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Abstract - Within my paper I begin by defining some important termi-
nology. Then I generalize the Collatz Conjecture to a wider class of problems,
which I leverage to provide a path to a non-constructive proof of the Collatz
Conjecture. Ulitmately, I did not succeed in proving the Collatz Conjecture;
however, I believe I have made the problem tractable. The problem I reduced
the Collatz Conjecture to is beyond my capabilities. After working through
my non-constructive results, I provide some constructive results concerning the
collatz conjecture. For example, 2957851400532535270158974145876 converges
to one. I conclude with closing remarks.

1 Introduction

I know what you’re thinking, ”Oh this is just another crank trying to solve a
conjecture countless mathematicians have wrestled with”. And you’d normally
be right. However, I hope to prove to you within my paper that I am no crank.

Mathematics is a beautiful landscape, it only takes a pencil and paper to visit
its peaks and valleys. My paper illustrates a path towards a constructive proof
of the Collatz Conjecture, which in turn provides infinite families of integers that
satisfy the Collatz Conjecture. Ultimately, I was not able to finish a constructive
proof, but I do offer a non-constructive result that almost proves the Collatz
Conjecture in the affirmative. It only hinges on one additional conjecture, which
I have yet to prove in the affirmative.

2 Fundamental Definitions

Definition 2.01 Given a set X we may associate a function α : X ×X → X
to X. Since X is closed under α, i.e ∀x, y ∈ X α(x, y) ∈ X, by the definition
of α, we may call (X,α) a magma and α a binary algebraic operation or just
operation when appropriate.

Given an operation α we may associate a symbol, say ∗, to represent the map-
ping, i.e α(x, y) = x ∗ y. Thus, instead of (X,α) we will often write (X, ∗).
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Definition 2.02 A semi-group is simply a magma that obeys the associativity
property, ∀x, y, z ∈ X x ∗ (y ∗ z) = (x ∗ y) ∗ z.

Definition 2.03 We say a semi-group contains an identity element if ∃e ∈ X :
∀x ∈ X e ∗ x = x ∗ e = x. If a semi-group contains an identity element, then we
may call it a monoid

Definition 2.04 A monoid that admits an inverse element for every element
in the monoid is called a group. I.e given (X, ∗) is a monoid and ∀x ∈ X ∃t ∈ X
: x∗ t = t∗x = e then (X, ∗) is a group. In general, we call the element x−1 ∈ X
an inverse element of x ∈ X if x−1 ∗ x = x ∗ x−1 = e.

We will now shift our focus back onto monoids. Specifically morphisms
between monoids.

Definition 2.05 We call a function θ : X → Y where X = (X, ∗) and Y = (Y, ·)
are monoids, a monoid homomorphism or just morphism(in the correct setting),
if the following is true,

For x, s ∈ X we have θ(x ∗ s) = θ(x) · θ(s), and
θ(eX) = eY where eX and eY are the identity elements of X and Y respectively.

A monoid homomorphism is called an isomorphism if it is a bijective map.
We denote an isomorphism between two monoids X and Y as X ∼= Y.

Defintion 2.06 Similar to the previous defintion we define a function ω : X → Y
where X = (X, ∗) and Y = (Y, ·) are monoids, as a monoid allomorphism or
just allomorphism(in the correct setting), if the following is true,

For x, s ∈ X we have ω(x ∗ s) = ω(s) · ω(x), and
ω(eX) = eY where eX and eY are the identity elements of X and Y respectively.

Definition 2.07 Given a monoid J = (J, ·) we may call the monoid D = (D, ·)
a submonoid of J , if D ⊆ J . It follows that they share the same identity
element.

Now we will define the monoid equivalent of group actions.

2.1 Acts

Definition 2.11 Given a monoid Σ = (X, ·) and a non-empty set Ω, we form
a function called a Ω-act or just act, where this makes sense, as follows, Φ :
Σ× Ω → Ω. We call an act a group action if Σ is a group.
I list one important property of monoid actions here,

Φ(f,Φ(h, ω))) = Φ(f ◦ h, ω) (1)
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To make things easier we define γq : Σ → Ω as γq(g) = Φ(g, q)

2.1.1 Equivalences under Ω act

We will now discuss perhaps the most important part of the idea behind my
approach.

Definition 2.1.11 - Given a Ω act Φ : Σ × Ω → Ω, we create a quotient-like
object as follows,
Given q ∈ Ω
ϕq(g) = {h ∈ Σ : Φ(g, q) = Φ(h, q)}

As a special case we get what I denote as inverses with respect to Φ evaluated
at q. We define them as those elements in the set ϕΦ(g,q)(g

−1) = {h ∈ H :
Φ(h◦g, q) = q} If you have studied group theory, this should look similar to the
kernel subgroup.

2.2 Star Set

The next definition will be an analog of a topic often used in formal language
theory. The Kleene Star.

