Number Theory

Part 1: Transcendental Equations:

Solving Transcendental Equations using the \(\beta w \)-convergence formula

Abstract

The main purpose of inventing this paper is based on the general idea that an equation of this form can’t be \(a^x + b^x = c \) algebraically. In this question derived, the formula ((\(\beta w \)-convergence)) with mathematical proof can be used to solve such an equation with ease.

Since the formula is purely invented with my own approach, the article lacks references.

\[\beta w \text{-convergence Formulae for Solving } a^x + b^x = c \]

Say, \(n \approx x \), then, \(n \)

\[(a^x - a^n) + (b^x - b^n) = c - a^n - b^n \]

Factorizing, then

\[a^n(a^{x-n} - 1) + b^n(b^{x-n} - 1) = c - a^n - b^n \]

Factorized, then

\[(b^{x-n} - a^{x-n})(a^n b^n) = c - a^n - b^n, \text{ this is true if } n \approx x \text{ or } n = x \]

Dividing \(a^n b^n \) both sides, then

\[(b^{x-n} - a^{x-n}) = \frac{c - a^n - b^n}{(a^n b^n)} \]

This can also be written as;

\[\frac{b^x}{b^n} - \frac{a^x}{a^n} = \frac{c - a^n - b^n}{(a^n b^n)} \]

Back to the equation, \(a^x + b^x = c \),
\[a^x = c - b^x \]

Therefore,
\[\frac{b^x}{b^n} - \frac{(c - b^x)}{a^n} = \frac{c - a^n - b^n}{(a^n b^n)} \]
\[\frac{a^n b^x - b^n c + b^n b^x}{a^n b^n} = \frac{c - a^n - b^n}{(a^n b^n)} \]

Multiplying both sides by \(a^n b^n\)
\[a^n b^x - b^n c + b^n b^x = c - a^n - b^n \]

This can also be written as;
\[a^n b^x + b^n b^x = c - a^n - b^n + b^n c \]

Factorizing,
\[b^x(a^n + b^n) = c - a^n - b^n + b^n c \]

Where \(b^x\) will be;
\[b^x = \frac{b^n c + (c - a^n - b^n)}{(a^n + b^n)} \]

Therefore,
\[x = \frac{\log(b^n c + (c - a^n - b^n))}{\log(a^n + b^n)} \]

Similarly, following the same procedure,
\[x = \frac{\log(a^n c + (c - a^n - b^n))}{\log(a^n + b^n)} \]

Theorem

I. When \(n \rightarrow x \), the closer \(n \) approaches \(x \), then accurate the answer until \(n = x \)

II. Meaning \(n_1 \) will be closer to answer than \(n_2, n_3 \) than \(n_2, ..., n_j \)
III. \(n_1 \) must be used to get \(n_2 \) to get \(n_3 \) ... until \(n_i = x \)

IV. Using \(\beta w \)-convergence formula, \(k \) can be used to calculate the first value of \(n \)

V. \(k \) can be any value assumed. as long the \(c - a^n - b^n > 0 \), or equal to 0

VI. Here in all calculations, I have taken \(b^x > a^x \); however, whichever the case, it does not interfere with the calculations. One can also use \(a^x > b^x \)

VII. The larger the value of \(k \), the more calculations would be needed, but the closer the value \(k \) to \(n \) fewer calculations would be needed.

VIII. The same formula calculates the first value of \(n \)

\[
n = \frac{\log \left(\frac{b^k c + (c - a^k - b^k)}{a^k + b^k} \right)}{\log b}
\]

IX. \(x = \frac{\log \left(\frac{b^k c + (c - a^n - b^n)}{(a^n + b^n)} \right)}{\log a} \) requires less calculation than \(x = \frac{\log \left(\frac{a^n c + (c - a^n - b^n)}{(a^n + b^n)} \right)}{\log a} \) to find the accurate answer.

