Collatz Conjecture

By: Gaurav Rudra Krishna

The problem

Conjecture: The following operation is applied on an arbitrary positive integer n

$$
f(n)=\left\{\begin{aligned}
\frac{n}{2}, & \text { if } n \cong 0 \bmod 2 \\
3 n+1, & \text { if } n \cong 1 \bmod 2
\end{aligned}\right.
$$

The Collatz conjecture states: This process will eventually reach the number 1, regardless of which positive integer is chosen initially.

Abstract

We consider n to have only odd values, and even values are written in the form; $n .2^{b}$. We create a predefined function $r_{b}(n)$.Define, $g(n)=r_{b}(n)+r_{b-1}(n)$ and prove $g(n)=f(n)$. $g(n)$ being an identical function to Collatz transformations, we use the properties of said function to probe if some number n can explode to infinity.

We study n_{x} in detail, establish pattern for n_{x} modulo 3 . We use our understanding to probe if some number n , can loop to itself with more than one transformation.

Format of the solution: The solution does not adhere to the conventional framework of paragraphed proof writing, every piece of maths that is important (to conjecture) is tabular.

- The solution template is inspired from Leslie Lamport; how to write a 21st century proof
- The Solution is framed in a structured template with every argument followed its proof.
- All the subsections are tabulated to study, IF-THEN clause: for main case and sub cases.
- Tabulation should help the reader understand the larger picture in context to some specific case.

Current understanding: The heuristic and probabilistic arguments that support the conjecture are well known. The conjecture has been proven valid for numbers upto 2^{68} but hasnt been proven yet for all numbers. There has been a lot of interesting work done in this problem by notable mathematicians. Few of the notable efforts have been by; Terras showing almost all values n eventually iterated to a value less than n , Krasikov and Lagarias showed that for any large number x , there were at least x 0.84 initial values n between 1 and x whose Collatz iteration reached 1 . Terrence tao showed Almost all Collatz orbits attain almost bounded values.

The conjecture has been studied using Benford's law, Markovs chains, binary systems among other approaches. Variants of the Collatz function have been studied, John Conway invented a computer language called fractran in which every program was a variant of the Collatz function, it turned out to be Turing complete.

There has been some interesting commentary by reputed names, regarding the problem; Paul Erdos said about the Collatz conjecture: "Mathematics may not be ready for such problems." Jeffery Lagarias stated in 2010 that the Collatz conjecture "is an extraordinarily difficult problem, completely out of reach of present-day mathematics. Richard K guy stated "Don't try to solve these problems! " Some call it the most dangerous problem in mathematics. All this commentary makes us more interested in looking into the problem. For verbal explanation refer: https://www.youtube.com/watch?v=ZXK56OdwdrE

Definition 0.1 Transformation: Application of $3 n+1$ followed by application of $n / 2$ (one or more times) till we get odd number is termed as transformation. Application of $3 n+1$ always results the form of $n^{\prime} .2^{b}$ and we just need to divide $n^{\prime} .2^{b}$ by 2 , b number of times, to get n^{\prime} which may go through transformation once again.

Notation

$\{\quad\}$: square brackets are used to represent sets. All the sets in the analysis are open ray sets, that is having a certain starting point and can be extended to infinity.

三: Equivalence is used for operations under the defined transformations in the problem, that is $3 n+1 \& n / 2$. Example; $5 \equiv 1$. One may consider \equiv as applying transformation on odd element and dividing it by max power of 2 with result being an integer.
n is defined to be only odd and we may apply $3 n+1$ upon it. Any even entity shall be represented as even $=n_{\text {odd }} \cdot 2^{b}$
\cong : is used to describe congruence modulo some number.

Definition 0.2

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{X}(\text { before transformation; applying } 3 \mathrm{n}+1)} \\
& \qquad \mathrm{n}_{\mathrm{s}(\text { after transformation; applying } 3 \mathrm{n}+1 \text { and dividing it by max power of } 2)} \\
& \qquad n_{x} \& n_{s} \text { are always odd }
\end{aligned}
$$

The co-application of $3 n+1$ and $n / 2$ shall be considered as a single step

$$
3 n_{x}+1=n_{s} \cdot 2^{b} \mid n_{x} \& n_{s}=2 k+1 \& k, b \in \mathbb{Z}^{+}
$$

D0.2

$$
3 n_{x}+1=n_{s} .2^{b} \text { is same as } n_{x} \equiv n_{s}
$$

Take the Universal set of all positive integers \{U\}

$$
\{U\}=\{1,2,3,4,5 \ldots\}
$$

On all even elements, apply map ($\mathrm{n} / 2$ till we get odd) on $\{\mathrm{U}\}$, we get:

$$
\frac{n}{2} \rightarrow\{U\}, \text { we } \operatorname{get}\left\{U^{\prime}\right\}=\{1,3,5,7,9 \ldots\}
$$

We begin our study considering set $\left\{U^{\prime}\right\}$ with only positive odd integers

Rooster Notation: $\left\{U^{\prime}\right\}=\{1,3,5,7,9 \ldots\}$ Set Builder Notation: $\left\{U^{\prime}\right\}=\{2 k-1\} \mid k \in \mathbb{Z}^{+}$
We define $\left\{r_{y}\right\} \&\left\{r_{b}\right\}$, formulate expansion for $\left\{r_{b}\right\}$ and establish the relationship between $r_{b} \& n_{s}$
Definition 1: $\left\{\mathbf{r}_{\mathbf{y}}\right\} \quad$ is a set of sets contains elements corresponding to values of $\left\{U^{\prime}\right\}$ based upon parity of y with the given definition;

D1	Condition	$\begin{aligned} & \mathrm{r}_{\mathrm{y}} \left.=\frac{\mathrm{r}_{\mathrm{y}-1} \pm 1}{2} \right\rvert\, \\ &\left\{r_{0}\right\}=\left\{\mathrm{U}^{\prime}\right\} \Rightarrow \mathrm{r}_{0}= \\ &=\mathrm{n}_{\mathrm{x}} \text { and } r, \mathrm{y} \in\left\{\mathbb{Z}^{+}\right\} \cup\{0\} \end{aligned}$
D1.1	$\begin{aligned} & \mathrm{y} \cong 1 \bmod 2 \\ & (\mathrm{y}=\mathrm{odd}) \end{aligned}$	$r_{y}=\frac{r_{y-1}+1}{2}$
D1.2	$\begin{aligned} & \mathrm{y} \cong 0 \bmod 2 \\ & (\mathrm{y}=\mathrm{even}) \end{aligned}$	$\mathrm{r}_{\mathrm{y}}=\frac{\mathrm{r}_{\mathrm{y}-1}-1}{2}$

$r_{y-1} \pm 1$ implies, we add or subtract 1 to the value of r for any given subset $(y-1)$
r_{y-1} is mapped to r_{y} if and only if value of r in r_{y-1} is odd. The mapping continues till r is even.
For value of r being even, we define said set as r_{b}.
Example: Say, $\mathrm{n}_{\mathrm{x}}=13, \mathrm{r}_{0}=13_{0}$ (by definition)

- For $r_{y}=r_{1}$: because y is odd, $r_{y}=\frac{r_{y-1}+1}{2}$ implies $r_{1}=\frac{r_{0}+1}{2}=7$, so $r_{1}=7_{1}$

Since value of r in r_{1} is odd, we extent the set further;

- For $r_{y}=r_{2}$: because y is even, $r_{y}=\frac{r_{y-1}-1}{2}$ implies $r_{2}=\frac{r_{1}-1}{2}=3$, so $r_{2}=32$

Since value of r in r_{2} is odd, we extend the set further.

- For $r_{y}=r_{3}$: because y is odd, $r_{y}=\frac{r_{y-1}+1}{2}$ implies $r_{3}=\frac{r_{2}+1}{2}=2$, so $r_{2}=2_{3}$

Since value of r in r_{3} is even, we cannot extend the set further. Thus, $b=3$ and $r_{b}=2_{3}$
Definition 2: $\left\{\mathbf{r}_{\mathbf{b}}\right\}$

$$
\mathrm{r}_{\mathrm{b}}=\mathrm{r}_{\mathrm{y}} \mid r \operatorname{in} \mathrm{r}_{\mathrm{y}}=2 k, k \in \mathbb{Z}^{+}
$$

Since, r_{b} is same as r_{y} with the only condition is that value of r in r_{y} is even. So, r_{b} carries the same defination as r_{y}

D2	Condition	$\left.r_{b}=\frac{r_{b-1} \pm 1}{2} \right\rvert\, b \in \mathbb{Z}^{+}$
D2.1	$b \cong 1$ mod2 $(b=o d d)$	$r_{b}=\frac{r_{b-1}+1}{2}$
D2.2	$b \cong 0$ mod2 $(b=e v e n)$	$r_{b}=\frac{r_{b-1}-1}{2}$

If one applies relevant map on r_{b} where value of r is even, result is a rational solution which is not a positive integer or zero, thus is invalid.

Remark: For condition $\mathrm{r}=0$, we use the classification of zero being even described by Penner 1999, p. 34: Lemma B.2.2

Define: $\left\{\boldsymbol{R}_{\mathrm{b}}\right\}=\left\{\left\{\mathrm{r}_{1}\right\} \cup\left\{\mathrm{r}_{2}\right\} \cup\left\{\mathrm{r}_{3}\right\} \cup\left\{\mathrm{r}_{4}\right\} \cup\left\{\mathrm{r}_{5}\right\} \cup\left\{\mathrm{r}_{6}\right\} \cup \ldots\right\}$
Lemma 1.0: There does not exist n_{x} that is a subset of $\left\{U^{\prime}\right\}$, and does not have an associated representation in $\left\{r_{b}\right\}$. In other words, all elements of $\left\{U^{\prime}\right\}$ are a subset of r_{b} such that $b=1 \rightarrow \infty$.

$$
\begin{aligned}
\forall & \mathrm{n}_{\mathrm{x}} \in\left\{\mathrm{U}^{\prime}\right\} \exists\left\{\mathrm{r}_{\mathrm{b}}\left(\mathrm{n}_{\mathrm{x}}\right)\right\} \in \mathrm{R}_{\mathrm{b}} \text { for } \mathrm{b}=1 \rightarrow \infty \mid 3 \mathrm{n}_{\mathrm{x}}+1=\mathrm{n}_{\mathrm{s}} \cdot 2^{\mathrm{b}} \& \mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{s}}=2 \mathrm{k}-1 \& \mathrm{k}, \mathrm{~b} \in \mathbb{Z}^{+} \\
\Rightarrow & \mathrm{q}\left\{\mathrm{U}^{\prime}\right\}=\sum_{\mathrm{b}=1}^{\mathrm{b} \rightarrow \infty} \mathrm{q}\left\{\mathrm{r}_{\mathrm{b}}\right\} \mid \text { for } \mathrm{b} \cong 1 \bmod 2, \mathrm{r}_{\mathrm{b}}=\frac{\mathrm{r}_{\mathrm{b}-1}+1}{2} \& \mathrm{~b} \cong 0 \bmod 2, \mathrm{r}_{\mathrm{b}}=\frac{\mathrm{r}_{\mathrm{b}-1}-1}{2} \& \mathrm{~b} \in \mathbb{Z}^{+}
\end{aligned}
$$