Definition 2.21 We will avoid using the asterisk as an operation due to the
following definition. Using a set J we define an operation · to form the monoid
(J, ·). We then take a set D ⊂ J and apply the same operation. The structure
(D, ·) is not necessarily a monoid, but we will be able to turn it into one( See
Lemma 2.21). We define D∗ as follows,

First, assume i ∈ N ∪ {0}

D0 = {eJ}
D1 = D
Di+1 = {g · h : g ∈ D ∧ h ∈ Di}

Then finally we join these sets together,

D∗ =
⋃

i∈N∪{0}

Di (2)

Lemma 2.21 Given a monoid J = (J, ·) and a set D ⊂ J equipped with the
operation ·, i.e (D, ·), the set D∗ under the operation · is a monoid. I.e (D∗, ·)
is a monoid.
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Proof - This proof boils down to proving that the set D∗ is indeed closed
under the operation ·. This is because associativity extends naturally to (D∗, ·).
Indeed, the identity element also naturally extends to (D∗, ·). Remember, to
prove (D∗, ·) is closed under ·, we must prove ∀x, y ∈ D∗ x · y ∈ D∗. Assume
this is not the case, then we can find s, t ∈ D∗ such that s · t ̸∈ D∗ . Choose
an arbitrary element of D∗ call it w. First, we can set w = eJ · eJ , but this is
clearly in D∗. We can then rewrite w as g ·h, where g ∈ D and h ∈ Dj for some
j ∈ N ∪ {0}, but Dj ⊂ D∗ for all j ∈ N ∪ {0}, thus w = g · h ∈ D∗ for arbitrary
w. This concludes the proof by contradiction.

2.3 A Special Allomorphism

Here we create a special allomorphism that will be of later use in our proof.

Definition 2.3.1 To begin our defintion, let (H, ·) be a monoid. We now create
an allomorphism φA : H → H where A ⊂ H. We add two extra conditions.
∀g ∈ H − A φ(g) = g and ∀g ∈ A φ(g) = β. These two conditions can be
summarized as follows, elements not in A are fixed while elements in A are taken
to different elements of H.
We now prove a really cool fact concerning our newly created allomorphism.

Lemma 2.3.1 φA(A
∗) = (φA(A))∗

Proof -
φA(A) = {φ(a) : a ∈ A} = {β1, ..., β|A|}

φA(A
∗) = φ(

⋃
i∈N Ai) =

⋃
i∈N(φ(Ai)) =

⋃
i∈N(Bi) = (φA(A))∗

where Bi = {g ◦ h : g ∈ φA(A) ∧ h ∈ Bi−1}. For future ease we will define
φA(A) = ΘA

3 The Collatz Conjecture

The Collatz Conjecture is among the many unsolved problems in the world of
mathematics. Deceptively simple in it’s formulation, it has plagued the minds
of many mathematicians. The unusual nature of the problem makes the Col-
latz Conjecture hard to approach, but I suspect I have finally found a path to
resolving it.

3.1 What is the Collatz Conjecture?

The Collatz Conjecture asserts the following, starting with any natural number,
if it is even, divide it by two, if it is odd, multiply it by 3 and add 1. Repeat
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this process with each iteration. No matter what number you begin with, this
process will converge to 1. For example, starting with 5, we reach 16, 8, 4, 2,
and finally 1.

To simplify this process we use function composition. f(k) = k
2 , and g(k) =

3k + 1. Thus, starting with 5 again, (f (4) ◦ g)(5) = 1, where, for a function h,
h(n) = h ◦ h ◦ ... ◦ h.

3.2 Novel approach to the Collatz Conjecture

Definition 3.21 - σa,b : Q → Q, q 7→ aq + b. Where Q is the set of rational
numbers and a, b ∈ Q. We call these functions discrete paths.

Example 3.1 - σ 1
2 ,0

(8) = 4.

3.2.1 The monoid of discrete paths

We will now create a monoid from the set of discrete paths using composition as
the operation. We will then show that this monoid can be extended to a group.

Definition 3.2.11 - P = {σa,b : a ∈ Q − {0}, b ∈ Q}. We can create sub-
sets easily as follows, let X ⊆ Q then

P(X) = {σa,b : a ∈ X − {0}, b ∈ X}. (3)

Where, of course, P(Q) = P

Definition 3.2.12 We define the set of functions mapping from a set X to Y
as

F(X,Y ) = {f |f : X → Y } (4)

The evaluation map follows, evx : F → Y , where x ∈ X and f 7→ f(x). It is
important to note what it means for two functions to be equivalent, to that end
we define function equivalency next.

Definition 3.2.13 Given f, g ∈ F(X,Y ), we say f = g iff ∀x ∈ X evx(f) =
evx(g)

Lemma 3.2.11 Given the set of discrete paths P we equip group composition
to this set to form D, i.e D = (P, ◦). Here we will prove D is a monoid. In fact,
given R ⊂ P we may form the submonoid (R∗, ◦).

Proof - For the first case we must show that D is indeed a monoid. First, let
us ensure it remains closed under composition, i.e ∀g, h ∈ D g ◦ h ∈ D. Assume
D is not closed. Then, ∃g, h ∈ D : g ◦ h ̸∈ D, or equivalently, ∃a, b, c, d ∈ Q
: σa,b ◦ σc,d ̸∈ D. However, σa,b ◦ σc,d = σac,ad+b, therefore, ∃a, b, c, d ∈ Q :

5



σac,ad+b ̸∈ D. This is a contradiction because ac ∈ Q−{0} and ad+b ∈ Q, thus
we conclude that D is indeed closed under ◦. Now we must identify an identity
element. An element eD is an identity iff ∀g ∈ D eD ◦ g = g ◦ eD = g. In other
words given c ∈ Q−{0}d ∈ Q, ∀a ∈ Q−{0}b ∈ Q σc,d ◦σa,b = σa,b ◦σc,d = σa,b.
So we arrive at, ∀a, b ∈ Q σac,bc+d = σac,ad+b = σa,b. Finally, we can conclude
ac = a and ad+ b = b, then c = 1 and d = 0 since a ̸= 0. Therefore, the identity
element of D is σ1,0. Composition is naturally associative. Thus D is a monoid.

