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0. Abstract

Any prospective proof of the infamous Riemann hypothesis might be facilitated to some
extent by the discovery of an infinite series bearing all of the nontrivial roots of the Riemann
zeta function ζ(z), that is, those which exist on the critical strip -- and no others. Absent such a
series, our goal here is to make progress in that direction. (By definition, the critical strip
includes only points with real parts on the open unit interval. The critical line is the region with
real part (1/2).)

To that end, at least within the domain of the critical strip, it might suffice to reformulate the
Dirichlet eta function η(z), given by:

(0)η 𝑧( ) =
𝑎=1

∞

∑ −1( )𝑎−1

𝑎𝑧

where z is a complex number AKA (x+iy). Critically, for reasons we'll discuss below, the
nontrivial roots of ζ(z) and η(z) are identical.

Per [0]: "While the Dirichlet series expansion for the eta function is convergent only for any
complex number s with [positive] real part... it is Abel summable for any complex number.
This serves to define the eta function as an entire function." (For its part, Abel summation [1]
yields logically consistent sums for certain divergent series.)

Therefore we'll work with η(z) rather than ζ(z) (which is not entire). To wit, the Riemann
hypothesis is equivalent to the statement that all of the zeros of η(z) falling in the critical strip
lie on the critical line [2].

1. From Reciprocal Series to Log Series

We begin with the derivation of a well-known identity pertaining to exponentiation. (We make
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no attempt herein to distinguish equations from identities, so we always use "=" instead of
"≡".)

1.1. Expressing a Power as a Log Series

Given some natural (positive whole) number a raised to some real power x, we can express
the result with the assistance of the exponential series:

(1)𝑒𝑎 =
𝑏=0

∞

∑ 𝑎𝑏

𝑏!

from basic calculus, wherein 00 must be taken as one, herein and henceforth unless
otherwise stated. It follows that

𝑎𝑥 = 𝑒𝑙𝑛 𝑎( )
𝑥

= 𝑒𝑥 𝑙𝑛 𝑎

=
𝑏=0

∞

∑ 𝑥 𝑙𝑛 𝑎( )𝑏

𝑏!

(2)𝑎𝑥 =
𝑏=0

∞

∑ 𝑥𝑏 𝑙𝑛 𝑎( )𝑏

𝑏!

which is the known identity mentioned above.

1.2. Extending the Exponential Series to Complex Powers

As we can see in (1), computing a real power of an arbitrary natural base involves only one
type of operation on the power itself, namely the iterated multiplication implied by xb. (I mean
this notionally; repeated multiplication is inefficient.) Said operation is defined for all complex
powers (x+iy). So, more generically:

𝑎𝑥+𝑖𝑦 = 𝑎𝑖𝑦𝑎𝑥

= 𝑎𝑖𝑦

𝑏=0

∞

∑ 𝑥𝑏 𝑙𝑛 𝑎( )𝑏

𝑏!

= 𝑒𝑙𝑛 𝑎( )
𝑖𝑦

𝑏=0

∞

∑ 𝑥𝑏 𝑙𝑛 𝑎( )𝑏

𝑏!

(3)𝑎𝑥+𝑖𝑦 = 𝑒𝑖 𝑦 𝑙𝑛 𝑎( )

𝑏=0

∞

∑ 𝑥𝑏 𝑙𝑛 𝑎( )𝑏

𝑏!

at which point we recall the definition of a purely imaginary exponential:

(4)𝑒𝑖𝑦 = 𝑐𝑜𝑠 𝑦 + 𝑖 𝑠𝑖𝑛 𝑦



so that

(5)𝑒𝑖 𝑦𝑙𝑛𝑎( ) = 𝑐𝑜𝑠 𝑦 𝑙𝑛 𝑎( ) + 𝑖 𝑠𝑖𝑛 𝑦 𝑙𝑛 𝑎( )

which finally implies that

(6)𝑎𝑥+𝑖𝑦 = 𝑐𝑜𝑠 𝑦 𝑙𝑛 𝑎( ) + 𝑖 𝑠𝑖𝑛 𝑦 𝑙𝑛 𝑎( )( )
𝑏=0

∞

∑ 𝑥𝑏 𝑙𝑛 𝑎( )𝑏

𝑏!