Proof: let number of elements in any given set be represented by $q\{x\}$

L1		$\forall \mathrm{n}_{\mathrm{x}} \in\left\{\mathrm{U}^{\prime}\right\} \exists\left\{\mathrm{r}_{\mathrm{b}}\left(\mathrm{n}_{\mathrm{x}}\right)\right\} \in \mathrm{R}_{\mathrm{b}}$ for $\mathrm{b}=1 \rightarrow \infty$
L1.1		$\begin{gathered} \mathrm{q}\left\{\mathrm{U}^{\prime}\right\}=\text { total numberofelements in universal set }\left\{\mathrm{U}^{\prime}\right\} \\ \mathrm{q}\left\{\mathrm{r}_{\mathrm{y}}\right\}=\text { total numberofelements in set }\left\{\mathrm{r}_{\mathrm{y}}\right\} \end{gathered}$
Proof:		By definition
L1.2	Base Case	$\mathrm{q}\left\{\mathrm{r}_{1}\right\}=\frac{1}{2^{1}} \mathrm{q}\left\{\mathrm{U}^{\prime}\right\}$
Proof:		By definition 2 $\begin{gathered} \left\{\text { evenr }_{\mathrm{y}}\right\}=\left\{\mathrm{r}_{\mathrm{b}}\right\} \&\left\{\text { oddr }_{\mathrm{y}}\right\}=\left\{\mathrm{r}_{\mathrm{y}+1}\right\} \\ \mathrm{q}\left(\mathrm{r}_{\mathrm{y}+1}\right)=\mathrm{q}\left(\text { oddr }_{\mathrm{y}}\right)=\mathrm{q}\left(\text { oddr }_{\mathrm{y}+1}\right)+\mathrm{q}\left(\text { evenr }_{\mathrm{y}+1}\right) \end{gathered}$ Quantity of odd numbers are equal to quantity of even numbers $\begin{gathered} \mathrm{q}\left(\text { oddr }_{\mathrm{y}}\right)=\mathrm{q}\left(\text { evenr }_{\mathrm{y}}\right) \\ \mathrm{q}\left(\text { evenr }_{\mathrm{y}}\right)=\frac{1}{2} \mathrm{q}\left(\mathrm{r}_{\mathrm{y}+1}\right) \\ \mathrm{q}\left\{\mathrm{r}_{\mathrm{b}=1}\right\}=\frac{1}{2^{1}} \mathrm{q}\left\{\mathrm{r}_{\mathrm{b}=0}\right\}=\frac{1}{2^{1}} \mathrm{q}\left\{\mathrm{U}^{\prime}\right\} \end{gathered}$
L1.3		$\mathrm{q}\left\{\mathrm{r}_{\mathrm{b}=2}\right\}=\frac{1}{2^{2}} \mathrm{q}\left\{\mathrm{U}^{\prime}\right\}$
Proof:		$\begin{gathered} \mathrm{q}\left\{\mathrm{r}_{\mathrm{b}=1}\right\}=\mathrm{q}\left\{\mathrm{r}_{\mathrm{y}=2}\right\}+\mathrm{q}\left\{\mathrm{r}_{\mathrm{b}=2}\right\}=2 \mathrm{q}\left\{\mathrm{r}_{\mathrm{b}=2}\right\} \\ \mathrm{q}\left\{\mathrm{r}_{\mathrm{b}=2}\right\}=\frac{1}{2} \mathrm{q}\left\{\mathrm{r}_{\mathrm{b}=1}\right\}=\frac{1}{2^{2}} \mathrm{q}\left\{\mathrm{U}^{\prime}\right\} \end{gathered}$
L1.4	Mathematical Induction Assumed case	$\left.q\left\{r_{b=x}\right\}=\frac{1}{2^{b=x}} q\left\{U^{\prime}\right\} \right\rvert\, x \in \mathbb{Z}^{+}$
Proof:		Assumed for induction
L1.5		$\left.\mathrm{q}\left\{\mathrm{r}_{\mathrm{b}=(\mathrm{x}+1)}\right\}=\frac{1}{2^{\mathrm{b}=(\mathrm{x}+1)}} \mathrm{q}\left\{\mathrm{U}^{\prime}\right\} \right\rvert\, \mathrm{x} \in \mathbb{Z}^{+}$

Proof:	$\begin{gathered} \mathrm{q}\left\{\mathrm{r}_{\mathrm{b}=\mathrm{x}}\right\}=\mathrm{q}\left\{\mathrm{r}_{\mathrm{y}=(\mathrm{x}+1)}\right\}+\mathrm{q}\left\{\mathrm{r}_{\mathrm{b}=(\mathrm{x}+1)}\right\}=2 \mathrm{q}\left\{\mathrm{r}_{\mathrm{b}=(\mathrm{x}+1)}\right\} \\ \mathrm{q}\left\{\mathrm{r}_{\mathrm{b}=(\mathrm{x}+1)}\right\}=\frac{1}{2} \mathrm{q}\left\{\mathrm{r}_{\mathrm{b}=\mathrm{x}}\right\}=\frac{1}{2^{\mathrm{b}=(\mathrm{x}+1)}} \mathrm{q}\left\{\mathrm{U}^{\prime}\right\} \end{gathered}$
L1.6	$\mathrm{q}\left\{\mathrm{U}^{\prime}\right\}=\sum_{\mathrm{b}=1}^{\mathrm{b} \rightarrow \infty} \mathrm{q}\left\{\mathrm{r}_{\mathrm{b}}\right\}$
Proof:	$\sum_{\mathrm{b}=1}^{\mathrm{b} \rightarrow \infty} \mathrm{q}\left\{\mathrm{r}_{\mathrm{b}}\right\}=\mathrm{q}\left\{\mathrm{r}_{\mathrm{b}=1}\right\}+\mathrm{q}\left\{\mathrm{r}_{\mathrm{b}=2}\right\}+\mathrm{q}\left\{\mathrm{r}_{\mathrm{b}=3}\right\}+\mathrm{q}\left\{\mathrm{r}_{\mathrm{b}=4}\right\}+\mathrm{q}\left\{\mathrm{r}_{\mathrm{b}=5}\right\} \ldots$ Using L1.6 $\begin{gathered} \sum_{b=1}^{b \rightarrow \infty} q\left\{r_{b}\right\}=q\left\{U^{\prime}\right\}\left(\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\frac{1}{2^{5}} \cdots\right)=q\left\{U^{\prime}\right\}(1) \\ =q\left\{U^{\prime}\right\} \end{gathered}$
L1.0	$\forall \mathrm{n}_{\mathrm{x}} \in\left\{\mathrm{U}^{\prime}\right\} \exists\left\{\mathrm{r}_{\mathrm{b}}\left(\mathrm{n}_{\mathrm{x}}\right)\right\} \in \mathrm{R}_{\mathrm{b}}$ for $\mathrm{b}=1 \rightarrow \infty$
Proof:	By L1.6

Theorem 1.0: for all values of n_{x}, the r_{b} has well defined values that depend upon the parity of b

$$
\begin{aligned}
\Leftrightarrow \mathrm{b}=\text { even, } \mathrm{r}_{\mathrm{b}} & =\frac{3 \mathrm{n}_{\mathrm{x}}-2^{\mathrm{b}}+1}{3.2^{\mathrm{b}}} \wedge \Leftrightarrow \mathrm{~b}=\text { odd, } \left.\mathrm{r}_{\mathrm{b}}=\frac{3 \mathrm{n}_{\mathrm{x}}+2^{\mathrm{b}}+1}{3.2^{\mathrm{b}}} \right\rvert\, 3 \mathrm{n}_{\mathrm{x}}+1=\mathrm{n}_{\mathrm{s}} .2^{\mathrm{b}} \& \mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{s}} \\
& =2 \mathrm{k}-1 \& \mathrm{a}, \mathrm{k}, \mathrm{~b} \in \mathbb{Z}^{+}
\end{aligned}
$$

Proof:

T1.0	Condition	$\begin{aligned} & \Leftrightarrow \mathrm{b}=\text { even, } \mathrm{r}_{\mathrm{b}}=\frac{3 \mathrm{n}_{\mathrm{x}}-2^{\mathrm{b}}+1}{3 \cdot 2^{\mathrm{b}}} \wedge \Leftrightarrow \mathrm{~b}=\text { odd }, \mathrm{r}_{\mathrm{b}} \\ & \left.=\frac{3 \mathrm{n}_{\mathrm{x}}+2^{\mathrm{b}}+1}{3 \cdot 2^{\mathrm{b}}} \right\rvert\, \\ & 3 \mathrm{n}_{\mathrm{x}}+1=\mathrm{n}_{\mathrm{s}} \cdot 2^{\mathrm{b}} \& \mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{s}}=2 \mathrm{k}-1 \& \mathrm{k}, \mathrm{~b} \in \mathbb{Z}^{+} \end{aligned}$
T1.1	IF	$\mathrm{r}_{\mathrm{b}}=\frac{\mathrm{r}_{\mathrm{b}-1} \pm 1}{2}$
Proof:		By definition D2
T1.2.1	If $b=$ even Base case b=2	$\mathrm{r}_{2}=\frac{3 \mathrm{n}_{\mathrm{x}}-2^{2}+1}{3.2^{2}}$
Proof:		$\mathrm{r}_{2}=\frac{\mathrm{r}_{2-1}-1}{2^{1}}=\frac{\frac{\mathrm{n}_{\mathrm{x}}+1}{2^{1}}-1}{2^{1}}=\frac{\mathrm{n}_{\mathrm{x}}-\frac{3}{3}}{2^{2}}=\frac{3 \mathrm{n}_{\mathrm{x}}-3}{3.2^{2}}=\frac{3 \mathrm{n}_{\mathrm{x}}-2^{2}+1}{3.2^{2}}$
T1.2.2	$b=2 a \mid \in \mathbb{Z}^{+}$	$\mathrm{r}_{2 \mathrm{a}}=\frac{3 \mathrm{n}_{\mathrm{x}}-2^{2 a}+1}{3.2^{2 a}}$