For the next case, we need only prove that R∗ ⊆ P, this is trivial given that R∗

is formed exclusively from elements in R and R ⊂ P. Therefore, using Lemma
2.21, (R∗, ◦) is a submonoid of D.

We can prove the stronger result that D is a group. To complete this proof,
we need only show that each element of D admits an inverse. I.e ∀g ∈ D
∃h ∈ D : g ◦ h = h ◦ g = σ1,0. We then proceed similar to the previous proofs,
∀a ∈ Q−{0}b ∈ Q ∃c ∈ Q−{0}d ∈ Q : σa,b◦σc,d = σc,d◦σa,b = σ1,0. From which
it follows, ∀a ∈ Q − {0}b ∈ Q ∃c ∈ Q − {0}d ∈ Q : σac,ad+b = σac,bc+d = σ1,0.
Therefore, ac = 1 and bc + d = 0, which means c = 1

a and d = −b
a . Thus, for

any elements a and b of Q there exists two elements constructed from a and b
that satisfy the property required for inverses. I.e every element of D admits
an inverse. Given this fact, and the fact that D is a monoid, we may say D is a
group.

Lemma 3.2.12 Given the set Q and the group D, Ψ : D × Q → Q, where
Ψ(g, q) = evq(g) = g(q), is a group action.

Proof - This is a trivial result of the functions definition.

3.3 Non-constructive proof of the Collatz Conjecture

To begin our proof we construct an important set U .

Definition 3.31 U = {σ2,0, σ2,1} thus, U∗ = {σ1,0, σ2,0, σ2,1, σ
2
2,0, ...}

Lemma 3.31 The statement γ1(U
∗) = N and ∀u ∈ U∗∃k, i ∈ N∪{0} : u = σ2k,i,

can be deduced as follows.
Proof -
We prove this lemma by showing that every element of U∗ can be written as σ2k,i

where k, i ∈ N ∪ {0} . To prove this observe U0 = {σ20,0}, U1 = {σ21,0, σ21,1}.
We now use induction.

Given our base case of i = 0, we start with our hypothesis, Ui = {σ2i,0, σ2i,1, ..., σ2i,2i−1}
Ui+1 = {g ◦ h : g ∈ U ∧ h ∈ Ui} = {σ2,0 ◦ h : h ∈ Ui} ∪ {σ2,1 ◦ h : h ∈ Ui}.

{σ2,0 ◦ h : h ∈ Ui} = {σ2,0 ◦ σ2i,0, ..., σ2,0 ◦ σ2i,j , ..., σ2,0 ◦ σ2i,2i−1} =
{σ2i+1,0, ..., σ2i+1,2j , ..., σ2i+1,2i+1−2}
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{σ2,1 ◦ h : h ∈ Ui} = {σ2,1 ◦ σ2i,0, ..., σ2,1 ◦ σ2i,j , ..., σ2,1 ◦ σ2i,2i−1} =
{σ2i+1,1, ..., σ2i+1,2j+1, ..., σ2i+1,2i+1−1}

Therefore, {σ2,0 ◦ h : h ∈ Ui}∪{σ2,1 ◦ h : h ∈ Ui} = {σ2i+1,0, ..., σ2i+1,2j , ..., σ2i+1,2i+1−2}∪
{σ2i+1,1, ..., σ2i+1,2j+1, ..., σ2i+1,2i+1−1} = {σ2i+1,0, σ2i+1,1, ..., σ2i+1,2i+1−1} , which
completes our proof by induction that for any element u of U∗ there exists
k, i ∈ N ∪ {0}, such that u = σ2k,i.

Now we can rewrite U∗,

γ1(U
∗) =

⋃
k∈N∪{0}

(γ1(Uk)) =
⋃

k∈N∪{0}

γ1({σ2k,0, σ2k,1, ..., σ2k,2k−1}) =
⋃

k∈N∪{0}

2k−1⋃
i=0

{2k+i}

(5)

But we know that

⋃
k∈N∪{0}

2k−1⋃
i=0

{2k + i} = N (6)

Therefore, γ1(U
∗) = N

The lemma we are now going to prove will be very similar to Lemma 3.31.
Except, instead of proving assertions concerning U∗ we will be proving asser-
tions concerning Θ∗

U .

Lemma 3.32 ∀f ∈ Θ∗
U∃n0, n1, d0, d1, d2 ∈ N ∪ {0} : f = σ 3n0

2n1 , 3
d0−2d1

2d2

.

Proof -

We proceed similarily to Lemma 3.31 by examining the constituents of Θ∗
U .