\(\beta w \)-convergence formulae for Solving \(b^x - a^x = c \)

Following the same rule & procedure

\(n \to x \), then

\[
(a^x - a^n) + (b^x - b^n) = c + a^n - b^n
\]

Factorizing, then

\[
a^n(a^{x-n} - 1) + b^n(b^{x-n} - 1) = c + a^n - b^n
\]

However, if \(n \to x \), where \(n = x \), then \(a^n(a^{x-n} - 1) + b^n(b^{x-n} - 1) = c + a^n - b^n \)

Can be written (factorized) as;

\[
(b^{x-n} - a^{x-n})(a^n b^n) = c + a^n - b^n
\]

Dividing \(a^n b^n \) both sides, then
\((b^{x-n} - a^{x-n}) = \frac{c + a^n - b^n}{(a^n b^n)} \)

This can also be written as;

\[
\frac{b^x}{b^n} - \frac{a^x}{a^n} = \frac{c + a^n - b^n}{(a^n b^n)}
\]

Back to the equation, \(b^x - a^x = c \),

\[b^x = c + a^x \]

Therefore,

\[
\frac{(c + a^x)}{b^n} - \frac{a^x}{a^n} = \frac{c + a^n - b^n}{(a^n b^n)}
\]

\[
\frac{a^n(a^x + c) - b^n a^x}{a^n b^n} = \frac{c + a^n - b^n}{(a^n b^n)}
\]

Multiplying both sides by \(a^n b^n \)

\[a^n a^x + a^n c - b^n a^x = c + a^n - b^n \]

This can also be written as;

\[a^n a^x - b^n a^x = c + a^n - b^n - a^n c \]

Factorizing,

\[a^x(a^n - b^n) = c + a^n - b^n - a^n c \]

Where \(a^x \) will be;

\[a^x = \frac{-ca^n + (c + a^n - b^n)}{(a^n - b^n)} \]

Thus,

\[x = \frac{\log\left(\frac{-ca^n + (c + a^n - b^n)}{(a^n - b^n)}\right)}{\log a} \]

Similarly, following the same procedure,
\[x = \frac{\log\left(\frac{-cb^n + (c + a^n - b^n)}{(a^n - b^n)}\right)}{\log b} \]

Theorem

I. \(k \) any value assumed. as long the \(c - a^n - b^n < 0, or equal to 0 \)

II. This formula can also be used to find the value of \(x \), in the equation

\[a^x + b^x = c^x \]

III. However, to do so, the equation must be first changed into

\[\left(\frac{a}{c}\right)^x + \left(\frac{b}{c}\right)^x = 1 \]

Or

\[\left(\frac{c}{a}\right)^x - \left(\frac{b}{a}\right)^x = 1 \]

Example 1

Find the value of \(x \)

\[3^x + 2^x = 14 \]

Solution

Let’s take any value of \(k \), say 8, and then

\[n1 = \frac{\log\left(\frac{b^k c + (c - a^k - b^k)}{(a^k + b^k)}\right)}{\log b} \]

So, applying the formula;

\[n1 = \frac{\log\left(\frac{3^8 \times 14 + (14 - 2^8 - 3^8)}{(2^8 + 3^8)}\right)}{\log 3} \]

Thus,
\[n_1 = 2.29729050932 \]

So, using \(n_1 = 2.29729050932 \), then,

\[3^{2.29729050932} + 2^{2.29729050932} = 17.3916468296 \]

Doing the second calculation, where now; n1=2.29729050932

The value of \(n_2 \)

\[n_2 = \log\left(\frac{3^{2.29729050932} \times 14 + (14 - 2^{2.29729050932} - 3^{2.29729050932})}{(2^{2.29729050932} + 3^{2.29729050932})} \right) \]

So, using \(n_2 = 2.08198130882 \)

\[3^{2.08198130882} + 2^{2.08198130882} = 14.0820980231 \]

Doing the third calculation, where now; n2=2.08198130882

The value of \(n_3 \)

\[n_3 = \log\left(\frac{3^{2.08198130882} \times 14 + (14 - 2^{2.08198130882} - 3^{2.08198130882})}{(2^{2.08198130882} + 3^{2.08198130882})} \right) \]

\(n_3 = 2.07611695862, \)

So, using \(n_3 = 2.07611695862 \)

\[3^{2.07611695862} + 2^{2.07611695862} = 14.0016781963 \]

The value of \(n_4 \)

\[n_4 = \log\left(\frac{3^{2.07611695862} \times 14 + (14 - 2^{2.07611695862} - 3^{2.07611695862})}{(2^{2.07611695862} + 3^{2.07611695862})} \right) \]

\(n_4 = 2.07599670273 \)

So, using \(n_4 = 2.07599670273 \)

\[3^{2.07599670273} + 2^{2.07599670273} = 14.0000340751 \]