Proof:		Assumed for induction
T1.2.3	$\begin{gathered} b=2 a+2 \mid \\ a \in \mathbb{Z}^{+} \end{gathered}$	$r_{2 a+2}=\frac{3 n_{x}-2^{2 a+2}+1}{3 \cdot 2^{2 a+2}}$
Proof:		Using T1.2.2 $\begin{gathered} r_{2 a+2}=\frac{r_{2 a+2-1}-1}{2^{1}} \Rightarrow r_{2 a+2}=\frac{\frac{3 n_{x}-2^{2 a}+1}{3.2^{2 a}}+1}{2^{1}}-1 \\ 2^{1} \\ r_{2 a+2}=\frac{3 n_{x}-2^{2 a+2}+1}{3.2^{2 a+2}}(\text { by algebra }) \end{gathered}$
T1.2.4	Then,	$\mathrm{r}_{\mathrm{b}}=\frac{3 \mathrm{n}_{\mathrm{x}}-2^{b}+1}{3.2^{b}}$
Proof:		Using mathematical induction in T1.2.2 \& T1.2.3 and substituting 2 a with b
T1.3.1	If, b=odd Base case $b=1$	$r_{1}=\frac{3 n_{x}+2^{1}+1}{3.2^{1}}$
Proof:		$\mathrm{r}_{1}=\frac{\mathrm{n}_{\mathrm{x}}+1}{2^{1}}=\frac{\mathrm{n}_{\mathrm{x}}+\frac{3}{3}}{2^{1}}=\frac{\mathrm{n}_{\mathrm{x}}+\frac{2^{1}+1}{3}}{2^{1}}=\frac{3 \cdot \mathrm{n}_{\mathrm{x}}+2^{1}+1}{3 \cdot 2^{1}}$
T1.3.2	$\begin{gathered} b=2 a+1 \mid \\ a \in \mathbb{Z}^{+} \end{gathered}$	$r_{2 \mathrm{a}+1}=\frac{\mathrm{r}_{2 \mathrm{a}}+1}{2^{1}}$
Proof:		Using definition D2.1
T1.3.3	Then,	$r_{2 a+1}=\frac{3 n_{x}+2^{2 a+1}+1}{3 \cdot 2^{2 a+1}}$
Proof:		Using T1.2.2 $\begin{gathered} r_{2 a+1}=\frac{r_{2 a}+1}{2^{1}} \Rightarrow r_{2 a+1}=\frac{\frac{3 n_{x}-2^{2 a}+1}{3.2^{2 a}}+1}{2^{1}} \\ r_{2 a+1}=\frac{3 n_{x}+2^{2 a+1}+1}{3.2^{2 a+1}}(\text { by algebra }) \end{gathered}$
T1.0	THEN	if $\mathrm{b}=$ even, $\mathrm{r}_{\mathrm{b}}=\frac{3 \mathrm{n}_{\mathrm{x}}-2^{b}+1}{3.2^{b}} \wedge$ if $\mathrm{b}=$ odd, $\mathrm{r}_{\mathrm{b}}=\frac{3 \mathrm{n}_{\mathrm{x}}+2^{b}+1}{3.2^{b}}$
Proof:		By T1.2.4 \& T1.3.3

Upon calculating based on Theorem 1, for values in r_{b}, we get;

$$
r_{1}=\frac{\mathrm{n}_{\mathrm{x}}+1}{2^{1}}, r_{2}=\frac{\mathrm{n}_{\mathrm{x}}-1}{2^{2}}, r_{3}=\frac{\mathrm{n}_{\mathrm{x}}+3}{2^{3}}, r_{4}=\frac{\mathrm{n}_{\mathrm{x}}-5}{2^{4}}, r_{5}=\frac{\mathrm{n}_{\mathrm{x}}+11}{2^{5}}, r_{6}=\frac{\mathrm{n}_{\mathrm{x}}-21}{2^{6}} \ldots
$$

Theorem 2.0:

$$
\forall\left(\mathrm{r}_{\mathrm{b}}+\mathrm{r}_{\mathrm{b}-1}\right)=\mathrm{n}_{\mathrm{s}} \mid \mathrm{r}_{\mathrm{b}} \& \mathrm{r}_{\mathrm{b}-1} \in \mathrm{n}_{\mathrm{x}} \& 3 n_{x}+1=n_{s} .2^{b} \& n_{x}, n_{s}=2 k-1 \& k, b \in \mathbb{Z}^{+}
$$

We establish the operation " $r_{b}+r_{b-1}$ " is identical to application of $3 n+1$ (on odd) followed by $n / 2$ (on even) till we get odd

Proof:

T2.0		$\begin{gathered} \forall\left(\mathrm{r}_{\mathrm{b}}+\mathrm{r}_{\mathrm{b}-1}\right)=\mathrm{n}_{\mathrm{s}} \mid \\ \mathrm{r}_{\mathrm{b}} \& \mathrm{r}_{\mathrm{b}-1} \in \mathrm{n}_{\mathrm{x}} \& 3 n_{x}+1=n_{s} \cdot 2^{b} \& n_{x}, n_{s}=2 k-1 \& k, b \in \mathbb{Z}^{+} \end{gathered}$
T2.1	IF	$\forall\left(\mathrm{r}_{\mathrm{b}}+\mathrm{r}_{\mathrm{b}-1}\right)=\mathrm{n}_{\mathrm{s}} \Rightarrow \forall\left(\mathrm{r}_{\text {beven }}+\mathrm{r}_{\mathrm{b}-1}\right)=\mathrm{n}_{\mathrm{s}} \wedge \forall\left(\mathrm{r}_{\text {bodd }}+\mathrm{r}_{\mathrm{b}-1}\right)=\mathrm{n}_{\mathrm{s}}$
Proof:		Since, parity of b seems to play a role, we put in the effort to study each case separately.
T2.2.1	$\begin{aligned} & \hline \text { If. Case } 1 \text { : } \\ & \mathrm{b}=\text { even= } \mathrm{j} \\ & \mid j \in \mathbb{Z}^{+} \\ & \hline \end{aligned}$	$\mathrm{r}_{2 \mathrm{j}}=\frac{3 \mathrm{n}_{\mathrm{x}}-2^{2 j}+1}{3.2^{2 j}} \& r_{2 k-1}=\frac{3 n_{x}+2^{2 j-1}+1}{3.2^{2 j-1}}$
Proof:		Using Theorem 1
T2.2.2		$r_{2 j}+r_{2 j-1}=\frac{\left(3 n_{x}+1\right)}{2^{2 j}}$
Proof:		Using Algebra
T2.2.3	Then	$\forall\left(\mathrm{r}_{\text {beven }}+\mathrm{r}_{\mathrm{b}-1}\right)=\mathrm{n}_{\mathrm{s}}$
Proof:		Substitute 2 j with beven \& $2 \mathrm{j}-1$ with $\mathrm{b}-1$ in $\underline{\mathrm{T} 2.2 .2}$ and equate with $\underline{\mathrm{DO}} \mathrm{C}$ $\mathrm{r}_{\mathrm{beven}}+\mathrm{r}_{\mathrm{b}-1}=\mathrm{n}_{\mathrm{s}}=\frac{\left(3 n_{x}+1\right)}{2^{b}}$
T2.3.1	$\begin{aligned} & \hline \text { If, Case } 2 \text { : } \\ & \mathrm{b}=\mathrm{odd}=2 \mathrm{j}+ \\ & 1 \mid j \in \mathbb{Z}^{+} \\ & \hline \end{aligned}$	$r_{b}=\frac{3 n_{x}+2^{2 \mathrm{j}+1}+1}{3.2^{2 \mathrm{j}+1}} \& r_{2 \mathrm{j}+1-1}=\frac{3 n_{x}-2^{2 \mathrm{j}+1-1}+1}{3.2^{2 \mathrm{j}+1-1}}$
Proof:		Using Theorem 1
T2.3.2		$r_{2 \mathrm{j}+1}+r_{2 \mathrm{j}+1-1}=\frac{\left(3 n_{x}+1\right)}{2^{2 \mathrm{j}+1}}$
Proof:		Using Algebra
T2.3.3	Then,	$\forall\left(\mathrm{r}_{\text {bodd }}+\mathrm{r}_{\mathrm{b}-1}\right)=\mathrm{n}_{\mathrm{s}}$
Proof:		Substitute $2 \mathrm{j}+1$ with bodd \& $2 \mathrm{j}+1-1$ with b-1 in $\underline{\mathrm{T} 2.3 .2}$ and equate with $\underline{\mathrm{DO}}$.2 $\mathrm{r}_{\mathrm{bodd}}+\mathrm{r}_{\mathrm{b}-1}=\mathrm{n}_{\mathrm{s}}=\frac{\left(3 n_{x}+1\right)}{2^{b}}$
T2.0	THEN,	$\forall\left(\mathrm{r}_{\mathrm{b}}+\mathrm{r}_{\mathrm{b}-1}\right)=\mathrm{n}_{\mathrm{s}}$
Proof:		Using T2.2.3 \& $\underline{\text { T2.3.3 }}$

Let $g\left(\mathrm{n}_{\mathrm{x}}\right)=\mathrm{r}_{\mathrm{b}}\left(\mathrm{n}_{\mathrm{x}}\right)+\mathrm{r}_{\mathrm{b}-1}\left(\mathrm{n}_{\mathrm{x}}\right)$
Then, $\left(\mathrm{r}_{\mathrm{b}}+\mathrm{r}_{\mathrm{b}-1}\right)=\mathrm{n}_{\mathrm{s}} \Rightarrow \mathrm{g}\left(\mathrm{n}_{\mathrm{x}}\right)=\mathrm{f}\left(\mathrm{n}_{\mathrm{x}}\right)$
Thus, we create an identical function to the collatz transformations

Theorem 2 can also be re-written in an interesting form: sum of two continued fractions (using definition r_{b} and r_{b-1}) of for all the possible positive integer values of b;

$$
\left(\mathrm{r}_{\mathrm{b}}+\mathrm{r}_{\mathrm{b}-1}\right)=\mathrm{n}_{\mathrm{s}} \Rightarrow \lim _{b=1 \rightarrow \infty}\left\{\begin{array}{l}
\frac{\frac{n_{x}+1}{2}-1}{2}+1 \\
\frac{\frac{2}{2}-1}{2}+1 \\
\frac{2}{2} \ldots
\end{array}+\left\{\begin{array}{l}
\frac{\frac{n_{x}+1}{2}-1}{2}+1 \\
\frac{\frac{3}{2}-1}{2}
\end{array}=\frac{3 n_{x}+1}{2^{b}}\right.\right.
$$

The continued fraction expression is pretty simple to prove. One may reach the same conclusion without going through Theorem1

Now, we explore if there exists some element n_{x}, which under defined collatz transformations becomes infinity.

$$
\mathrm{n}_{\mathrm{x}} \equiv \mathrm{n}_{\mathrm{x}} \mid \mathrm{n}_{\mathrm{s}}=\infty
$$

Corollary 1.0: We identify the condition when any given element after undergoing transformation will definitely increase.