Now, from basic calculus, the series for cosine and sine are as follows:

(7)𝑐𝑜𝑠 𝑥 =
𝑏=0

∞

∑ −1( )𝑏𝑥2𝑏

2𝑏( )!

(8)𝑠𝑖𝑛 𝑥 =
𝑏=0

∞

∑ −1( )𝑏𝑥2𝑏+1

2𝑏+1( )!

which straightforwardly implies that (ax+iy) has real and imaginary parts involving only even
and only odd powers of y, respectively. To wit:

ℜ 𝑎𝑥+𝑖𝑦( ) = 𝑐𝑜𝑠 𝑦 𝑙𝑛 𝑎( )
𝑏=0

∞

∑ 𝑥𝑏 𝑙𝑛 𝑎( )𝑏

𝑏!

=
𝑏=0

∞

∑ −1( )𝑏 𝑦 𝑙𝑛 𝑎( )2𝑏

2𝑏( )!
𝑐=0

∞

∑ 𝑥𝑐 𝑙𝑛 𝑎( )𝑐

𝑐!

(9)ℜ 𝑎𝑥+𝑖𝑦( ) =
𝑏=0

∞

∑ 𝑦2𝑏 −1( )𝑏 𝑙𝑛 𝑎( )2𝑏

2𝑏( )!
𝑐=0

∞

∑ 𝑥𝑐 𝑙𝑛 𝑎( )𝑐

𝑐!

ℑ 𝑎𝑥+𝑖𝑦( ) = 𝑠𝑖𝑛 𝑦 𝑙𝑛 𝑎( )
𝑏=0

∞

∑ 𝑥𝑏 𝑙𝑛 𝑎( )𝑏

𝑏!

=
𝑏=0

∞

∑ −1( )𝑏 𝑦 𝑙𝑛 𝑎( )2𝑏+1

2𝑏+1( )!
𝑐=0

∞

∑ 𝑥𝑐 𝑙𝑛 𝑎( )𝑐

𝑐!

(10)ℑ 𝑎𝑥+𝑖𝑦( ) =
𝑏=0

∞

∑ 𝑦2𝑏+1 −1( )𝑏 𝑙𝑛 𝑎( )2𝑏+1

2𝑏+1( )!
𝑐=0

∞

∑ 𝑥𝑐 𝑙𝑛 𝑎( )𝑐

𝑐!

Now, thanks to the parity separation involving powers of y, we can combine the above
expressions succinctly as follows:

(11)𝑎𝑥+𝑖𝑦 =
𝑏=0

∞

∑ 𝑦𝑏 𝑖𝑏 𝑙𝑛 𝑎( )𝑏

𝑏!
𝑐=0

∞

∑ 𝑥𝑐 𝑙𝑛 𝑎( )𝑐

𝑐!



1.3. From Exponential Series to Dirichlet Eta

Looking back at (0), we need to sum over all natural a like so:

(12)η 𝑥 + 𝑖𝑦( ) =
𝑎=1

∞

∑ −1( )𝑎−1

𝑎𝑥+𝑖𝑦

which, upon substitution from (11) and with the required negation of x and y from the
denominator, yields

η 𝑥 + 𝑖𝑦( ) =
𝑎=1

∞

∑ − 1( )𝑎−1

𝑏=0

∞

∑ −𝑦( )𝑏𝑖𝑏 𝑙𝑛 𝑎( )𝑏

𝑏!
𝑐=0

∞

∑ −𝑥( )𝑐 𝑙𝑛 𝑎( )𝑐

𝑐!

(13)η 𝑥 + 𝑖𝑦( ) =
𝑎=1

∞

∑ − 1( )𝑎−1

𝑏=0

∞

∑ 𝑦𝑏 −𝑖( )𝑏 𝑙𝑛 𝑎( )𝑏

𝑏!
𝑐=0

∞

∑ 𝑥𝑐 −1( )𝑐 𝑙𝑛 𝑎( )𝑐

𝑐!

