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Abstract. We show that the reals are uncountable using Russell’s Paradox.  
 
A fairly recent paper1 called, “Another Proof That The Real Number ℝ Are Uncountable” uses 
Cousin’s lemma. Probably the most well-known proof of the uncountability of the real numbers is 
Georg Cantor’s diagonalization argument.2 Cantor’s diagonalization is not a proof that relies 
upon Russell’s paradox.3,4,5 In the present paper, we show that the reals are uncountable using 
Russell’s Paradox. To the author’s knowledge, this is a new proof. 
 
1. PROOF THAT THE REAL NUMBERS ARE NOT COUNTABLE. Let us assume, for the sake of later 

contradiction, that the real numbers between 0 and 1 (inclusive) are countable. Since “…the 
continuum of numbers, or real numbers system … is the totality of infinite decimals,” 6 then a 
listing of the real numbers between 0 and 1 in base 3 (a ternary numeral system) would have all 
possible sequences of the digits 0, 1, and 2 after the radix point.7 For example: 

 
Base 3 List: 

1) 0.1210221101211001…    
2) 0.1122222222222222…    
3) 0.1111111111111111…    
4) 0.0111111221002111… 
5) 0.2222222222222222…   
6) 0.1011122211111100…  
⋮ 

 
From this list, create another countable list as follows. First, eliminate the leading 0 and radix point. 
Then replace every digit 2 with a space. Put the resulting binary number(s) in a set, where space(s) 
are replaced by a comma. We have a New List, with a set of binary numbers(s) for each row (finite 
numbers are shown in blue): 
 
New List: 

1) {1, 10, 1101, 11001…}  
2) {11} 
3) {111111111111111…} 
4) {111111, 100, 11…} 
5) {} 
6) {10111, 11111100…} 
⋮ 

 
Now, some rows on the New List cannot include their finite row number in their set (i.e., see row 3 
which only has an infinite string of 1s; and see row 5 which is the null set). Other rows can possibly 
include their finite row number in their set (i.e., row 1; and row 4 where 4!" = 100#). 
 
The entire New List must consist of all possible base 2 numbers (finite and infinite). If not, then 
there was a binary string that was missing from the list, and the original Base 3 List did not include 
some real number (a contradiction). 
Moreover, the New List must have sets of all possible combinations of finite binary numbers. Yet, 
we have already shown that some rows cannot list themselves. So, there must be a row among all 
possible rows that has a set of all the row numbers that do not list themselves. 
 
The last statement is similar to Russell’s Paradox.8 Does this row that catalogues “all the rows that 
do not include themselves” include itself? If it does, then it must not list itself. If it doesn’t, then it 
must include itself in the list. This is a contradiction.9 Therefore, we must reject the initial 



assumption that a countable listing of all the real numbers between 0 and 1 can be complete. 
Accordingly, the real numbers cannot be countable. 
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