$$
\text { if } \mathrm{b}=1, \forall \mathrm{n}_{\mathrm{s}}>\forall \mathrm{n}_{\mathrm{x}} \wedge \text { if } \mathrm{b}>1, \forall \mathrm{n}_{\mathrm{s}}<\forall \mathrm{n}_{\mathrm{x}} \mid 3 \mathrm{n}_{\mathrm{x}}+1=\mathrm{n}_{\mathrm{s}} .2^{\mathrm{b}} \& \mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{s}}=2 \mathrm{k}-1 \& \mathrm{k}, \mathrm{~b} \in \mathbb{Z}^{+}
$$

increase/decrease: condition for any transformation $=\left\{\left.\begin{array}{ll}\text { for } \mathrm{b}=1, & \forall \mathrm{n}_{\mathrm{s}}>\forall \mathrm{n}_{x} \\ \text { for } \mathrm{b}>1, & \forall \mathrm{n}_{\mathrm{s}}<\forall \mathrm{n}_{x}\end{array} \right\rvert\, \mathrm{n}_{\mathrm{s}}>1\right.$

Proof:

C1.0	Condition	$\text { if } \begin{aligned} \mathrm{b}=1, \forall \mathrm{n}_{\mathrm{s}}> & \forall \mathrm{n}_{\mathrm{x}} \wedge \text { if } \mathrm{b}>1, \forall \mathrm{n}_{\mathrm{s}}<\forall \mathrm{n}_{\mathrm{x}} \mid 3 \mathrm{n}_{\mathrm{x}}+1=\mathrm{n}_{\mathrm{s}} .2^{\mathrm{b}} \& \mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{s}} \\ & =2 \mathrm{k}-1 \& \mathrm{k}, \mathrm{~b} \in \mathbb{Z}^{+} \end{aligned}$
C1.1	IF	$\mathrm{r}_{\mathrm{b}}+\mathrm{r}_{\mathrm{b}-1}=\mathrm{n}_{\mathrm{s}}$
Proof:		By Theorem 2
C1.2.1	If Case 1: $b=1$	$\mathrm{r}_{1}+\mathrm{r}_{0}=\mathrm{n}_{\mathrm{s}}$
Proof:		By definition D1: $\mathrm{r}_{0}=\mathrm{n}_{\mathrm{x}}$
C1.2.2	Then	$\mathrm{n}_{\mathrm{s}}>\mathrm{n}_{\mathrm{x}}$
Proof:		$\mathrm{r}_{1}+\mathrm{r}_{0}=\frac{\mathrm{n}_{\mathrm{x}}+1}{2}+\mathrm{n}_{\mathrm{x}}>\mathrm{n}_{\mathrm{x}} \Rightarrow \mathrm{n}_{\mathrm{s}}>\mathrm{n}_{\mathrm{x}}$
C1.3.1	$\begin{aligned} & \text { If Case } 2 \text { : } \\ & b=2 \end{aligned}$	$\mathrm{n}_{\mathrm{s}}=\mathrm{r}_{2}+\mathrm{r}_{1}$
Proof:		By Theorem 2

C1.3.2		$\mathrm{n}_{\mathrm{s}}=\frac{3 \mathrm{n}_{\mathrm{x}}+1}{4}$
Proof:		$\mathrm{n}_{\mathrm{s}}=\frac{\mathrm{n}_{\mathrm{x}}-1}{2^{2}}+\frac{\mathrm{n}_{\mathrm{x}}+1}{2}=\frac{3 \mathrm{n}_{\mathrm{x}}+1}{4}$
C1.3.2.1	$\text { If } \mathrm{n}_{\mathrm{x}}=1$ Then	$\mathrm{n}_{\mathrm{s}}=\mathrm{n}_{\mathrm{x}}$
Proof:		$3 \mathrm{n}_{\mathrm{x}}+1=\mathrm{n}_{\mathrm{s}} \cdot 2^{2}$ if $\mathrm{n}_{\mathrm{x}}=1$ then $\mathrm{n}_{\mathrm{s}}=1$
C1.3.2.2	$\text { If } n_{x}>1$ Then	$\mathrm{n}_{\mathrm{x}}>\mathrm{n}_{\mathrm{s}}$
Proof:		$\begin{gathered} 3 \mathrm{n}_{\mathrm{x}}+1=\mathrm{n}_{\mathrm{s}} \cdot 2^{2} \& \mathrm{n}_{\mathrm{x}}=1+\mathrm{n}^{\prime} \Rightarrow \mathrm{n}_{\mathrm{s}}=\frac{3+1+3 n^{\prime}}{4}=1+\frac{3 n^{\prime}}{4} \\ n^{\prime}=2 k^{\prime} \& k^{\prime} \in \mathbb{Z}^{+} \end{gathered}$
C1.4.1	$\begin{array}{r} \text { If Case 3: } \\ b \geq 3 \\ \hline \end{array}$	$3 \mathrm{n}_{\mathrm{x}}+1=\mathrm{n}_{\mathrm{s}} .2^{\geq 3}$
Proof:		By definition D0.2: because $\mathrm{b} \geq 3$
C1.4.2	Then	$\mathrm{n}_{\mathrm{x}}>\mathrm{n}_{\mathrm{s}}$
Proof:		if $n_{s}>n_{x}$, then $n_{s}=n_{x}+j \mid j \in \mathbb{Z}^{+}$ $\begin{gathered} 3 n_{x}+1=n_{s} \cdot 2^{\geq 3} \Rightarrow 3 n_{x}+1=\left(n_{x}+j\right) \cdot 2^{\geq 3} \\ 1-j \cdot 2^{\geq 3}=n_{x} \cdot\left(2^{\geq 3}-3\right) \end{gathered}$ for $\mathrm{j} \geq 1$, left hand side is negative, implying n_{x} is negative, implying $\mathrm{n}_{\mathrm{x}} \notin \mathbb{Z}^{+}$. This is false.
C1.5		$\mathrm{n}_{\mathrm{s}}<\mathrm{n}_{\mathrm{x}}$ with $\mathrm{b}>2$
Proof:		By C1.3.2.2 \& C1.4.2
C1.0	THEN	if $\mathrm{b}=1, \forall \mathrm{n}_{\mathrm{s}}>\forall \mathrm{n}_{\mathrm{x}} \wedge \mathrm{ifb}>1, \forall \mathrm{n}_{\mathrm{s}}<\forall \mathrm{n}_{\mathrm{x}}$
Proof:		By C1.2.2 \& C1.5

We consider applying transformation on some number multiple times such that it will definitely increase in all the applied transformations. Thus, the sub condition as per Corollary $1 ; \mathrm{n}_{\mathrm{s}}$ is always greater than n_{x} during all of these multiple transformations needs to be probed.

Corollary 2.0:

$$
\begin{gathered}
\left.r_{1}(s)=\frac{3}{2} r_{1}(x) \right\rvert\, r_{1}(x) \text { is } r_{b} \text { for } n_{x}, r_{1}(s) \text { is } r_{b} \text { for } n_{s} \& b=1,3 n_{x}+1=n_{s} \cdot 2^{b} \& n_{x}, n_{s} \\
=2 k-1 \& k \in \mathbb{Z}^{+}
\end{gathered}
$$

$r_{1}(s)$ is the value of r_{b} for n_{s}. Similarly, $r_{1}(x)$ is the value of r_{b} for n_{x} When we repeatedly apply transformation: we always label the element that we apply transformation upon as n_{x}, the transformed element is always labelled as n_{s}

Example: Say, $n_{x}=9$ then $n_{s}=7$, now apply transformation on 7 , so 7 becomes n_{x} $n_{x}=7, \mathrm{r}_{\mathrm{b}}(7)=4_{1}$ then $n_{s}=11 \mathrm{r}_{\mathrm{b}}(11)=6_{1}$, again continue applying transformation upon 11 , so 11 becomes n_{x}
$n_{x}=11, \mathrm{r}_{\mathrm{b}}(11)=6_{1}$ then $n_{s}=17, \mathrm{r}_{\mathrm{b}}(11)=4_{2} \ldots$ and so on.

Proof:

C2.0	Condition	$\begin{gathered} \left.r_{1}(s)=\frac{3}{2} r_{1}(x) \right\rvert\, r_{1}(x) \text { is } r_{b} \text { for } n_{x}, r_{1}(s) \text { is } r_{b} \text { for } n_{s} \& b=1,3 n_{x}+1 \\ =n_{s} \cdot 2^{b} \& n_{x}, n_{s}=2 k-1 \& k \in \mathbb{Z}^{+} \end{gathered}$
C2.1	IF	r_{b} for $n_{x}=r_{b}(x) \& r_{b}$ for $n_{s}=r_{b}(s) \mid 3 n_{x}+1=n_{s} .2{ }^{\text {b }}$
Proof:		By definition
C2.2		$\mathrm{n}_{\mathrm{x}}=2 \mathrm{r}_{1}(\mathrm{x})-1 \& \mathrm{n}_{\mathrm{s}}=2 \mathrm{r}_{1}(\mathrm{~s})-1$
Proof:		By algebra on definition of r_{1} $r_{1}(x)=\frac{n_{x}+1}{2} \& r_{1}(s)=\frac{n_{s}+1}{2}$
C2.3		$\mathrm{r}_{1}(\mathrm{x})=\mathrm{n}_{\mathrm{s}}-\mathrm{n}_{\mathrm{x}}$
Proof:		$\mathrm{r}_{1}+\mathrm{r}_{0}=\mathrm{n}_{\mathrm{s}} \Rightarrow \mathrm{r}_{1}(\mathrm{x})+\mathrm{n}_{\mathrm{x}}=\mathrm{n}_{\mathrm{s}}$
C2.4		$\mathrm{r}_{1(\mathrm{x})}=\left(2 \mathrm{r}_{1(\mathrm{~s})}-1\right)-\left(2 \mathrm{r}_{1(\mathrm{x})}-1\right)$
Proof:		Using substitution of $n_{s} \& \mathrm{n}_{\mathrm{x}}$ from $\underline{\mathrm{C2} 2.2}$ in $\underline{\mathrm{C} 2.3}$
C2.0	THEN	$r_{1}(s)=\frac{3}{2} r_{1}(x)$
Proof:		Using algebra on C2.4

Corollary 1 implies for n greater than $1 ; b$ greater than 1 is the only condition for increase during transformations. Corollary 2 implies for n greater than 1, an element can grow finite number of times, as any number ($3 r_{1}(\mathrm{x})$) that is divided by 2 will eventually result; an odd number. Thus, after some finite number of transformations, the element n will definitely decrease because b happens to be greater than 1 . We do not conclude that n reaches a value less than itself, we only conclude that for all there does not exist n that can grow continuously infinite number of times.