On closer inspection, (13) implies a matrix of terms crossing all whole powers of (x ln a) with
all those of (y ln a), the grand sum of which being multiplied by ((-1)a-1). (Granted, there are no
meaningful vectors involved, so some might prefer the term "array".) This elegant symmetry
isn't obvious from the original representation of η(z).

Now, from basic calculus:

(14)𝑙𝑛 𝑥 =−
𝑏=1

∞

∑ −1( )𝑏 𝑥−1( )𝑏

𝑏

where (0<x≤2). This is of little use for computing the logs of naturals, however, so some
rearrangement is necessary:

𝑙𝑛 𝑎 =− 𝑙𝑛 1
𝑎

=− −
𝑏=1

∞

∑
−1( )𝑏 1

𝑎 −1( )𝑏

𝑏( )
(15)𝑙𝑛 𝑎 =

𝑏=1

∞

∑
1− 1

𝑎( )𝑏

𝑏

which, upon substitution back into (13), yields the following computationally intuitive form:

(16)η 𝑥 + 𝑖𝑦( ) =
𝑎=1

∞

∑ − 1( )𝑎−1

𝑏=0

∞

∑ 𝑦𝑏 −𝑖( )𝑏

𝑏!
𝑑=1

∞

∑
1− 1

𝑎( )𝑑

𝑑( )𝑏

𝑐=0

∞

∑ 𝑥𝑐 −1( )𝑐

𝑐!
𝑑=1

∞

∑
1− 1

𝑎( )𝑑

𝑑( )𝑐

But there's a more efficient representation if we target only the critical line.

2. Optimizing for the Critical Line



There are various series available for η(z), AKA η(x+iy), depending upon the domain of
concern. Below we consider consider the critical line (x=(1/2)).

2.1. Bohac's Critical Line Eta

To begin with, there's a reason to put powers of y one nesting level above those of x, as in
(16): sometimes we're only interested in the behavior of the function on vertical lines on the
critical strip, wherein x is held constant and we're attempting to construct an infinite series in
y. Bohac [3] did exactly this for the critical line, which is a special case of (13):

(17)η 1
2 + 𝑖𝑦( ) =

𝑎=1

∞

∑ − 1( )𝑎−1

𝑏=0

∞

∑ 𝑦𝑏 −𝑖( )𝑏 𝑙𝑛 𝑎( )𝑏

𝑏!
𝑐=0

∞

∑ 1
2( )𝑐 −1( )𝑐 𝑙𝑛 𝑎( )𝑐

𝑐!

wherein the innermost sum is just

1
𝑎

so

(18)η 1
2 + 𝑖𝑦( ) =

𝑎=1

∞

∑ −1( )𝑎−1

𝑎 𝑏=0

∞

∑ 𝑦𝑏 −𝑖( )𝑏 𝑙𝑛 𝑎( )𝑏

𝑏!

which, in effect, he then reorganized to

(19)η 1
2 + 𝑖𝑦( ) =

𝑎=0

∞

∑ 𝑦𝑎 −𝑖( )𝑎

𝑎!
𝑏=1

∞

∑ −1( )𝑏−1 𝑙𝑛 𝑏( )𝑎

𝑏

at risk of divergence due to swapping the order of summation. For that matter, he made no
attempt to prove convergence. But putting that question aside for the moment, we then have
the following infinite series in y on the critical line:

(20)η 1
2 + 𝑖𝑦( ) =

𝑎=0

∞

∑ 𝑗
𝑎
𝑦2𝑎 − 𝑖𝑘

𝑎
𝑦2𝑎+1( )

for which he then effectively derived that

(21)𝑗
𝑎

= −1( )𝑎

2𝑎( )!
𝑏=1

∞

∑ −1( )𝑏−1 𝑙𝑛 𝑏( )2𝑎

𝑏

and



(22)𝑘
𝑎

= −1( )𝑎

2𝑎+1( )!
𝑏=1

∞

∑ −1( )𝑏 𝑙𝑛 𝑏( )2𝑎+1

𝑏

In section 2.3, we'll generalize this formula to the critical strip and revisit the question of
convergence. But first, it's important to point out that we've inadvertently invited some
"distracting" roots along for the ride which can only muddy the waters, even if we assume the
unproven assumption that all nontrivial roots are simple (and therefore don't obscure
themselves by virtue of plurality).