So, finding \(n_5 \)
\[n_5 = \frac{\log\left(3^{2.07599670273 \times 14} + (14 - 2^{2.07599670273} - 3^{2.07599670273})\right)}{\log 3} \]

\[n_5 = 2.07599426082 \]

\[3^{2.07599426082} + 2^{2.07599426082} = 14.0000006918 \]

If the calculations are repeated, it will reach a point where the value of \(n_k \) \((3^{nk} + 2^{nk} = 14)\), solution of exactly 14, meaning, \(n_k = x \)

Important Notice Based on Example 1

- If the value \(k > n \), then the values of \(C^n > C^x \). However, \(C^n \) will decrease with each calculation until it reaches, \(C^n = C^x \)

 \[a^x + b^x = c^x \]

- If \(k < n \), then the value of \(C^n < C^x \). However, \(C^n \) will increase with each calculation until it reaches \(C^n = C^x \)

- In the calculation have assumed \(k = 8 \), though any number can be used if and only if \(c - a^n - b^n > 0 \), or equal to 0

Example 2

Find the value of \(x \)

\[3^x - 2^x = 14 \]

\[k = 0.86135311614 \]

Applying the formula

\[n_1 = \frac{\log\left(-cb^n + (c + a^n - b^n)\right)}{\log b} \]

Then
\[n_1 = \log\left(\frac{-3^{0.861353111614} \times 4 + (4 + 2^{0.861353111614} - 3^{0.861353111614})}{(2^{0.861353111614} - 3^{0.861353111614})}\right) \]

\[n_1 = 2.03004521829 \]

So, using \(n_1 = 2.03004521829 \), then,

\[3^{2.03004521829} - 2^{2.03004521829} = 5.24193926067 \]

Doing the second calculation, where now, \(n_1 = 2.03004521829 \)

The value of \(n_2 \)

\[n_2 = \log\left(\frac{-3^{2.03004521829} \times 4 + (4 + 2^{2.03004521829} - 3^{2.03004521829})}{(2^{2.03004521829} - 3^{2.03004521829})}\right) \]

\[n_2 = 1.81742690735 \]

\[3^{1.81742690735} - 2^{1.81742690735} = 3.8398057357 \]

Doing the third calculation, where now, \(n_2 = 1.81742690735 \)

The value of \(x \)

\[n_3 = \log\left(\frac{-3^{1.81742690735} \times 4 + (4 + 2^{1.56715353789} - 3^{1.56715353789})}{(2^{1.56715353789} - 3^{1.56715353789})}\right) \]

\[n_3 = 1.84966718013 \]

\[3^{1.84966718013} - 2^{1.84966718013} = 4.02567137244 \]

Doing the fourth calculation, where now, \(n = 1.84966718013 \)

The value of \(n_3 \)

\[n_4 = \log\left(\frac{-3^{1.84966718013} \times 4 + (4 + 2^{1.84966718013} - 3^{1.84966718013})}{(2^{1.84966718013} - 3^{1.84966718013})}\right) \]

\[n_4 = 1.84460939966 \]

\[3^{1.84460939966} - 2^{1.84460939966} = 3.99600675004 \]
Doing the fifth calculation, where \(n4 = 1.84460939966 \)

\[
x = \frac{\log\left(\frac{-3^{1.84460939966} \times 4 + (4 + 2^{1.84460939966} - 3^{1.84460939966})}{(2^{1.84460939966} - 3^{1.84460939966})}\right)}{\log 3}
\]

\(n5 = 1.84539878668 \)

\[3^{1.84539878668} - 2^{1.84539878668} = 4.0062407008\]

Doing the sixth calculation, where \(n5 = 1.84539878668 \)

\[
x = \frac{\log\left(\frac{-3^{1.84539878668} \times 4 + (4 + 2^{1.84539878668} - 3^{1.84539878668})}{(2^{1.84539878668} - 3^{1.84539878668})}\right)}{\log 3}
\]

\(n6 = 1.84527548465 \)

\[3^{1.84527548465} - 2^{1.84527548465} = 3.9990254065\]

If the calculations are repeated, it will reach a point where the value of \(x (3^x - 2^x = 4) \), solution of exactly 4

Important Notice Based on Example 2

- As observed in the example, \(n1, n3, \) and \(n4 \), give \(C^n > C^x \) but the value decrease with each calculation. While the value of \(n2, n4, n6 \), give \(C^n < C^x \) but increases by each calculation.

- In the calculation have assumed \(k = 0.86135311614 \), though any number can be used if and only if \(c - a^x - b^x < 0, \) or equal to 0.