To start off we examine our base cases, (ΘU )0 = {σ 30

20
,0
}, and (ΘU )1 = {σ 30

21
, 3

0−20

21

, σ 31

21
, 3

1−21

21

}.
We see they both fulfill the requirements. Now we start our proof by induction.
Our induction hypothesis is

(ΘU )k = {σ 30

2k
, 3

0−20

20

, ..., σ 3w0

2k
, 3

w1−2w2

2w3

, ..., σ 3k

2k
, 3

k−2k

2k

} (7)

where w0, w1, w2 and w3 ∈ N ∪ {0}
So, now we consider σ 3

2 ,
1
2
◦ (ΘU )k and σ 1

2 ,0
◦ (ΘU )k.

We let w3 = w2 for the first case.
σ 3

2 ,
1
2
◦ (ΘU )k = {σ 3

2 ,
1
2
◦σ 30

2k
, 3

0−20

20

, ..., σ 3
2 ,

1
2
◦σ 3w0

2k
, 3

w1−2w2

2w2

, ..., σ 3
2 ,

1
2
◦σ 3k

2k
, 3

k−2k

2k

} .
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Thus, σ 3
2 ,

1
2
◦(ΘU )k = {σ 31

2k+1 , 3
1−21

21

, ..., σ 3w0+1

2k+1 , 3
w1+1−3∗2w2

2w2+1 + 1
2

, ..., σ 3k+1

2k+1 , 3
k+1−3∗2k

2k+1 + 1
2

}

σ 3
2 ,

1
2
◦ (ΘU )k = {σ 31

2k+1 , 3
1−21

21

, ..., σ 3w0+1

2k+1 , 3
w1+1−2w2+1

2w2+1

, ..., σ 3k+1

2k+1 , 3
k+1−2k+1

2k+1

}

The next step works similarily, where we allow ω2 and ω3 to be different,

σ 1
2 ,0

◦ (ΘU )k = {σ 1
2 ,0

◦ σ 30

2k
, 3

0−20

20

, ..., σ 1
2 ,0

◦ σ 3w0

2k
, 3

w1−2w2

2w3

, ..., σ 1
2 ,0

◦ σ 3k

2k
, 3

k−20

20

}

σ 1
2 ,0

◦ (ΘU )k = {σ 30

2k+1 , 3
0−20

21

, ..., σ 3w0

2k+1 , 3
w1−2w2

2w3+1
, ..., σ 3k

2k+1 , 3
k−20

21

}

Now we simply take the union of these two sets,

(ΘU )k+1 = σ 1
2 ,0

◦ (ΘU )k ∪ σ 3
2 ,

1
2
◦ (ΘU )k (8)

But, σ 1
2 ,0

◦(ΘU )k∪σ 3
2 ,

1
2
◦(ΘU )k = {σ 30

2k+1 , 3
0−20

21

, ..., σ 3w0

2k+1 , 3
w1−2w2

2w3+1
, ..., σ 3k

2k+1 , 3
k−20

21

}∪
{σ 31

2k+1 , 3
1−21

21

, ..., σ 3w0+1

2k+1 , 3
w1+1−2w2+1

2w2+1

, ..., σ 3k+1

2k+1 , 3
k+1−2k+1

2k+1

}

Thus, (ΘU )k+1 = {σ 30

2k+1 , 3
0−20

21

, ..., σ 3t0

2k+1 , 3
t1−2t2

2t2

, ..., σ 3k+1

2k+1 , 3
k+1−2k+1

2k+1

}

where t0, t1, t2 and t3 ∈ N ∪ {0}

This completes our proof by induction of equation (7). Thus, since every el-
ement of (ΘU )k can be written in the form σ 3t0

2k
, 3

t1−2t2

2t2

for all k in the natural

numbers, we can conclude that every element of (ΘU )
∗ can be written in the

aforementioned form. This concludes the proof of Lemma 3.32.

Lemma 3.33 For arbitrary σa,b ∈ D ∀v ∈ ϕγ1(σa,b)(σ
−1
a,b) v = σx,1−x∗γ1(σa,b)

where x ∈ Q− {0}
Proof -

The proof of this lemma is actually not too involved. We begin by consider-
ing the defining relation of ϕγ1(σa,b)(σ

−1
a,b).

∀v ∈ ϕγ1(σa,b)(σ
−1
a,b) γ1(v ◦ σa,b) = 1 (9)

Thus, we let v = σx,y. γ1(σx,y ◦ σa,b) = 1. Now we apply composition and
evaluate at 1, x(a + b) + y = 1. Thus, y = 1 − x(a + b), but a + b = γ1(σa,b).
Therefore, for arbitrary σa,b ∈ D, we may rewrite any element of ϕγ1(σa,b)(σ

−1
a,b)

as σx,1−x∗γ1(σa,b). This completes our proof.
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The main theorem of this proof is the cornerstone for this non-constructive
proof of the Collatz Conjecture. We state that Theorem now,

Theorem 3.31 ∀u ∈ U∗∃h ∈ ϕγ1(u)(u
−1)∃f ∈ Θ∗

U : γ1(h ◦ u) = γ1(f ◦ u)
Proof -

We aim to prove the following statement,

∀u ∈ U∗∃h ∈ ϕγ1(u)(u
−1)∃f ∈ Θ∗

U : γ1(h ◦ u) = γ1(f ◦ u) (10)

Using Lemma 3.31 and Lemma 3.32 we may rewrite any element of U∗ as σ2m,i

for m, i ∈ N ∪ {0}, and we can rewrite any element of (ΘU )
∗ as σ 3n0

2n1 , 3
n2−2n3

2n4

where n0, n1, n2, n3 and n4 ∈ N ∪ {0}. We let 3n2−2n3

2n4
= k for convenience. Fi-

nally, we use Lemma 3.31 and Lemma 3.33 to rewrite any element of ϕγ1(u)(u
−1)

as σt,1−t(2m+i) where t ∈ Q− {0}. We let 1− t(2m + i) = b for convenience.