2.2. Speculations Regarding the Distracting Roots

One drawback of (13) is that it also includes 2 classes of distracting roots: (1) the trivial roots
of the Riemann zeta function (the negative even integers) and (2) the so-called "eta-specific
roots" [4] ((1+i2πa/(ln 2)) where a is a nonzero integer). As the name implies, the second
group doesn't apply to ζ(z). While the distracting roots don't necessarily preclude a proof of
the Riemann hypothesis based on any series such as (13) which includes them, they do
complicate matters as they might obscure the nontrivial ones. I suspect, but can't prove, that
all of these distracting roots are simple. Note also that setting (x=(1/2)) does not magically
abrogate them; they still exist by virtue of complex solutions to y (which is typically defined to
be real, so that iy is imaginary, but we have no way of enforcing this).

One potential route to a proof of the Riemann hypothesis would be the exploitation of an
information theoretic argument to the effect that an adaptation of (13) lacking the distracting
roots somehow has no "storage" left for any roots on the critical strip other than those on the
critical line. Descartes' rule of signs [5] comes to mind, which informally states that the
maximum number of real roots of a polynomial is implied by its number of sign changes when
the coefficients are sorted by degree. The problem with this strategy -- even if we could
eliminate the distracting roots -- is that the number is only a maximum, leaving the possibility
that some of the roots occur as complex conjugates. Sturm's theorem [6] might be more
useful, but on the other hand, it's an iterative method that might not inductively generalize to
an infinite series. Other ideas might be found in the "See Also" section at the bottom of [5].

Fortunately, at least, the eta-specific roots can be eliminated outright using the following
identity from [7]. It applies on the critical strip as well as the line (x=1), save for the pole it will
create at (z=1):

(23)ζ 𝑧( ) = 1

1−21−𝑧 η 𝑧( )

This is why the nontrivial roots and their respective multiplicities are shared between η(z) and
ζ(z): the scaling factor in (23) is nonzero and nonsingular throughout the critical strip.

But what we if don't want to create a pole (because it might perhaps interfere the
convergence of some particular series)? In this case, division by an appropriate rotation,
scaling, and translation of the sinc function -- so that its roots align exactly with the
eta-specific roots -- would be an alternative approach, to wit:



(24)η 𝑥+𝑖𝑦( )
𝑠𝑖𝑛𝑐 𝑦 𝑙𝑛 2( )

2 +𝑖 𝑥−1( )( )

Beware that this is speculation on my part which, even if correct, may or may not be simpler
than dealing with (23). But it looks promising, as you can see in [8] and [9].

Now, continuing my speculation... the trivial roots should be eliminated by multiplication by
(zΓ(z/2)) [10]. Why? Well, first of all, we multiply by z in order to eliminate the singularity due
to Γ(0) itself. Then again by Γ(z/2) in order to "pull up the tacks in the carpet" and remove all
the zeroes of η(z) located at the negative even integers. (Informally, this is accomplished by
multiplying η(z) infinitesimals by Γ(z/2) infinities in a limiting scenario near each root, resulting
in nonzero finite limits, the result of which is shown in [11].) Unfortunately, the series used to
compute Γ(z) (via its reciprocal [12]) involves recursively-defined coefficients of exploding
complexity, which would seem to preclude any easy path to reasoning about the product
(zΓ(z/2)η(z)). Alternatively, one could also simply multiply η(z) by the reciprocal of
((z+2)(z+4)(z+6)...) but said reciprocal expands into a "polynomial" with hyperreal [13]
coefficients; this has much to do with the Dirac delta function [14]. Should you wish to explore
this thorny issue, bear in mind the following identity, which is responsible for the
aforementioned Dirac delta behavior. As rearranged from [15],