Thus, the transformational process, n continuously grows and transforms to infinity; that is described by the following equation

$$
\begin{gathered}
\mathrm{n}_{\mathrm{u} 1} \equiv \mathrm{n}_{\mathrm{u} 2} \equiv \mathrm{n}_{\mathrm{u} 3} \equiv \mathrm{n}_{\mathrm{u} 4} \equiv \mathrm{n}_{\mathrm{u} 5} \cdots \equiv \mathrm{n}_{\mathrm{u} \infty} \mid \mathrm{n}_{\mathrm{u} 1}<\mathrm{n}_{\mathrm{u} 2}<\mathrm{n}_{\mathrm{u} 3}<\mathrm{n}_{\mathrm{u} 4}<\mathrm{n}_{\mathrm{u} 5}<\cdots<\mathrm{n}_{\mathrm{u} \infty} \text { where } \mathrm{n}_{\mathrm{u} \infty} \\
=\infty \& \mathrm{r}_{\mathrm{b}}=\mathrm{r}_{1} \forall \mathrm{n}_{\mathrm{u} 1}, \mathrm{n}_{\mathrm{u} 2}, \mathrm{n}_{\mathrm{u} 3}, \mathrm{n}_{\mathrm{u} 4}, \mathrm{n}_{\mathrm{u} 5} \cdots
\end{gathered}
$$

is false and invalid. One concludes that continuous increase to infinity is not possible.

Notation:

$<\neq>$ is used to describe relationship between 2 elements; one element may be greater than or smaller than the other element, but both the elements are not equal.

Note: It would seem improper to use " $<\neq>$ " notation describing any series. However, It is okay to use such notation in the context of our analysis; we don't know if when they are larger or smaller to adjacent element, all we know is none of the elements in the series can be equal to any other element. We consider every element during the transformational process to be not equal to any other element, as that would imply, the elements loops, thus n cannot transform to infinity.

Consider the transformational process described as:

$$
\mathrm{n}_{\mathrm{u} 1} \equiv \mathrm{n}_{\mathrm{u} 2} \equiv \mathrm{n}_{\mathrm{u} 3} \equiv \mathrm{n}_{\mathrm{u} 4} \equiv \mathrm{n}_{\mathrm{u} 5} \ldots \equiv \mathrm{n}_{\mathrm{u} \infty} \mid \mathrm{n}_{\mathrm{u} 1}<\neq>\mathrm{n}_{\mathrm{u} 2}<\neq>\mathrm{n}_{\mathrm{u} 3}<\neq>\mathrm{n}_{\mathrm{u} 4}<\neq>\mathrm{n}_{\mathrm{u} 5} \cdots
$$

The transformation from $n_{u 1}$ to $n_{u_{\infty}}$ with discontinuous growth may be described by the above equation. So, it is still possible for some number to grow to infinity at a relatively slower rate.

Hence, the question of discontinuous growth to infinity remains valid and thus open.

Proposition 1.0:

$$
\mathrm{n}_{\mathrm{x}} \not \equiv \infty \mid 3 \mathrm{n}_{\mathrm{x}}+1=\mathrm{n}_{\mathrm{s}} \cdot 2^{\mathrm{b}} \& \mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{s}}=2 \mathrm{k}-1 \& \mathrm{k}, \mathrm{~b} \in \mathbb{Z}^{+}
$$

We prove proposition by contradiction.

Proof:

P1.0	Condition	$\mathrm{n} \not \equiv \equiv \infty \mathrm{n}_{\mathrm{x}}+1=\mathrm{n}_{\mathrm{s}} .22^{\mathrm{b}} \& \mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{s}}=2 \mathrm{k}+1 \& \mathrm{k}, \mathrm{b} \in \mathbb{Z}^{+}$
P1.1	IF	$\mathrm{n}_{\mathrm{s}} \equiv \infty \mid \mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{s}}=2 \mathrm{k}+1 \& \mathrm{k}, \mathrm{b} \in \mathbb{Z}^{+}$
Proof:		Assumed to establish contradiction
P1.2		$3 r_{b} \pm 1=n_{s}$
Proof:		By applying definition 2 on Theorem 2 $r_{b}+r_{b-1}=3 r_{b} \pm 1$
P1.3		$\mathrm{r}_{\mathrm{b}} \notin\{U\}$
Proof:		By P1.1 \& P1.2 $3 r_{b} \pm 1=\infty \Rightarrow r_{b}=\frac{\infty \mp 1}{3}$
P1.4		$\forall \mathrm{r}_{\mathrm{b}} \in\{U\}$
Proof:		By Definition 2

$\forall \mathrm{r}_{\mathrm{b}} \in \mathbb{Z}^{+} \& \mathbb{Z}^{+} \in\{U\} \Longrightarrow \mathrm{r}_{\mathrm{b}} \in\{U\}$		
P1.0	THEN	$\mathrm{n} \not \equiv \infty$
Proof:	By contradiction in $\underline{\mathrm{P} 1.3} \& \underline{\mathrm{P} 1.4}$	

Thus, no number can transform to infinity.

Corollary 3.0

$$
\mathrm{n}_{\mathrm{s}} \nsubseteq 0 \bmod 3 \mid 3 \mathrm{n}_{\mathrm{x}}+1=\mathrm{n}_{\mathrm{s}} 2^{\mathrm{b}}, \mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{s}}=2 \mathrm{k}-1 \& \mathrm{k}, \mathrm{~b} \in \mathbb{Z}^{+}
$$

Despite the argument being trivial in nature, we will still prove it as it is instrumental in our study of the conjecture.

Proof:

C3.0		$\mathrm{n}_{\mathrm{s}} \nsubseteq 0 \bmod 3 \mid 3 \mathrm{n}_{\mathrm{x}}+1=\mathrm{n}_{\mathrm{s}} 2^{\mathrm{b}}, \mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{s}}=2 \mathrm{k}-1 \& \mathrm{k}, \mathrm{b} \in \mathbb{Z}^{+}$
C3.1	IF	$3 n_{x}+1=n_{s} 2^{b}, n_{x}, n_{s}=2 k-1 \& k, b \in \mathbb{Z}^{+}$
Proof:		By definition
C3.2		$\mathrm{n}_{\mathrm{s}} \cong 0 \bmod 3 \Longrightarrow \mathrm{n}_{\mathrm{s}}=3 \mathrm{j} \mid \mathrm{j} \in \mathbb{Z}^{+}$
Proof:		Assumed to establish contradiction
C3.3		$\mathrm{n}_{\mathrm{x}} \notin \mathbb{Z}^{+}$
Proof:		$\mathrm{n}_{\mathrm{x}}=\frac{3 \mathrm{j} 2^{\mathrm{b}}-1}{3}=\mathrm{j} 2^{\mathrm{b}}-\frac{1}{3} \Rightarrow \mathrm{n}_{\mathrm{x}} \notin \mathbb{Z}^{+}$
C3.0	Then	$\mathrm{n}_{\mathrm{s}} \nsubseteq 0 \mathrm{mod} 3$
Proof:		By contradiction in C3.1 \& C3.3

Corollary 4.0

$$
\begin{aligned}
& \text { if } \mathrm{n}_{1} \cong 1 \bmod 3 \& \mathrm{n}_{2} \cong 1 \bmod 3, \text { then } \mathrm{n}_{3} \cong 1 \bmod 3 \wedge \\
& \text { if } \mathrm{n}_{1} \cong 2 \bmod 3 \& \mathrm{n}_{2} \cong 2 \bmod 3, \text { then } \mathrm{n}_{3} \cong 1 \bmod 3 \wedge
\end{aligned}
$$

if $\mathrm{n}_{1} \cong 1 \bmod 3 \& \mathrm{n}_{2} \cong 2 \bmod 3$, then $\mathrm{n}_{3} \cong 2 \bmod 3 \mid \mathrm{n}_{1} . \mathrm{n}_{2}=\mathrm{n}_{3} \& \mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, \mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}, \mathrm{k} \in \mathbb{Z}$ The above arguments may be written in multiplicative format;

$$
2 \bmod 3 * 2 \bmod 3 \cong 1 \bmod 3 \wedge 1 \bmod 3 * 1 \bmod 3 \cong 1 \bmod 3 \wedge 1 \bmod 3 * 2 \bmod 3 \cong 2 \bmod 3
$$

Proof:

| C4 | $\Leftrightarrow \mathrm{n}_{1} \cong 1 \bmod 3 \& \mathrm{n}_{2} \cong 1 \bmod 3, \mathrm{n}_{3} \cong 1 \bmod 3 \wedge$ |
| :--- | :--- | :--- |
| | $\Leftrightarrow \mathrm{n}_{1} \cong 2 \bmod 3 \& \mathrm{n}_{2} \cong 2 \bmod 3, \mathrm{n}_{3} \cong 1 \bmod 3 \wedge$ |
| | $\Leftrightarrow \mathrm{n}_{1} \cong 1 \bmod 3 \& \mathrm{n}_{2} \cong 2 \bmod 3, \mathrm{n}_{3} \cong 2 \bmod 3$ |