We now rewrite γ1(h ◦ u) and γ1(f ◦ u).

σt,b(2
m + i) = σ 3n0

2n1 ,k(2
m + i)

thus, 2m(t− 3n0

2n1
) + i(t− 3n0

2n1
) + (b− k) = 0

Let t = 3n0

2n1
, then b = k, which can be rewritten as, k = 1− 3n0∗(2m+i)

2n1
.

From here we break the proof into two cases. The first case is where k = 0

This translates to 0 = 1− 3n0∗(2m+i)
2n1

in other words 3n0∗(2m+i)
2n1

= 1, which becomes 3n0 ∗ (2m + i) = 2n1 but, for this
to be the case a power of three would have to divide a power of two, which is
impossible unless n0 = 0. Therefore, 2m+ i = 2n1 , but again this is not possible
unless i = 0, thus m = n1. This completes the case for k = 0.

The only remaining case is k = 3n2−2n3

2n4
. Solving this case requires careful

consideration. In fact, I have yet to resolve this problem.

Now, using Lemma 3.31 we know that γ1(U
∗) = N which means N = 2m+ i

covers all the natural numbers, where m, i ∈ N ∪ {0}. We may thus rephrase

our previous statement k = 1− 3n0∗(2m+i)
2n1

, as follows,

Conjecture 3.31 ∀N ∈ N ∃n0, n1, n2, n3, n4 ∈ N ∪ {0} : 3n2−2n3

2n4
= 1− 3n0

2n1
N

Therefore, if we assume Conjecture 3.31 is true, we may conclude Theorem
3.31 is true.
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Theorem 3.32 The Collatz Conjecture is equivalent to ∀k ∈ N ∃f ∈ Θ∗
U :

f(k) = 1.
Proof -

The proof of this statement is almost trivial. Given the two functions defin-
ing the collatz map σ 3

2 ,
1
2
and σ 1

2 ,0
, we know that for any k ∈ N the first number

in our sequence of numbers is either σ 3
2 ,

1
2
(k) or σ 1

2 ,0
(k). Similarily the second

number in the sequence involves composing together our two functions in an
apporiate manner. However, all such compositions are in Θ∗

U . Therefore, we
have proven the equivalency.
Theorem 3.33 Theorem 3.32 and 3.31 are logically equivalent
Proof -
Here we analyze one statement and deduce the second.

∀u ∈ U∗∃h ∈ ϕγ1(u)(u
−1)∃f ∈ Θ∗

U : γ1(h ◦ u) = γ1(f ◦ u) is logically
equivalent to
∀u ∈ U∗∃f ∈ Θ∗

U : γ1(f ◦ u) = 1
and of course this statement is equivalent to
∀k ∈ N∃f ∈ Θ∗

U : f(k) = 1 This completes our proof.

Theorem 3.34 The Collatz Conjecture is true for every natural number
Proof - Now combining Theorem 3.33 and Theorem 3.31 we see this Theorem
is deduced accordingly.

4 Constructive Results concerning the Collatz
Conjecture

4.0.1 A list of important compositions of elements of D

This list allows us to manipulate compositions of discrete paths.

1. σ 1
2 ,0

◦ σ2,0 = σ1,0

2. σ2,0 ◦ σ3,0 = σ3,0 ◦ σ2,0

3. σ2,0 ◦ σ3,1 = σ3,2 ◦ σ2,0

4. σ2,0 ◦ σ3,2 = σ3,1 ◦ σ2,1

5. σ2,1 ◦ σ3,0 = σ3,1 ◦ σ2,0

6. σ2,1 ◦ σ3,1 = σ3,0 ◦ σ2,1

7. σ2,1 ◦ σ3,2 = σ3,2 ◦ σ2,1

Using the tools that have been laid out we may now prove a few special cases
of the Collatz conjecture.

10



5 Special cases of the Collatz Conjecture

As of now, I do not see how to complete a constructive proof of the Collatz
conjecture using the tools outlined above, it is interesting to see it help resolve
an infinite number of cases nonetheless. Perhaps by looking at this approach
someone may find a new way to think about this fascinating conjecture.

5.1 The case Ψ((σ2,0 ◦ σ2,1)
N , 1)

Now, we want to show that there exists an inverse of (σ2,0 ◦σ2,1)
N with respect

to the act Ψ evaluated at 1.

To begin we let Ψ((σ2,0 ◦ σ2,1)
N ), 1) = αN .

αN = Ψ((σ2,0 ◦ σ2,1) ◦ (σ2,0 ◦ σ2,1)
N−1, 1) = Ψ(σ2,0 ◦ σ2,1, αN−1) (11)

This is when we start working out the inverse. On each step we address the
leading function in a manner concurrent with the Collatz Conjecture, applying
σ 1

2 ,0
when σ2,0 is the leading function, and σ3,1 when σ2,1 is the leading function.