(25)
𝑎=1

𝐴

∏ 1
𝑧+2𝑎 = 1

2𝐴−1 𝐴−1( )! 𝑎=1

𝐴

∑ −1( )𝑎−1

𝑧+2𝑎 𝐴 − 1,  𝑎 − 1( )

where the last term in parentheses is a combination ("binomial coefficient"). Clearly, A must
be taken as approaching infinity. It may also be useful to substitute a Taylor series for the
(1/(z+2a)) terms. Note that multiplying both sides by (2AA!) will yield an expression which,
when multiplied by η(z), will not alter its constant term. (This arises from the manner in which
infinite series can be constructed from their roots.) Either way, though, the product will involve
hyperreal coefficients which should neither be treated as zero nor infinity, lest they lose their
residual information content regarding the nontrivial roots. By the way, Γ(z/2) is structurally
similar under the hood but contains a mitigating term which prevents the generation of
hyperreals, at the cost of greater complexity. Alas, despite utilizing all of the aforementioned
tactics, I haven't as yet been able to divide away the trivial roots. Doing so might go a long
way toward "decrypting" the structure of a series bearing only the nontrivial ones.

2.3. From Critical Line to Critical Strip

We'll now derive a straightforward generalization of Bohac's critical line eta to the critical strip,
after which we can assess its convergence.

The generalization is trivial when one considers that the critical strip includes all complex
numbers with real parts on the open unit interval. We have only to replace the square root
term with a generic value of x from that domain:



(26)η 𝑥 + 𝑖𝑦( ) =
𝑎=0

∞

∑ 𝑗
𝑎

𝑥( )𝑦2𝑎 − 𝑖𝑘
𝑎

𝑥( )𝑦2𝑎+1( )
where

(27)𝑗
𝑎

𝑥( ) = −1( )𝑎

2𝑎( )!
𝑏=1

∞

∑ −1( )𝑏−1 𝑙𝑛 𝑏( )2𝑎

𝑏𝑥

and

(28)𝑘
𝑎

𝑥( ) = −1( )𝑎

2𝑎+1( )!
𝑏=1

∞

∑ −1( )𝑏 𝑙𝑛 𝑏( )2𝑎+1

𝑏𝑥

While the foregoing coefficient definitions hide the rich symmetry of (13), their compact form
might make them more tractable. Indeed, Bohac himself seems to have started with the
critical strip, but never quite stated the formulae above.

Kono, who has published an extensive analysis of ζ(z) and related functions, features (26) in
a slightly different form in his Formula 8.4.1 [16]. Both are Maclaurin series in y but Dirichlet
series [17] in x (a "Dirichlet-Maclaurin series" in his terminology), which leaves much to be
desired by way of simplification. So below, we'll investigate the possibility of a Maclaurin
series in z.

For now, note that the terms in the series in (27) and (28) alternate in sign. Therefore we'll
attempt to exploit the alternating series test...

Consider the magnitude of each term tb in the series embedded in ka(x):

(29)𝑡
𝑏| | = 𝑙𝑛 𝑏( )2𝑎+1

𝑏𝑥

Take the (2a+1)th root of both sides:

(30)2𝑎+1 𝑡
𝑏| | = 𝑙𝑛 𝑏

𝑏
𝑥

2𝑎+1( )

Obviously the RHS of (30) features a numerator and denominator growing logarithmically and
polynomially, respectively, in the same natural b. (Note that the exponent in the denominator
is on the open unit interval because x itself resides there.) In the limit of b approaching infinity,
both sides of (30) are therefore zero. Furthermore, due to the asymptotic dominance of the
exponentiated denominator over the logarithmic numerator, there exists some index (B≥2) for
which the RHS of (30) will strictly exceed the same ratio as computed at index (B+1), and
similarly for all (b>B). And thus the same holds true for (29). So by the alternating series test,
the series embedded in (28) converges for all a. By extension, and handling 00 in the usual
way, the same can be shown to be true for (27). But we have a bigger problem.



