = 0 \quad (32)

It is interesting to note that the flux actually diverges unless we set \(Z_1^{(0)} = 0 \) or alternatively if \(Z_1^{(0)} Z_1^{(2)*} - Z_1^{(2)*} Z_1^{(0)} \) vanishes.

We would like to use this fact to find QNMs from the IR part of the geometry. The question we need to answer is therefore in what other cases can \(F = 0 \)? We can always set \(Z_1^{(0)} \) and \(Z_2^{(0)} \) to be real. Then the flux vanishes if \(Z_1^{(2)}, Z_1^{(3)} \) and \(Z_2^{(1)} \) are real as well. This is something we would, however, not generically expect to be true.

B. Flux with complex frequency

We should look for the flux of \(\omega \in \mathbb{C} \) fluctuations to find the value of \(F \) on the QNMs. The off-shell action is

\[
S^{(2)} = \frac{L^2}{\kappa^2} \int d^4k dr \left\{ Z_i'(-k) A_{ij}(k) Z_j'(k) + Z_i(-k) B_{ij}(k) Z_j'(k) + \cdots \right\}
\] (33)

Because only \(A_{11}, A_{22}, B_{11} \) and \(B_{21} \) are non-zero the symmetry of this action is

\[
Z_i(k) \rightarrow e^{i\alpha} Z_i(k) \\
Z_i(-k) \rightarrow e^{-i\alpha} Z_i(-k)
\] (34)
We are using \(-k\) for \((-\omega, -k)\). The Nöther current (flux) is then

\[
\mathcal{F} = i \left\{ \left[Z'_1(-k)Z_1(k) - Z_1(-k)Z'_1(k) \right] [A_{11}(k) + A_{11}(-k)] + \\
+ \left[Z'_2(-k)Z_2(k) - Z_2(-k)Z'_2(k) \right] [A_{22}(k) + A_{22}(-k)] + \\
+ Z_1(-k)Z_1(k) [B_{11}(k) - B_{11}(-k)] + \\
+ Z_1(k)Z_2(-k)B_{21}(k) - Z_1(-k)Z_2(k)B_{21}(-k) \right\}
\]

Now \(A_{11}, A_{22}\) and \(B_{11}\) are invariant under \(k \to -k\), whereas \(B_{21}(-k) = -B_{21}(k)\).

\[
\mathcal{F} = i \left\{ 2A_{11}(k) \left[Z'_1(-k)Z_1(k) - Z_1(-k)Z'_1(k) \right] + 2A_{22}(k) \left[Z'_2(-k)Z_2(k) - Z_2(-k)Z'_2(k) \right] + \\
+ B_{21}(k) [Z_1(-k)Z_2(k) + Z_1(k)Z_2(-k)] \right\}
\]

Imagine that \(\mathcal{F}(\omega, k)\) is a polynomial defined over the complex plane of which zeroes we denote by \(\tilde{\omega}_i(k)\). From our construction above I claim that these are the QNMs of the electron star system. Hence

\[
\mathcal{F}(\omega, k) = \prod_{i=1}^{\infty} (\omega - \tilde{\omega}_i(k))
\]

III. EXTERIOR OF THE STAR

Outside the star the geometry is that of the Reissner-Nordström-AdS. We have \(\hat{\sigma} = \hat{\rho} = \hat{\rho} = 0\) and

\[
f = \frac{c^2}{r^2} - \dot{M}r + \frac{r^2\dot{Q}^2}{2}, \quad g = \frac{c^2}{r^4 f}, \quad h = \mu - r\dot{Q}.
\]

Also, as everywhere along the geometry,

\[
\mu(r) = \frac{h(r)}{\sqrt{f(r)}}.
\]

Equations (2) and (3) become

\[
0 = Z''_1 + 2kr^2 h' Z'_2 + \frac{\omega^2 f'}{f (\omega^2 - k^2 r^2 f)} Z'_1 + \frac{g}{f} \left(\frac{\omega^2 f'}{f (\omega^2 - k^2 r^2 f)} \right) Z_1
\]

\[
+ 2kr^2 \sqrt{f} \mu \left(\frac{2\omega^2 h'^2}{f (\omega^2 - k^2 r^2 f)} \right) Z_2,
\]

\[
0 = Z''_2 + \frac{1}{2} \left(\frac{f'}{f} - \frac{g'}{g} \right) Z'_2 - \frac{kh'}{\omega^2 - k^2 r^2 f} Z'_1 + \frac{g}{f} \left(\frac{\omega^2 - k^2 r^2 f}{\omega^2 - k^2 r^2 f} \right) Z_2
\]

\[
- \frac{2\omega^2 h'^2}{f (\omega^2 - k^2 r^2 f)} Z_2
\]
IV. SMALL STAR LIMIT

The easiest case to tract analytically is the limit when the star becomes small. Fermionic excitations in this scenario were analysed in [1].

The profile of the star is characterised by three functions \(\hat{\sigma}, \hat{\rho}, \hat{p} \). They all reach their maximum value in the IR at \(r \to \infty \) limit, where the geometry is pure Lifshitz. They monotonically decrease with decreasing \(r \) and reach \(\hat{\sigma} = \hat{\rho} = \hat{p} = 0 \) at the boundary of the star \((r = r_s) \). The small star limit is characterised by

\[
\lambda^2 \equiv h_\infty^2 - \hat{m}^2 \ll 1
\]

(42)

where

\[
\lambda^2 = \frac{6^{4/3} \hat{m}^{2/3} (1 - \hat{m}^2)^{2/3}}{(2\hat{m}^4 - 7\hat{m}^2 + 6)^{2/3}} \frac{1}{\beta^{2/3}}.
\]

Therefore at an arbitrary \(\hat{m} \), the small star limit is achieved by taking large \(\beta \). The exponent \(z \) becomes

\[
z = \frac{1}{1 - \hat{m}^2} + \frac{\lambda^2}{(1 - \hat{m}^2)^2} + \ldots
\]

(43)

The correction to the Lifshitz geometry inside the star is

\[
f = \frac{1}{r^{2z}} \left(1 + f_1 \frac{1}{r^{|\alpha|}} + \ldots \right)
\]

\[
g = \frac{g_\infty}{r^{2z}} \left(1 + g_1 \frac{1}{r^{|\alpha|}} + \ldots \right)
\]

\[
h = \frac{h_\infty}{r^{2z}} \left(1 + h_1 \frac{1}{r^{|\alpha|}} + \ldots \right)
\]

(44)

where

\[
|\alpha| = \frac{\hat{m} \sqrt{3} (2 - \hat{m}^2) 1}{\sqrt{1 - \hat{m}^2}} - 1 - \frac{1}{2 (1 - \hat{m}^2)} + \ldots
\]

(45)

and

\[
g_\infty = \frac{6 - 7\hat{m}^2 + 2\hat{m}^4}{6 (1 - \hat{m}^2)^2} + \frac{(6 - 7\hat{m}^2 + 2\hat{m}^4) (1 + 4\hat{m}^2)}{12\hat{m}^2 (1 - \hat{m}^2)^3} \lambda^2 + \ldots
\]

(46)

Corrections to the pure Lifshitz geometry inside the star therefore become exponentially suppressed for \(r > 1 \) when \(\lambda \ll 1 \). It is shown in [1] that \(f_1, g_1 \) and \(h_1 \) can be normalised in such a way that to leading order in \(\lambda \) the boundary of the star is at \(r_s = 1 \), while the correction to the pure Lifshitz geometry remains exponentially suppressed.