\(\beta w - convergence \) Formular for Solving \(a^{x+e} + b^{x+d} = c \)

\(n \rightarrow x \), then, and where \((d, e) \) are known numbers

\[
(a^{x+e} - a^{n+e}) + (b^{x+d} - b^{n+d}) = c - a^{n+e} - b^{n+e}
\]

Factorizing, then

\[a^{n+e}(a^{x-n} - 1) + b^{n+d}(b^{x-n} - 1) = c - a^{n+e} - b^{n+d}\]
However, if \(n \to x \), where \(n = x \), then
\[
a^{n+e}(a^{x-n} - 1) + b^{n+e}(b^{x-n} - 1) = c - a^{n+e} - b^{n+d}
\]

This be written (factorized) as;
\[
(b^{x-n} - a^{x-n})(a^{n+e}b^{n+d}) = c - a^{n+e} - b^{n+d}
\]

Dividing \(a^n b^n \) both sides, then
\[
(b^{x-n} - a^{x-n}) = \frac{c - a^{n+e} - b^{n+d}}{(a^{n+e} b^{n+d})}
\]

This can also be written as;
\[
\frac{b^x - a^x}{b^n - a^n} = \frac{c - a^{n+e} - b^{n+d}}{(a^{n+e} b^{n+d})}
\]

Back to the equation, \(a^{x+e} + b^{x+d} = c \),
\[
a^x = \frac{c - b^{x+d}}{a^e}
\]

Therefore,
\[
\frac{b^x}{b^n} - \frac{(c - b^{x+d})}{a^e a^n} = \frac{c - a^{n+e} - b^{n+d}}{(a^{n+e} b^{n+d})}
\]

\[
\frac{a^n b^x a^e - c b^n + b^{n+x+d}}{a^{e+n} b^n} = \frac{c - a^{n+e} - b^{n+d}}{(a^{n+e} b^{n+d})}
\]

Multiplying both sides by \(a^{n+e} b^n \)
\[
a^n b^x a^e - c b^n + b^{n+x+d} = \frac{c - a^{n+e} - b^{n+d}}{(b^d)}
\]

This can also be written as;
\[
a^n b^x a^e + b^n b^x b^d = \frac{c - a^{n+e} - b^{n+d}}{(b^d)} + b^n c
\]
\[
a^n b^x a^e + b^n b^x b^d = \frac{c b^{n+d} + (c - a^{n+e} - b^{n+d})}{(b^d)}
\]
Factorizing,
\[b^x(a^{n+e} + b^{n+d}) = \frac{cb^{n+d} + (c - a^{n+e} - b^{n+d})}{(b^d)} \]

Where \(b^x \) will be;
\[b^x = \frac{cb^{n+d} + (c - a^{n+e} - b^{n+d})}{(a^{n+e} + b^{n+d})(b^d)} \]

Hence
\[x = \log\left(\frac{\frac{b^{n+d}c + (c - a^{n+e} - b^{n+d})}{(a^{n+e} + b^{n+d})(b^d)}}{\log b}\right) \]

Similarly, following the same procedure,
\[x = \log\left(\frac{\frac{a^{n+e}c + (c - a^{n+e} - b^{n+d})}{(a^{n+e} + b^{n+d})(a^e)}}{\log a}\right) \]

bw - convergence Formular for Solving \(b^{x+d} - a^{x+e} = c \)

\(n \to x \), then, and where \((d, e)\) are known numbers

\((a^{x+e} - a^{n+e}) + (b^{x+d} - b^{n+d}) = c + a^{n+e} - b^{n+e} \)

Factorizing, then
\[a^{n+e}(a^{x-n} - 1) + b^{n+d}(b^{x-n} - 1) = c + a^{n+e} - b^{n+d} \]

However, if \(n \to x \), where \(n = x \), then \(a^{n+e}(a^{x-n} - 1) + b^{n+e}(b^{x-n} - 1) = c + a^{n+e} - b^{n+d} \)

This be written (factorized) as;
\[(b^{x-n} - a^{x-n})(a^{n+e}b^{n+d}) = c + a^{n+e} - b^{n+d} \]

Dividing \(a^n b^n \) both sides, then
\[(b^x - a^n) = \frac{c + a^{n+e} - b^{n+d}}{(a^{n+e}b^{n+d})}\]