Ψ(σ 1
2 ,0

, αN ) = Ψ((σ 1
2 ,0

◦ σ2,0) ◦ σ2,1, αN−1) (12)

= Ψ(σ2,1, αN−1)

Ψ((σ3,1 ◦ σ 1
2 ,0

), αN ) = Ψ((σ3,1 ◦ σ2,1), αN−1) (13)

= Ψ((σ2,0 ◦ σ3,2), αN−1)

Ψ((σ 1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

), αN ) = Ψ(σ3,2, αN−1) (14)

= Ψ((σ3,2 ◦ σ2,0) ◦ σ2,1, αN−2)

= Ψ((σ2,0 ◦ σ3,1) ◦ σ2,1, αN−2)

Ψ((σ2
1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

), αN ) = Ψ(σ3,1 ◦ σ2,1, αN−2) (15)

= Ψ(σ2,0 ◦ σ3,2, αN−2)

Ψ((σ3
1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

), αN ) = Ψ(σ3,2, αN−2) (16)
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We may now form an inductive hypothesis that we will address shortly,

Ψ((σ2N−1
1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

), αN ) = Ψ(σ3,2, α0) (17)

= Ψ(σ3,2, 1)

= Ψ(σ2,1 ◦ σ2,0, 1)

Ψ((σ3,1 ◦ σ2N−1
1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

), αN ) = Ψ((σ3,1 ◦ σ2,1) ◦ σ2,0, 1) (18)

= Ψ(σ2,0 ◦ (σ3,2 ◦ σ2,0), 1)

Ψ((σ 1
2 ,0

◦ σ3,1 ◦ σ2N−1
1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

), αN ) = Ψ(σ3,2 ◦ σ2,0, 1) (19)

= Ψ(σ2,0 ◦ σ3,1, 1)

= Ψ(σ3
2,0, 1)

Ψ((σ4
1
2 ,0

◦ σ3,1 ◦ σ2N−1
1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

), αN ) = Ψ(σ1,0, 1) = 1 (20)

Therefore,

Ψ((σ4
1
2 ,0

◦ σ3,1 ◦ σ2N−1
1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

) ◦ (σ2,0 ◦ σ2,1)
N , 1) = 1 (21)

We now prove,

Ψ((σ2N−1
1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

), αN ) = Ψ(σ3,2, 1) (22)

Base case N = 1 : Ψ((σ 1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

), α1) = Ψ(σ3,2, α0) = Ψ(σ3,2, 1)

Then,
3( 6

2 )+1

2 = 5 = 3(1) + 2, so the base case is satisfied.

Our inductive hypothesis becomes, Ψ((σ2N−1
1
2 ,0

◦σ3,1 ◦σ 1
2 ,0

), αN+1) = Ψ(σ3,2, α1)

To see why this is true, begin with the following,

αN+1 = Ψ((σ2,0 ◦ σ2,1)
N+1, 1) = Ψ((σ2,0 ◦ σ2,1)

N , α1) (23)

Thus, using our inductive hypothesis, this becomes

12



Ψ((σ2N−1
1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

), αN+1) = Ψ(σ3,2, α1) (24)

Ψ((σ2N−1
1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

), αN+1) = Ψ((σ3,2 ◦ σ2,0) ◦ σ2,1, 1) (25)

= Ψ(σ2,0 ◦ (σ3,1 ◦ σ2,1), 1)

Ψ((σ2N
1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

), αN+1) = Ψ(σ3,1 ◦ σ2,1, 1) (26)

= Ψ(σ2,0 ◦ σ3,2, 1)

Ψ((σ
2(N+1)−1
1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

), αN+1) = Ψ(σ3,2, 1) (27)

This completes the induction.

Example 4.11 α7 = 43690

Ψ((σ4
1
2 ,0

◦ σ3,1 ◦ σ13
1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

), 43690) =
3(

3( 43690
2 )+1

213 ) + 1

24
(28)

=
3(5) + 1

16

=
16

16
= 1

Example 4.12 α3 = 106

Ψ((σ4
1
2 ,0

◦ σ3,1 ◦ σ5
1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

), 106) =
3(

3( 106
2 )+1

25 ) + 1

24
(29)

=
3(5) + 1

16

=
16

16
= 1
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Example 4.12 α25 = 1876499844737706

Ψ((σ4
1
2 ,0

◦ σ3,1 ◦ σ49
1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

), 1876499844737706) =
3(

3( 1876499844737706
2 )+1

249 ) + 1

24
(30)

=
3(5) + 1

16

=
16

16
= 1

5.2 The case Ψ((σ2,1 ◦ σ2,0)
N , 1)

We will utilize the same method for this case

Let βN = Ψ((σ2,1 ◦ σ2,0)
N , 1)

Ψ((σ2,1 ◦ σ2,0)
N , 1) = Ψ(σ2,1 ◦ σ2,0, βN−1) (31)

Ψ(σ3,1, βN ) = Ψ((σ3,1 ◦ σ2,1) ◦ σ2,0, βN−1) (32)

= Ψ(σ2,0 ◦ (σ3,2 ◦ σ2,0), βN−1)

= Ψ(σ2
2,0 ◦ σ3,1, βN−1)

Ψ(σ2
1
2 ,0

◦ σ3,1, βN ) = Ψ(σ3,1, βN−1) (33)