The convergence of ja(x) and ka(x) do not necessarily imply that the RHS of (26) itself actually
converges anywhere on the critical strip. First of all, it's not clear that the foregoing
coefficients actually alternate in sign for successive values of a, even if we consider them as
separate (even and odd) series. Although the (-1)a outside of both embedded series would
suggest that, recall that the magnitudes |tb| might not reach a maximum for some finite
number of terms of ja(x) or ka(x) prior to entering the monotonic decline phase. Naively, that
might imply a complicated sign pattern in (26), thereby defeating any attempt to apply the
alternating series test. If it does nevertheless converge, then we might need the integral test
combined with interval bounding of periodic functions to prove it. (In other words, we might
use an analog function to supply upper and lower bounds of the sum, then show that they
jointly imply that the sum is finite.)

2.4. Approximation Error with Bohac's Coefficients

The error due to truncation of an alternating series of strictly and monotonically decreasing
magnitude is bounded by the magnitude of the last term summed. But, again, the terms of
(27) and (28) are not always monotonically decreasing in magnitude with increasing b.
Therefore, despite appearances, the error induced by truncation isn't always trivially
boundable. Even if that were the case, (26) could still manifest the aforementioned
complicated sign alternation, precluding this approach to its own error bounding.

3. A Maclaurin Series in z?

It would be desirable to get rid of the potentially transcendental terms in the denominators of
(27) and (28). After all, they hide an enormous amount of machinery. (13) has already done
this for us, and it reveals the striking internal symmetry of η(z). But perhaps there's further
simplification to be had. To begin with, (13) can be consolidated to

(31)η 𝑥 + 𝑖𝑦( ) =
𝑎=1

∞

∑ − 1( )𝑎−1

𝑏=0

∞

∑
𝑐=0

∞

∑ − 𝑥( )𝑐 − 𝑖𝑦( )𝑏 𝑙𝑛 𝑎( )𝑏+𝑐

𝑏!𝑐!

Now we're going to alter the order of summation so as to keep (b+c) within the innermost
sum.

(32)η 𝑥 + 𝑖𝑦( ) =
𝑎=1

∞

∑ − 1( )𝑎−1

𝑏=0

∞

∑
𝑐=0

𝑏

∑ − 𝑥( )𝑐 − 𝑖𝑦( )𝑏−𝑐 𝑙𝑛 𝑎( )𝑏

𝑏−𝑐( )!𝑐!

Note the the role of the indexes b and c has changed from the previous step, such that b
alone now behaves as (b+c) did previously. Next we'll multiply each inner term by the
combination (b, c) times its own reciprocal, and then expand that product into its factorial
constituents for cancellation purposes. Here goes...



η 𝑥 + 𝑖𝑦( ) =
𝑎=1

∞

∑ − 1( )𝑎−1

𝑏=0

∞

∑
𝑐=0

𝑏

∑ 𝑏,  𝑐( )−1 𝑏,  𝑐( ) − 𝑥( )𝑐 − 𝑖𝑦( )𝑏−𝑐 𝑙𝑛 𝑎( )𝑏

𝑏−𝑐( )!𝑐!

=
𝑎=1

∞

∑ − 1( )𝑎−1

𝑏=0

∞

∑
𝑐=0

𝑏

∑ 𝑐! 𝑏−𝑐( )!
𝑏!

𝑙𝑛 𝑎( )𝑏

𝑏−𝑐( )!𝑐! 𝑏,  𝑐( ) − 1( )𝑏𝑥𝑐 𝑖𝑦( )𝑏−𝑐

(33)η 𝑥 + 𝑖𝑦( ) =
𝑎=1

∞

∑ − 1( )𝑎−1

𝑏=0

∞

∑ −1( )𝑏 𝑙𝑛 𝑎( )𝑏

𝑏!
𝑐=0

𝑏

∑ 𝑏,  𝑐( )𝑥𝑐 𝑖𝑦( )𝑏−𝑐

But, from Pascal's triangle [18], the innermost sum of the foregoing equation is just (x+iy)b,
AKA zb, so

(34)η 𝑧( ) =
𝑎=1

∞

∑ − 1( )𝑎−1

𝑏=0

∞

∑ 𝑧𝑏 −1( )𝑏 𝑙𝑛 𝑎( )𝑏

𝑏!