This can also be written as;

\[\frac{b^x}{b^n} - \frac{a^n}{a^e} = \frac{c + a^{n+e} - b^{n+d}}{(a^{n+e}b^{n+d})}\]

Back to the equation, \(a^{x+e} + b^{x+d} = c\),

\[a^x = \frac{b^{x+d} - c}{a^e}\]

Therefore,

\[\frac{b^x}{b^n} - \frac{(b^{x+d} - c)}{a^e a^n} = \frac{c + a^{n+e} - b^{n+d}}{(a^{n+e}b^{n+d})}\]

\[\frac{a^nb^x a^e + b^{n+x+d} - c b^n}{a^{e+n}b^n} = \frac{c + a^{n+e} - b^{n+d}}{(a^{n+e}b^{n+d})}\]

Multiplying both sides by \(a^{n+e}b^n\)

\[a^nb^x a^e + c b^n - b^{n+x+d} = \frac{c + a^{n+e} - b^{n+d}}{(b^d)}\]

This can also be written as;

\[a^nb^x a^e - b^nb^x b^d = \frac{c + a^{n+e} - b^{n+d}}{(b^d)} - b^n c\]

\[a^nb^x a^e + b^nb^x b^d = \frac{(-c b^{n+d}) + (c + a^{n+e} - b^{n+d})}{(b^d)}\]

Factorizing,

\[b^x(a^{n+e} - b^{n+d}) = \frac{(-c b^{n+d}) + (c + a^{n+e} - b^{n+d})}{(b^d)}\]

Where \(b^x\) will be;

\[b^x = \frac{(-c b^{n+d}) + (c + a^{n+e} - b^{n+d})}{(a^{n+e} - b^{n+d})(b^d)}\]
Thus
\[
x = \frac{\log((-b^{n_d}c) + (c + a^{n_e} - b^{n_d}))}{\log b}
\]

Similarly, following the same procedure,
\[
x = \frac{\log((-a^{n_e}c) + (c + a^{n_e} - b^{n_d}))}{\log a}
\]

βw-convergence Formular for Solving \(b^x + a^x = c \)

Using the same steps (procedure) as formula for solving \(b^x + a^x = c \)

\[
x = \frac{\log (ca^n - (c - a^n) - b^{n_d})}{\log a}
\]

Or
\[
x = \sqrt{\log (cb^{n_d} + (c - a^n) - b^{n_d})}
\]

However, this can be summarized as \((b^x + a^x = c) \)

\[
x = \sqrt{\log (cb^{n_d} + (c - b^{n_d} - a^{n_e}))}
\]

Or
\[
x = \sqrt{\log (ca^{n_e} - (c - b^{n_d} - a^{n_e}))}
\]
General βw-convergence Formula

Suppose, \(a^x \pm b^x \pm c^x \pm d^x \pm \ldots \ldots \pm z^x = \beta\)

Then, applying the mathematical approach from the equation \(a^x + b^x = c\)

The value \(x\) of any value selected, say

\[z^x = \frac{\beta z^n + (\beta \mp a^n \mp b^n \mp c^n \mp d^n \mp \ldots \ldots \mp z^n)}{(a^n \pm b^n \pm c^n \pm d^n \pm \ldots \ldots \pm z^n)}\]

However, this is true if \(z^x + M = \beta\)

Where \(M = (a^x \pm b^x \pm c^x \pm d^x \pm \ldots \ldots \pm y^x)\)

Thus

\[x = \frac{\log(\beta z^n + (\beta \mp a^n \mp b^n \mp c^n \mp d^n \mp \ldots \ldots \mp z^n))}{\log z}\]

Where there is a subtraction in the equation,

Say, \(a^x \mp b^x \pm c^x \pm d^x \pm \ldots \ldots \pm z^x = \beta\)

Then, we apply the mathematical approach from the equation \(b^x - a^x = c\)

This is true if \(M - b^x = \beta\)

Where \(M = (a^x \pm c^x \pm d^x \pm \ldots \ldots \pm z^x)\)

\[b^x = \frac{-\beta b^n + (\beta \mp a^n \pm b^n \mp c^n \mp d^n \pm \ldots \ldots \mp z^n)}{(b^n \mp a^n \mp c^n \mp d^n \mp \ldots \ldots \mp z^n)}\]

Thus

\[x = \frac{\log(-\beta z^n + (\beta \mp a^n \pm b^n \mp c^n \mp d^n \pm \ldots \ldots \pm z^n))}{\log z}\]