= Ψ(σ3,1 ◦ (σ2,1 ◦ σ2,0), βN−2)

= Ψ(σ2,0 ◦ (σ3,2 ◦ σ2,0), βN−2)

= Ψ(σ2
2,0 ◦ σ3,1, βN−2)

Ψ(σ4
1
2 ,0

◦ σ3,1, βN ) = Ψ(σ3,1, βN−2) (34)

So, we conclude that

Ψ(σ2N
1
2 ,0

◦ σ3,1, βN ) = Ψ(σ3,1, β0) = Ψ(σ3,1, 1) = Ψ(σ2
2,0, 1) (35)

Thus we arrive at the following,

Ψ((σ
2(N+1)
1
2 ,0

◦ σ3,1) ◦ (σ2,1 ◦ σ2,0)
N , 1) = 1 (36)

The induction proof is similar to the first proof, and will not be explicitly written
here.
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5.3 The case Ψ((σ2,0 ◦ σ2,2)
N , 1)

As with the previous cases, Ψ((σ2,0 ◦σ2,2)
N , 1) = αN . For this case we will also

define ϕN = (σ2
2,0 ◦ σ1,1)

N

Now, note the following,

Ψ((σ2,0 ◦ σ2,2)
N , 1) = Ψ((σ2

2,0 ◦ σ1,1)
N , 1) (37)

Thus,
Ψ(σ2

1
2 ,0

, αN ) = Ψ(σ1,1 ◦ ϕN−1, 1) (38)

From here we can reduce this to the case of a previously solved case.

Ψ(σ1,1 ◦ ϕN−1, 1) = Ψ(σ1,1 ◦ σ2,0 ◦ σ2,0 ◦ σ1,1 ◦ ϕN−2, 1) (39)

= Ψ(σ2,1 ◦ σ2,0 ◦ σ1,1 ◦ ϕN−2, 1)

Where we repeat this process N − 1 times to arrive at an inductive hypothesis,
which we do not prove as it is similar to the first proof by induction,

Ψ(σ1,1 ◦ ϕN−1, 1) = Ψ((σ2,1 ◦ σ2,0)
N−1 ◦ σ1,1, 1) (40)

Ψ((σ
2(N−1)
1
2 ,0

◦ σ3,1) ◦ (σ2,1 ◦ σ2,0)
N−1 ◦ σ1,1, 1) = Ψ(σ3,1 ◦ σ1,1, 1) (41)

Now we combine (37) and (34) to arrive at the following,

Ψ((σ
2(N−1)
1
2 ,0

◦ σ3,1) ◦ σ2
1
2 ,0

, αN ) = Ψ(σ3,1 ◦ σ1,1, 1) (42)

This is a relief! We can now reduce this to find our inverse.

Ψ((σ
2(N−1)
1
2 ,0

◦ σ3,1) ◦ σ2
1
2 ,0

, αN ) = Ψ(σ3,1 ◦ σ1,1, 1) (43)

= Ψ(σ3,1 ◦ σ2,0, 1)

= Ψ(σ2,1 ◦ σ3,0, 1)

= Ψ(σ2
2,1, 1)

Ψ((σ3,1 ◦ σ2(N−1)
1
2 ,0

◦ σ3,1) ◦ σ2
1
2 ,0

, αN ) = Ψ(σ3,1 ◦ σ2
2,1, 1) (44)

= Ψ(σ2,0 ◦ (σ3,2 ◦ σ2,1), 1)Ψ(σ2
2,1, 1) (45)

= Ψ(σ2,0 ◦ (σ2,1 ◦ σ3,2), 1)

Ψ((σ 1
2 ,0

◦ σ3,1 ◦ σ2(N−1)
1
2 ,0

◦ σ3,1) ◦ σ2
1
2 ,0

, αN ) = Ψ(σ2,1 ◦ σ3,2, 1) (46)
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Ψ((σ3,1 ◦ σ 1
2 ,0

◦ σ3,1 ◦ σ2(N−1)
1
2 ,0

◦ σ3,1) ◦ σ2
1
2 ,0

, αN ) = Ψ((σ3,1 ◦ σ2,1) ◦ σ3,2, 1)

(47)

= Ψ(σ2,0 ◦ σ2
3,2, 1)

= Ψ(σ2,0 ◦ (σ3,2 ◦ σ2,1 ◦ σ2,0), 1)

= Ψ(σ2,0 ◦ (σ2,1 ◦ σ3,2 ◦ σ2,0), 1)

= Ψ(σ2,0 ◦ (σ2,1 ◦ σ2,0 ◦ σ3,1), 1)

Ψ((σ 1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

◦ σ3,1 ◦ σ2(N−1)
1
2 ,0

◦ σ3,1) ◦ σ2
1
2 ,0

, αN ) = Ψ(σ2,1 ◦ (σ2,0 ◦ σ3,1), 1)

(48)

Ψ((σ3,1 ◦ σ 1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

◦ σ3,1 ◦ σ2(N−1)
1
2 ,0

◦ σ3,1) ◦ σ2
1
2 ,0

, αN ) = Ψ((σ3,1 ◦ σ2,1) ◦ (σ2,0 ◦ σ3,1), 1)

(49)

= Ψ(σ2,0 ◦ (σ3,2 ◦ σ2,0) ◦ σ3,1), 1)