C4.1.1	If	$\begin{gathered} \mathrm{n}_{1} \cong 1 \bmod 3=3 \mathrm{k}_{1}+1 \& \mathrm{n}_{2} \cong 1 \bmod 3=3 \mathrm{k}_{2}+1, \mathrm{n}_{3} \cong 1 \bmod 3 \\ =3 \mathrm{k}_{3}+1 \end{gathered}$
Proof:		By definition
C4.1.2	Then	$\mathrm{n}_{1} * \mathrm{n}_{2}=\mathrm{n}_{3} \cong 1 \bmod 3$
Proof:		$\begin{aligned} \mathrm{n}_{1} * \mathrm{n}_{2}=\left(3 \mathrm{k}_{1}\right. & +1)\left(3 \mathrm{k}_{2}+1\right)=3.3 \mathrm{k}_{1} \mathrm{k}_{2}+3 \mathrm{k}_{2}+3 \mathrm{k}_{1}+1 \\ & =3\left(3 \mathrm{k}_{1} \mathrm{k}_{2}+\mathrm{k}_{2}+1 \mathrm{k}_{1}\right)+1=3 \mathrm{k}+2 \cong 1 \bmod 3 \end{aligned}$
C4.2.1	If	$\mathrm{n}_{1} \cong 2 \bmod 3 \& \mathrm{n}_{2} \cong 2 \bmod 3, \mathrm{n}_{3} \cong 1 \bmod 3$
Proof:		By definition
C4.2.2	Then	$\mathrm{n}_{1} * \mathrm{n}_{2}=\mathrm{n}_{3} \cong 1 \bmod 3$
Proof:		$\begin{aligned} \mathrm{n}_{1} * \mathrm{n}_{2}=\left(3 \mathrm{k}_{1}\right. & +2)\left(3 \mathrm{k}_{2}+2\right)=3.3 \mathrm{k}_{1} \mathrm{k}_{2}+2.3 \mathrm{k}_{2}+2.3 \mathrm{k}_{1}+4 \\ & =3\left(3 \mathrm{k}_{1} \mathrm{k}_{2}+2 \mathrm{k}_{2}+2 \mathrm{k}_{1}+1\right)+1=3 \mathrm{k}+1 \cong 1 \bmod 3 \end{aligned}$
C4.3.1	If	$\begin{aligned} \mathrm{n}_{1} \cong 1 \bmod 3= & 3 \mathrm{k}_{1}+1, \mathrm{n}_{2} \cong 1 \bmod 3=3 \mathrm{k}_{2}+2, \mathrm{n}_{3} \cong 2 \bmod 3 \\ & =3 \mathrm{k}_{3}+2 \end{aligned}$
Proof:		By definition
C4.3.2	Then	$\mathrm{n}_{1} * \mathrm{n}_{2}=\mathrm{n}_{3} \cong 2 \bmod 3$
Proof:		$\begin{aligned} \mathrm{n}_{1} * \mathrm{n}_{2}=\left(3 \mathrm{k}_{1}\right. & +1)\left(3 \mathrm{k}_{2}+2\right)=3.3 \mathrm{k}_{1} \mathrm{k}_{2}+3 \mathrm{k}_{2}+2.3 \mathrm{k}_{1}+2 \\ & =3\left(3 \mathrm{k}_{1} \mathrm{k}_{2}+\mathrm{k}_{2}+2 \mathrm{k}_{1}\right)+2=3 \mathrm{k}+2 \cong 2 \bmod 3 \end{aligned}$
C4.0	THEN	$\begin{aligned} & \Leftrightarrow \mathrm{n}_{1} \cong 1 \bmod 3 \& \mathrm{n}_{2} \cong 1 \bmod 3, \mathrm{n}_{3} \cong 1 \bmod 3 \wedge \\ & \Leftrightarrow \mathrm{n}_{1} \cong 2 \bmod 3 \& \mathrm{n}_{2} \cong 2 \bmod 3, \mathrm{n}_{3} \cong 1 \bmod 3 \wedge \\ & \Leftrightarrow \mathrm{n}_{1} \cong 1 \bmod 3 \& \mathrm{n}_{2} \cong 2 \bmod 3, \mathrm{n}_{3} \cong 2 \bmod 3 \end{aligned}$
Proof:		By C4.1.2, C4.2.2, C4.3.2

Theorem 3.0: There is a well-defined relationship between n_{s} modulo $3 \&$ parity of b in 2^{b}.One can determine n_{s} modulo 3 by the parity of b and vice versa. The relationship is independent of n_{x}.

$$
\begin{gathered}
\text { if } \mathrm{n}_{\mathrm{s}} \cong 2 \bmod 3, \text { then } \mathrm{b}=\text { odd } \wedge \text { if } \mathrm{n}_{\mathrm{s}} \cong 1 \bmod 3, \text { then } \mathrm{b}=\text { even, } \mid 3 \mathrm{n}_{\mathrm{x}}+1=\mathrm{n}_{\mathrm{s}} \cdot 2^{\mathrm{b}} \& \mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{s}} \\
=2 \mathrm{k}-1 \& \mathrm{j}, \mathrm{k}, \mathrm{~b} \in \mathbb{Z}^{+}
\end{gathered}
$$

Proof:

T3.0		$\begin{gathered} \Leftrightarrow \mathrm{n}_{\mathrm{s}} \cong 2 \bmod 3, \mathrm{~b}=\text { odd } \wedge \mathrm{n}_{\mathrm{s}} \cong 1 \bmod 3, \mathrm{~b}=\text { even, } \mid 3 \mathrm{n}_{\mathrm{x}}+1 \\ =\mathrm{n}_{\mathrm{s}} \cdot 2^{\mathrm{b}} \& \mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{s}}=2 \mathrm{k}+1 \& \mathrm{k}, \mathrm{~b} \in \mathbb{Z}^{+} \end{gathered}$
T3.1	IF	
Proof:		$\text { If } P \text {, then } Q \Rightarrow \dashv Q, \dashv P$ Modus Tollens
T3.2.1	If. Case 1: b=even \&	$3 \mathrm{n}_{\mathrm{x}}+1=\mathrm{n}_{\mathrm{s}} * 2^{\text {beven }}$

	$n_{s}=3 j+2$	$\mathrm{n}_{\mathrm{s}} \cong 2 \mathrm{mod} 3=3 \mathrm{j}+2$
Proof:		By definition of n_{s} in terms of $3 n+1$
T3.2.2		$3 \mathrm{n}_{\mathrm{x}}+1=(3 \mathrm{j}+2) .2^{\text {beven }}$
Proof:		By definition of n_{s} in terms of $\mathrm{n}_{\mathrm{s}} \bmod 3$
T3.2.3		$3 \mathrm{n}_{\mathrm{x}}+1=3 \mathrm{j} .2^{\text {beven }}+2^{\text {bodd }}$
Proof:		Since 2. $2^{\text {bodd }}=2^{\text {beven }}$
T3.2.4	Then	$\dashv \mathrm{b}=\mathrm{odd} \Rightarrow \mathrm{~b}=\text { even }, \dashv \mathrm{n}_{\mathrm{s}} \cong 2 \bmod 3$ Thus, $\mathrm{b}=\mathrm{odd}, \mathrm{n}_{\mathrm{s}} \cong 2 \bmod 3$
Proof:		Using Corollary 4.0 \& T3.2.3 \Rightarrow $\begin{gathered} 3 \mathrm{n}_{\mathrm{x}}+1=3 \mathrm{j} \cdot 2^{\text {beven }}+2^{\text {bodd }} \Rightarrow \\ 1 \bmod 3 \cong 0 \bmod 3 * 1 \bmod 3+2 \bmod 3 \\ 1 \bmod 3 \cong 2 \bmod 3 \text { is } \Leftarrow \Rightarrow \text {, thus false } \end{gathered}$
T3.3.1	If. Case 2: b=odd \& $n_{s}=3 j+1$	$\begin{aligned} & 3 n_{x}+1=n_{s} * 2^{\text {bodd }} \\ & n_{s} \cong 1 \bmod 3=3 j+1 \end{aligned}$
Proof:		By definition of n_{s} in terms of $3 n+1$
T3.3.2		$3 \mathrm{n}_{\mathrm{x}}+1=(3 \mathrm{j}+1) \cdot 2^{\text {bodd }}$
Proof:		By definition of n_{s} in terms of $\mathrm{n}_{\mathrm{s}} \bmod 3$
T3.3.3		$3 \mathrm{n}_{\mathrm{x}}+1=3 \mathrm{j} .2^{\text {bodd }}+2^{\text {bodd }}$
Proof:		Since 1.2 ${ }^{\text {bodd }}=2^{\text {bodd }}$
T3.3.4	Then	$\dashv \mathrm{b}=\mathrm{odd} \Rightarrow \mathrm{~b}=\text { even }, \dashv \mathrm{n}_{\mathrm{s}} \cong 1 \bmod 3$ Thus, $\mathrm{b}=\mathrm{even}, \mathrm{n}_{\mathrm{s}} \cong 1 \bmod 3$
Proof:		Using Corollary 4.0 \& $\underline{\text { T3.3.3 }} \Rightarrow$ $\begin{gathered} 3 \mathrm{n}_{\mathrm{x}}+1=3 \mathrm{j} .2^{\text {bodd }}+2^{\text {bodd }} \Rightarrow \\ 1 \bmod 3 \cong 0 \bmod 3 * 2 \bmod 3+2 \bmod 3 \\ 1 \bmod 3 \cong 2 \bmod 3 \text { is } \Leftrightarrow \Rightarrow \text { thus false } \end{gathered}$
T3.0	THEN	$\begin{gathered} \dashv \mathrm{b}=\mathrm{odd}, \dashv \mathrm{n}_{\mathrm{s}} \cong 2 \bmod 3 \wedge \dashv \mathrm{~b}=\text { even, } \dashv \mathrm{n}_{\mathrm{s}} \cong 1 \bmod 3 \\ \mathrm{~b}=\text { even, } \mathrm{n}_{\mathrm{s}} \cong 1 \bmod 3 \wedge \mathrm{~b}=\text { odd, } \mathrm{n}_{\mathrm{s}} \cong 2 \bmod 3 \end{gathered}$
Proof		By T3.2.4 \& T3.3.4

Definition $3.0 \quad\left\{n_{x}\right\}$: The set n_{x}, is a set that contains all the possible values of n_{x} that would satisfy definition 1.0;

$$
\mathrm{n}_{\mathrm{x}} \equiv \mathrm{n}_{\mathrm{s}}: 3 \mathrm{n}_{\mathrm{x}}+1=\mathrm{n}_{\mathrm{s}} \cdot 2^{\mathrm{b}} \Rightarrow \mathrm{n}_{\mathrm{x}}=\frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{\mathrm{b}}-1}{3} \text { for all valid values of } \mathrm{b}
$$

The set $\left\{n_{x}\right\}$ is infinitely large with values represented by;

$$
\begin{gathered}
\frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{\beta}-1}{3}, \frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+2}-1}{3}, \frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+4}-1}{3}, \frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+6}-1}{3}, \frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+8}-1}{3} \ldots \frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+2 \mathrm{z}}-1}{3} \\
\text { if } \mathrm{n}_{\mathrm{s}} \cong 2 \bmod 3, \beta=1 \wedge \text { if } \mathrm{n}_{\mathrm{s}} \cong 1 \bmod 3, \beta=2 \& \mathrm{z} \in \mathbb{Z}^{+}
\end{gathered}
$$

All the above give the same result n_{s} upon application of $\mathrm{n} / 2$.
Note: We have only even numbers and not odd numbers being added to the exponent of 2^{β} in the above set representation because Theorem 3 dictates; the parity of b has to be the same, if we happen to add odd number to the exponent of 2^{β}, then the parity of b changes, thus we would not get any valid solution for n_{x}.