This series definitely converges when the real part of z is positive. How do we know?
Because (34) is the literal complex exponential expansion of (0), even though we arrived here
rather circuitously; the decision to sum over x, and then y, in (11) was arbitrary. This isn't a
Maclaurin series; it's a series of such series. But what if we exchanged the inner and outer
sums, like this:

(35)η 𝑧( ) =
𝑏=0

∞

∑ 𝑧𝑏 −1( )𝑏

𝑏!
𝑎=1

∞

∑ − 1( )𝑎−1 𝑙𝑛 𝑎( )𝑏

This is most definitely a Maclaurin series. The inner series clearly diverges, but averaging of
infinities will yield a suitable finite sum. However -- and I'll spare you the details of so much
wasted work -- that sum appears to grow superfactorially such that even the (b!) term isn't
aggressive enough to prevent divergence outside of some disc centered at the origin (and
perhaps only the origin itself). And this, in a nutshell, is the reason that there is no Maclaurin
series for η(z), despite having no poles anywhere on the complex plane.

4. An Alternative Approach

Consider the following approximation to (13):

(36)η 𝑥 + 𝑖𝑦( ) ≈
𝑎=1

∞

∑ − 1( )𝑎−1

𝑏=0

𝐵

∑ 𝑦𝑏 −𝑖( )𝑏 𝑙𝑛 𝑎( )𝑏

𝑏!
𝑐=0

𝐵

∑ 𝑥𝑐 −1( )𝑐 𝑙𝑛 𝑎( )𝑐

𝑐!

Clearly, in the limit that B approaches infinity, we have exactly (13) and thus an exact value for
η(x+iy). But what if, instead of evaluating the inner sum first, we painted a square matrix of
terms one peripheral layer at a time, like this:

η 𝑥 + 𝑖𝑦( ) ≈
𝑎=1

∞

∑ − 1( )𝑎−1(1 +
𝑏=1

𝐵

∑ (𝑥𝑏𝑦𝑏 −1( )𝑏 −𝑖( )𝑏 𝑙𝑛 𝑎( )2𝑏

𝑏!( )2



(37)+
𝑐=0

𝑏−1

∑ 𝑥𝑏 −1( )𝑏 𝑙𝑛 𝑎( )𝑏

𝑏! 𝑦𝑐 −𝑖( )𝑐 𝑙𝑛 𝑎( )𝑐

𝑐! + 𝑥𝑐 −1( )𝑐 𝑙𝑛 𝑎( )𝑐

𝑐! 𝑦𝑏 −𝑖( )𝑏 𝑙𝑛 𝑎( )𝑏

𝑏!( )))

wherein the leading one is just the (b=c=0) term from (36), and the first term inside the middle
series corresponds to the central diagonal of the same. Taking the limit of B approaching
infinity gives rise to the following exact expression for η(x+iy):

η 𝑥 + 𝑖𝑦( ) =
𝑎=1

∞

∑ − 1( )𝑎−1(1 +
𝑏=1

∞

∑ (𝑥𝑏𝑦𝑏 −1( )𝑏 −𝑖( )𝑏 𝑙𝑛 𝑎( )2𝑏

𝑏!( )2

(38)+
𝑐=0

𝑏−1

∑ 𝑥𝑏 −1( )𝑏 𝑙𝑛 𝑎( )𝑏

𝑏! 𝑦𝑐 −𝑖( )𝑐 𝑙𝑛 𝑎( )𝑐

𝑐! + 𝑥𝑐 −1( )𝑐 𝑙𝑛 𝑎( )𝑐

𝑐! 𝑦𝑏 −𝑖( )𝑏 𝑙𝑛 𝑎( )𝑏

𝑏!( )))

Now let's get rid of that leading one. There's no reason to continually add and subtract it as a
toggles between odd and even, thereby giving rise to a partial sum that cycles endlessly from
one to zero and back. In the "blur of infinity", the average is thus (1/2). And in fact, as you can
see at [19], η(0) is also (1/2). This is just what we would expect from substituting zero for x
and y in the following equation:

η 𝑥 + 𝑖𝑦( ) = 1
2 +

𝑎=1

∞

∑ − 1( )𝑎−1

𝑏=1

∞

∑ (𝑥𝑏𝑦𝑏 𝑖𝑏 𝑙𝑛 𝑎( )2𝑏

𝑏!( )2

(39)+
𝑐=0

𝑏−1

∑ 𝑥𝑏 −1( )𝑏 𝑙𝑛 𝑎( )𝑏

𝑏! 𝑦𝑐 −𝑖( )𝑐 𝑙𝑛 𝑎( )𝑐

𝑐! + 𝑥𝑐 −1( )𝑐 𝑙𝑛 𝑎( )𝑐

𝑐! 𝑦𝑏 −𝑖( )𝑏 𝑙𝑛 𝑎( )𝑏

𝑏!( ))

This doesn't conflict with the previous implication that η(x+iy) diverges at nonpositive x
because we've now addressed that -- at least at the origin -- via the extraction of (1/2). But
there's more to accomplish by way of compaction:

η 𝑥 + 𝑖𝑦( ) = 1
2 +

𝑎=1

∞

∑ − 1( )𝑎−1

𝑏=1

∞

∑ 1
𝑏! (𝑥𝑏𝑦𝑏 𝑖𝑏 𝑙𝑛 𝑎( )2𝑏

𝑏!

+
𝑐=0

𝑏−1

∑ 1
𝑐! 𝑥𝑏𝑦𝑐 − 1( )𝑏 − 𝑖( )𝑐 𝑙𝑛 𝑎( )𝑏+𝑐 + 𝑥𝑐𝑦𝑏 − 1( )𝑐 − 𝑖( )𝑏 𝑙𝑛 𝑎( )𝑏+𝑐( ))

(40)η 𝑥 + 𝑖𝑦( ) = 1
2 +

𝑎=1

∞

∑ − 1( )𝑎−1

𝑏=1

∞

∑ 1
𝑏! 𝑥𝑏𝑦𝑏 𝑖𝑏 𝑙𝑛 𝑎( )2𝑏

𝑏! +
𝑐=0

𝑏−1

∑ −1( )𝑏+𝑐 𝑙𝑛 𝑎( )𝑏+𝑐

𝑐! 𝑥𝑏𝑦𝑐𝑖𝑐 + 𝑥𝑐𝑦𝑏𝑖𝑏( )( )
or if you prefer:

η 𝑥 + 𝑖𝑦( ) = 1
2 +

𝑎=1

∞

∑ − 1( )𝑎−1

𝑏=1

∞

∑ −1( )𝑏 𝑙𝑛 𝑎( )𝑏

𝑏! 𝑥𝑏𝑦𝑏 −𝑖( )𝑏 𝑙𝑛 𝑎( )𝑏

𝑏! +
𝑐=0

𝑏−1

∑ −1( )𝑐 𝑙𝑛 𝑎( )𝑐

𝑐! 𝑥𝑏𝑦𝑐𝑖𝑐 + 𝑥𝑐𝑦𝑏𝑖𝑏( )( )
(41)

which has been verified with help of WolframAlpha. (I tried random values for a, x, and y, and



checked that the result closely matched my finite approximation.) One could break (41) into
real and imaginary parts, but doing so would require splitting c into odd and even, which
would in turn involve use of the integer floor or ceiling functions on the upper index limits.
Personally, I wouldn't consider that a simplification.

Note that (41) is topologically related to (36), essentially as the grand sum of a square matrix
of terms, despite the former being of infinite size. (41) converges when x is positive because
the middle sum is equivalent to ((1/az)-1) from (0) and the leading (1/2) compensates for the
offset by one.

A litany of series exist for the sake of approximating or reasoning about η(z). One would
choose whichever would be suitable for a given application. The point of (40) and (41) is to
expose as much symmetry as possible in the hope that doing so might in turn shed light on
the Riemann hypothesis.
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