= Ψ(σ2
2,0 ◦ σ2

3,1), 1)

Ψ((σ2
1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

◦ σ3,1 ◦ σ2(N−1)
1
2 ,0

◦ σ3,1) ◦ σ2
1
2 ,0

, αN ) = Ψ(σ2
3,1), 1)

(50)

= Ψ((σ3,1 ◦ σ2,0) ◦ σ2,0), 1)

= Ψ((σ2,1 ◦ σ3,0) ◦ σ2,0, 1)

= Ψ(σ2,1 ◦ σ2,0 ◦ σ3,0, 1)

Ψ((σ3,1 ◦ σ2
1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

◦ (51)

σ3,1 ◦ σ2(N−1)
1
2 ,0

◦ σ3,1) ◦ σ2
1
2 ,0

, αN ) = Ψ((σ3,1 ◦ σ2,1) ◦ σ2,0 ◦ σ3,0, 1)

= Ψ(σ2,0 ◦ (σ3,2 ◦ σ2,0) ◦ σ3,0, 1)

= Ψ(σ2
2,0 ◦ (σ3,1 ◦ σ3,0), 1)

= Ψ(σ2
2,0 ◦ (σ3,1 ◦ σ2,1), 1)

= Ψ(σ3
2,0 ◦ σ3,2, 1)
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Ψ((σ3
1
2 ,0

◦ σ3,1 ◦ σ2
1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

◦ (52)

σ3,1 ◦ σ2(N−1)
1
2 ,0

◦ σ3,1) ◦ σ2
1
2 ,0

, αN ) = Ψ(σ3,2, 1)

= Ψ(σ2,1 ◦ σ2,0, 1)

Ψ((σ3,1 ◦ σ3
1
2 ,0

◦ σ3,1 ◦ σ2
1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

◦ (53)

σ3,1 ◦ σ2(N−1)
1
2 ,0

◦ σ3,1) ◦ σ2
1
2 ,0

, αN ) = Ψ(σ3,2, 1)

= Ψ((σ3,1 ◦ σ2,1) ◦ σ2,0, 1)

= Ψ(σ2,0 ◦ (σ3,2 ◦ σ), 1)

= Ψ(σ2
2,0 ◦ σ3,1, 1)

= Ψ(σ4
2,0, 1)

Therefore,

Ψ((σ4
1
2 ,0

◦ σ3,1 ◦ σ3
1
2 ,0

◦ σ3,1 ◦ σ2
1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

◦ σ3,1 ◦ σ 1
2 ,0

◦ (54)

σ3,1 ◦ σ2(N−1)
1
2 ,0

◦ σ3,1 ◦ σ2
1
2 ,0

) ◦ (σ2,0 ◦ σ2,2)
N , 1) = 1

6 Rewriting compositions of discrete paths

In this section I seek to find a closed form expression for σN
a,b(q).

To this end let us rewrite our composition,

σN
a,b(q) = σN−1

a,b (aq + b) (55)

= σN−2
a,b (a(aq + b) + b))

= σN−2
a,b (a2q + ab+ b)

Having found a pattern, we proceed to create an inductive hypothesis,

σN
a,b(q) = aNq +

N−1∑
k=0

akb (56)
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From which it follows, via the formula for the sum of a geometric series

σN
a,b(q) = aNq + b

aN − 1

a− 1
(57)

=
aN+1q + (b− q)aN − b

a− 1

To prove this we first check the base case N = 0,

σ0
a,b(q) = q = a0q + 0 = q (58)

Here we set
∑−1

k=0 a
kb to 0 as it is an empty sum.

Now we prove the inductive hypothesis,

σN+1
a,b (q) = σa,b(a

Nq +

N−1∑
k=0

akb) (59)

= a(aNq +

N−1∑
k=0

akb) + b

= aN+1q +

N−1∑
k=0

ak+1b+ b

= aN+1q +

(N+1)−1∑
k=1

akb+ b

= aN+1q +

(N+1)−1∑
k=0

akb

This completes the inductive hypothesis.

Example 5.11 (σ2,0 ◦ σ2,1)
N (1)

(σ2,0 ◦ σ2,1)
N (1) = (σ4,2)

N (1) (60)

=
4N+1 + (2− 1)4N − 2

4− 1

=
5 ∗ 4N − 2

3

Example 5.12 (σ2,1 ◦ σ2,0)
N (1)
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(σ2,1 ◦ σ2,0)
N (1) = (σ4,1)

N (1) (61)

=
4N+1 + (1− 1)4N − 1

4− 1

=
4N+1 − 1

3

Example 5.13 (σ2,0 ◦ σ2,2)
N (1)

(σ2,0 ◦ σ2,2)
N (1) = (σ4,4)

N (1) (62)

=
4N+1 + (4− 1)4N − 4

4− 1

=
4 ∗ 4N + 3 ∗ 4N − 4

3

=
7 ∗ 4N − 4

3

7 Closing Remarks

This conjecture has been lingering in my mind for at least the past two years,
as such the joy I have derived finally making some headway towards a proof
of the Collatz Conjecture is immeasurable. However, I hope to one day see a
constructive proof of the Collatz Conjecture. I have a feeling that such a proof
will create more interesting mathematical tools. Thank you for taking the time
to read my paper, I hope it gave you a newfound appreciation for the Collatz
Conjecture.
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