Theorem 4.0: All elements of $\left\{n_{x}\right\}$ can be expressed in the form of its adjacent element.

$$
\begin{gathered}
\mathrm{n}_{\mathrm{x} 1+(\mathrm{z}+1)}=4 \mathrm{n}_{\mathrm{x} 1+\mathrm{z}}+1 \mid \\
\left\{\mathrm{n}_{\mathrm{x} 1}, \mathrm{n}_{\mathrm{x} 1+1}, \mathrm{n}_{\mathrm{x} 1+2}, \mathrm{n}_{\mathrm{x} 1+3}, \mathrm{n}_{\mathrm{x} 1+4}, \mathrm{n}_{\mathrm{x} 1+5}, \mathrm{n}_{6 \mathrm{x} 1+} \cdots \mathrm{n}_{\mathrm{x} 1+\mathrm{z}}, \mathrm{n}_{\mathrm{x} 1+(\mathrm{z}+1)}\right\} \in\left\{\mathrm{n}_{\mathrm{x}}\right\} \& \\
3 \mathrm{n}_{\mathrm{x}}+1=\mathrm{n}_{\mathrm{s}} .2^{\mathrm{b}} \& \mathrm{n}_{\mathrm{x} 1}, \mathrm{n}_{\mathrm{x} 1+1}, \mathrm{n}_{\mathrm{x} 1+2}, \mathrm{n}_{\mathrm{x} 1+3} \ldots, \mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{s}}=2 \mathrm{k}-1 \& \mathrm{k}, \mathrm{~b} \in \mathbb{Z}^{+}
\end{gathered}
$$

Note: The notation $n_{x 1+1}$ instead of $n_{x 2}$, would seem a bit strange.
There is a method to the madness;
$\mathrm{n}_{\mathrm{x}} \equiv \mathrm{n}_{\mathrm{s}} \Rightarrow \mathrm{n}_{\mathrm{x}}=\frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{\mathrm{b}}-1}{3}$ with $\mathrm{b}=1$ for $\mathrm{n}_{\mathrm{s}} \cong 2 \bmod 3$ or $\mathrm{b}=2$ for $\mathrm{n}_{\mathrm{s}} \cong 1 \bmod 3$
$n_{x 1}$: We refer this as base case. It is the first/smallest solution such that

$$
\mathrm{n}_{\mathrm{x} 1}=\frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{1}-1}{3}\left|\mathrm{n}_{\mathrm{s}} \cong 2 \bmod 3 \vee \mathrm{n}_{\mathrm{x} 1}=\frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{2}-1}{3}\right| \mathrm{n}_{\mathrm{s}} \cong 1 \bmod 3
$$

Since, we write exponential of 2 in the form $2^{\beta+2 z}\left(z \in \mathbb{Z}^{+}\right)$
$\mathrm{n}_{\mathrm{x} 1+1}, \mathrm{n}_{\mathrm{x} 1+2}, \mathrm{n}_{\mathrm{x} 1+3} \ldots$ represent:

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{x} 1+1}=\frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{1+2}-1}{3}\left|\mathrm{n}_{\mathrm{s}} \cong 2 \bmod 3 \vee \mathrm{n}_{\mathrm{x} 1+1}=\frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{2+2}-1}{3}\right| \mathrm{n}_{\mathrm{s}} \cong 1 \bmod 3 \\
& \mathrm{n}_{\mathrm{x} 1+2}=\frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{1+4}-1}{3}\left|\mathrm{n}_{\mathrm{s}} \cong 2 \bmod 3 \vee \mathrm{n}_{\mathrm{x} 1+2}=\frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{2+4}-1}{3}\right| \mathrm{n}_{\mathrm{s}} \cong 1 \bmod 3 \\
& \mathrm{n}_{\mathrm{x} 1+3}=\frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{1+6}-1}{3}\left|\mathrm{n}_{\mathrm{s}} \cong 2 \bmod 3 \vee \mathrm{n}_{\mathrm{x} 1+3}=\frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{2+6}-1}{3}\right| \mathrm{n}_{\mathrm{s}} \cong 1 \bmod 3
\end{aligned}
$$

The notation makes sense as the z in the expression $2^{b+2 z}$ is referred to as $n_{x 1+z}$. it creates a simple direct link to the additional component of exponent (2z) in expression; $2^{b+2 z}$. The notation also helps identifying parity of n_{x} modulo3 which will be evident as we study further.

Proof:

T4.0		$\mathrm{n}_{\mathrm{x} 1+(\mathrm{z}+1)}=4 \mathrm{n}_{\mathrm{x} 1+\mathrm{z}}+1$
T4.1	IF	$\left\{\mathrm{n}_{\mathrm{s}} \cdot 2^{\beta}, \mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+2}, \mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+4}, \mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+6}, \mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+8}, \mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+10}, \ldots\right\} \equiv \mathrm{n}_{\mathrm{s}}$
Proof:		The said set transforms to n_{s} upon application of $n / 2$. Parity of b has been maintained same, complying with theorem 3.
T4.2.1		$\left\{\mathrm{n}_{\mathrm{x}}\right\}=\left[\begin{array}{ccc}\frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{\beta}-1}{3}, & \frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+2}-1}{3}, & \frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+4}-1}{3}, \\ \frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+6}-1}{3}, & \frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+8}-1}{3}, & \frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+10}-1}{3}, \\ \hline\end{array}\right]$
Proof:		By definition
T4.2.2		$\begin{aligned} & \text { Let }\left[\mathrm{n}_{\mathrm{x}}\right]= \\ & {\left[\mathrm{n}_{\mathrm{x} 1}, \mathrm{n}_{\mathrm{x} 1+1}, \mathrm{n}_{\mathrm{x} 1+2}, \mathrm{n}_{\mathrm{x} 1+3}, \mathrm{n}_{\mathrm{x} 1+4}, \mathrm{n}_{\mathrm{x} 1+5}, \mathrm{n}_{\mathrm{x} 1+6}, \mathrm{n}_{\mathrm{x} 1+7} \ldots \mathrm{n}_{\mathrm{x} 1+8} \ldots\right]} \end{aligned}$
Proof:		By definition
T4.3	Base case	$\mathrm{n}_{\mathrm{x} 1+1}=4 \mathrm{n}_{\mathrm{x} 1}+1$
Proof:		By substitution of $\mathrm{n}_{\mathrm{s}} .2^{\beta+2}$ $\begin{gathered} \mathrm{n}_{\mathrm{x} 1}=\frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{\beta}-1}{3} \Rightarrow \mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+2}=2^{2}\left(3 \mathrm{n}_{\mathrm{x} 1}+1\right) \\ \mathrm{n}_{\mathrm{x} 1+1}=\frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+2}-1}{3}=\frac{2^{2}\left(3 \mathrm{n}_{\mathrm{x} 1}+1\right)-1}{3} \end{gathered}$ By algebra, we get; $\mathrm{n}_{\mathrm{x} 1+1}=4 \mathrm{n}_{\mathrm{x} 1}+1$
T4.4	Mathematic al Induction	$\begin{gathered} \mathrm{n}_{\mathrm{x} 1+\mathrm{z}}=4 \mathrm{n}_{\mathrm{x} 1+(\mathrm{z}-1)}+1 \\ \frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+2 \cdot(\mathrm{z}-1)}-1}{3}, \mathrm{n}_{\mathrm{x} 1+(\mathrm{z}+1)}=\frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+2 \mathrm{z}}-1}{3} \end{gathered}$
Proof:		Assumed for induction
T4.0	THEN,	$\mathrm{n}_{\mathrm{x} 1+(\mathrm{z}+1)}=4 \mathrm{n}_{\mathrm{x} 1+\mathrm{z}}+1$
Proof:		$\begin{aligned} & \mathrm{n}_{\mathrm{x} 1+(\mathrm{z}+1)}=\frac{\mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+2(\mathrm{z}+1)}-1}{3} \\ & \mathrm{n}_{\mathrm{x} 1+(\mathrm{z}+1)}=\frac{4 \cdot \mathrm{n}_{\mathrm{s}} \cdot 2^{\beta+2(\mathrm{z})}-1}{3} \end{aligned}$ Using $3 n_{x 1+z}+1=n_{s} .2^{\beta+2 z}$ $\mathrm{n}_{\mathrm{x} 1+(\mathrm{z}+1)}=\frac{4\left(3 \mathrm{n}_{\mathrm{x} 1+\mathrm{z}}+1\right)-1}{3}$

Corollary 5.0: Congruence modulo 3 is well ordered irrespective of the first solution, $0 \bmod 3$ is followed by $1 \bmod 3$ is followed by $2 \bmod 3$ is followed by $0 \bmod 3$ is followed by $1 \bmod 3$ and so on...

$$
\begin{gathered}
\left(\text { if } \mathrm{n}_{\mathrm{x} 1} \cong 0 \bmod 3 \text { then } \mathrm{n}_{\mathrm{x} 1+1} \cong 1 \bmod 3, \mathrm{n}_{\mathrm{x} 1+2} \cong 2 \bmod 3, \mathrm{n}_{\mathrm{x} 1+3} \cong 0 \bmod 3, \ldots\right) \wedge \\
\left(\text { if } \mathrm{n}_{\mathrm{x} 1} \cong 1 \bmod 3, \text { then } \mathrm{n}_{\mathrm{x} 1+1} \cong 2 \bmod 3, \mathrm{n}_{\mathrm{x} 1+2} \cong 0 \bmod 3, \ldots\right) \wedge \\
\left(\text { if } \mathrm{n}_{\mathrm{x} 1} \cong 2 \bmod 3, \mathrm{n}_{\mathrm{x} 1+1} \cong 0 \bmod 3, \mathrm{n}_{\mathrm{x} 1+2} \cong 1 \bmod 3, \ldots\right) \mid \\
\left\{\mathrm{n}_{\mathrm{x} 1}, \mathrm{n}_{\mathrm{x} 1+1}, \mathrm{n}_{\mathrm{x} 1+2}, \mathrm{n}_{\mathrm{x} 1+3}, \mathrm{n}_{\mathrm{x} 1+4}, \mathrm{n}_{\mathrm{x} 1+5}, \mathrm{n}_{\mathrm{x} 1+6} \ldots\right\} \in\left\{\mathrm{n}_{\mathrm{x}}\right\} \& \\
3 \mathrm{n}_{\mathrm{x}}+1=\mathrm{n}_{\mathrm{s}} \cdot 2^{\mathrm{b}} \& \mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{s}}=2 \mathrm{k}-1 \& \mathrm{k}, \mathrm{~b} \in \mathbb{Z}^{+}
\end{gathered}
$$

Proof:

C5.0		$\begin{gathered} \left(\text { if } \mathrm{n}_{\mathrm{x} 1} \cong 0 \bmod 3, \mathrm{n}_{\mathrm{x} 1+1} \cong 1 \bmod 3, \mathrm{n}_{\mathrm{x} 1+2} \cong 2 \bmod 3, \mathrm{n}_{\mathrm{x} 1+3}\right. \\ \cong 0 \bmod 3, \ldots) \\ \wedge\left(\text { if } \mathrm{n}_{\mathrm{x} 1} \cong 1 \bmod 3, \mathrm{n}_{\mathrm{x} 1+1} \cong 2 \bmod 3, \mathrm{n}_{\mathrm{x} 1+2} \cong 0 \bmod 3, \ldots\right) \\ \wedge\left(\text { if } \mathrm{n}_{\mathrm{x} 1} \cong 2 \bmod 3, \mathrm{n}_{\mathrm{x} 1+1} \cong 0 \bmod 3, \mathrm{n}_{\mathrm{x} 1+2} \cong 1 \bmod 3, \ldots\right) \end{gathered}$
C5.1	IF	$\left\{\mathrm{n}_{\mathrm{x} 1}, \mathrm{n}_{\mathrm{x} 1+1}, \mathrm{n}_{\mathrm{x} 1+2}, \mathrm{n}_{\mathrm{x} 1+3}, \mathrm{n}_{\mathrm{x} 1+4}, \mathrm{n}_{\mathrm{x} 1+5}, \mathrm{n}_{\mathrm{x} 1+6} \ldots\right\} \in\left\{\mathrm{n}_{\mathrm{x}}\right\}$
Proof:		By definition
C5.2.1	Case1: If	$\mathrm{n}_{\mathrm{x} 1} \cong 0 \bmod 3 \Rightarrow \mathrm{n}_{\mathrm{x} 1}=3 \mathrm{~m} \mid \mathrm{m} \in \mathbb{Z}^{+}$
Proof:		By definition
C5.2.2		$\mathrm{n}_{\mathrm{x} 1+1} \cong 1 \bmod 3$
Proof:		By Theorem 4 $\mathrm{n}_{\mathrm{x} 1+1}=4 \mathrm{n}_{\mathrm{x} 1}+1=4.3 \mathrm{~m}+1 \cong 1 \bmod 3 \mid \mathrm{m} \in \mathbb{Z}^{+}$
C5.2.3		$\mathrm{n}_{\mathrm{x} 1+2} \cong 2 \bmod 3$
Proof:		By Theorem 4 $\begin{aligned} \mathrm{n}_{\mathrm{x} 1+2}=4 \mathrm{n}_{\mathrm{x} 1+1} & +1=4 .(4.3 \mathrm{~m}+1)+1=16.3 \mathrm{~m}+3+2 \\ & \cong 2 \bmod 3 \end{aligned}$
C5.2.4		$\mathrm{n}_{\mathrm{x} 1+3} \cong 0 \bmod 3$
Proof:		By Theorem 4 $\begin{aligned} \mathrm{n}_{\mathrm{x} 1+3}=4 \mathrm{n}_{\mathrm{x} 1+2} & +1=4 \cdot(16 \cdot 3 \mathrm{~m}+3+2)+1 \\ & =64 \cdot 3 \mathrm{~m}+12+8+1 \cong 0 \bmod 3 \end{aligned}$
C5.2.5		$\mathrm{n}_{\mathrm{x} 1+4} \cong 1 \bmod 3$
Proof:		By C5.2.2
C5.2.6	Then	$\begin{array}{r} \mathrm{n}_{\mathrm{x} 1+5} \cong 2 \bmod 3, \mathrm{n}_{\mathrm{x} 1+6} \cong 1 \bmod 3, \mathrm{n}_{\mathrm{x} 1+7} \cong 0 \bmod 3, \mathrm{n}_{\mathrm{x} 1+8} \\ \cong 1 \bmod 3, \mathrm{n}_{\mathrm{x} 1+9} \cong 2 \bmod 3, \mathrm{n}_{\mathrm{x} 1+10} \cong 0 \bmod 3 \ldots \end{array}$
Proof:		By C5.2.3, C5.2.4, C5.2.2, C5.2.3, C5.2.4
C5.2.7		$\begin{gathered} \mathrm{n}_{\mathrm{x} 1+1} \cong 1 \bmod 3, \mathrm{n}_{\mathrm{x} 1+2} \cong 2 \bmod 3, \mathrm{n}_{\mathrm{x} 1+3} \cong 0 \bmod 3 \\ \mathrm{n}_{\mathrm{x} 1+4} \cong 1 \bmod 3, \mathrm{n}_{\mathrm{x} 1+5} \cong 2 \bmod 3, \mathrm{n}_{\mathrm{x} 1+6} \cong 1 \bmod 3, \mathrm{n}_{\mathrm{x} 1+7} \\ \cong 0 \bmod 3, \ldots \end{gathered}$
Proof:		By C5.2.2, C5.2.3, C5.2.4
C5.3.1	Case 2: If	Let $\mathrm{n}_{\mathrm{x} 1} \cong 1 \bmod 3 \Rightarrow \mathrm{n}_{\mathrm{x} 1}=3 \mathrm{~m}+1 \mid \mathrm{m} \in \mathbb{Z}^{+}$

Proof:		By definition
C5.3.2	Then	$\begin{aligned} & \mathrm{n}_{\mathrm{x} 1+1} \cong 2 \bmod 3, \mathrm{n}_{\mathrm{x} 1+2} \cong 0 \bmod 3, \mathrm{n}_{\mathrm{x} 1+3} \cong 1 \bmod 3, \mathrm{n}_{\mathrm{x} 1+4} \\ & \cong 2 \bmod 3, \ldots \end{aligned}$
Proof:		By C5.2.3, C5.2.4, C5.2.2
C5.4.1	Case3: If	Let $\mathrm{n}_{\mathrm{x} 1} \cong 2 \bmod 3 \Rightarrow \mathrm{n}_{\mathrm{x} 1}=3 \mathrm{~m}+2 \mid \mathrm{m} \in \mathbb{Z}^{+}$
Proof:		By definition
C5.4.2	Then,	$\begin{gathered} \mathrm{n}_{\mathrm{x} 1+1} \cong 0 \bmod 3, \mathrm{n}_{\mathrm{x} 1+2} \cong 1 \bmod 3, \mathrm{n}_{\mathrm{x} 1+3} \cong 2 \bmod 3, \mathrm{n}_{\mathrm{x} 1+4} \\ \cong 0 \bmod 3, \ldots \end{gathered}$
Proof:		By C5.2.4, C5.2.2, C5.2.3
C5.0	THEN	(if $\mathrm{n}_{\mathrm{x} 1} \cong 0 \bmod 3, \mathrm{n}_{\mathrm{x} 1+1} \cong 1 \bmod 3, \mathrm{n}_{\mathrm{x} 1+2} \cong 2 \bmod 3 \ldots$...) \wedge (if $\mathrm{n}_{\mathrm{x} 1} \cong 1 \bmod 3, \mathrm{n}_{\mathrm{x} 1+1} \cong 2 \bmod 3, \mathrm{n}_{\mathrm{x} 1+2} \cong 0 \bmod 3 \ldots$...) $\wedge\left(\right.$ if $\mathrm{n}_{\mathrm{x} 1} \cong$ $2 \bmod 3, \mathrm{n}_{\mathrm{x} 1+1} \cong 0 \bmod 3, \mathrm{n}_{\mathrm{x} 1+2} \cong 1 \bmod 3, \ldots$)
Proof:		By C5.2.7, C5.3.2, C5.4.2

Classify elements of $\left\{U^{\prime}\right\}$ by using sets n_{s} modulo9 and n_{s} modulo 27 definition.

Grouped by $n_{s} \bmod 9$		
	$\begin{gathered} n_{s} \text { mod } \\ 27 \end{gathered}$	$\begin{gathered} n_{x} \\ \bmod 9 \end{gathered}$
$\begin{gathered} 1 \bmod \\ 9 \end{gathered}$	$\begin{gathered} 19 \bmod \\ 27 \end{gathered}$	$7 \bmod 9$
$\begin{gathered} 1 \text { mod } \\ 9 \end{gathered}$	$\begin{gathered} 10 \text { mod } \\ 27 \end{gathered}$	$4 \bmod 9$
$\begin{gathered} 1 \text { mod } \\ 9 \end{gathered}$	$\begin{gathered} 1 \mathrm{mod} \\ 27 \end{gathered}$	1 mod9
$2 \bmod 9$	$\begin{gathered} 11 \\ \bmod 27 \end{gathered}$	$7 \bmod 9$
$2 \bmod 9$	$2 \bmod 27$	$1 \bmod 9$
$2 \bmod 9$	$\begin{gathered} 20 \\ \bmod 27 \end{gathered}$	$4 \bmod 9$
$4 \bmod 9$	$\begin{gathered} 13 \\ \bmod 27 \end{gathered}$	$8 \bmod 9$
$4 \bmod 9$	$4 \bmod 27$	$5 \bmod 9$
$4 \bmod 9$	$\begin{gathered} 22 \\ \bmod 27 \end{gathered}$	$2 \bmod 9$
$5 \bmod 9$	$\begin{gathered} 23 \\ \bmod 27 \end{gathered}$	0 mod3
$5 \bmod 9$	$\begin{gathered} 14 \\ \bmod 27 \end{gathered}$	0 mod3
$5 \bmod 9$	$5 \bmod 27$	$0 \bmod 3$
$7 \bmod 9$	$\begin{gathered} 25 \text { mod } \\ 27 \end{gathered}$	0 mod3

grouped by $n_{s} \bmod 27$		
$\begin{gathered} n_{s} \bmod \\ 27 \end{gathered}$	$\begin{gathered} n_{s} \\ \bmod 9 \end{gathered}$	$\begin{gathered} n_{x} \\ \bmod 9 \end{gathered}$
$\begin{gathered} 1 \mathrm{mod} \\ 27 \end{gathered}$	$\begin{gathered} 1 \text { mod } \\ 9 \end{gathered}$	$\begin{gathered} 1 \mathrm{mod} \\ 9 \end{gathered}$
$\begin{gathered} 2 \mathrm{mod} \\ 27 \end{gathered}$	$2 \bmod 9$	1 mod9
$\begin{gathered} 4 \mathrm{mod} \\ 27 \end{gathered}$	$4 \bmod 9$	$5 \bmod 9$
5 mod 27	$5 \bmod 9$	$0 \bmod 3$
$\begin{gathered} 7 \mathrm{mod} \\ 27 \\ \hline \end{gathered}$	$7 \bmod 9$	$0 \bmod 3$
$\begin{gathered} 8 \mathrm{mod} \\ 27 \end{gathered}$	$8 \bmod 9$	$5 \bmod 9$
$\begin{gathered} 10 \text { mod } \\ 27 \end{gathered}$	$\begin{gathered} 1 \mathrm{mod} \\ 9 \end{gathered}$	4 mod9
$\begin{gathered} 11 \text { mod } \\ 27 \\ \hline \end{gathered}$	$2 \bmod 9$	$7 \bmod 9$
$\begin{gathered} 13 \text { mod } \\ 27 \end{gathered}$	$4 \bmod 9$	$8 \bmod 9$
$\begin{gathered} 14 \text { mod } \\ 27 \\ \hline \end{gathered}$	$5 \bmod 9$	$0 \bmod 3$
$\begin{gathered} 16 \text { mod } \\ 27 \end{gathered}$	$7 \bmod 9$	$0 \bmod 3$
$\begin{gathered} 17 \text { mod } \\ 27 \end{gathered}$	$8 \bmod 9$	$2 \bmod 9$
$\begin{gathered} 19 \text { mod } \\ 27 \end{gathered}$	$\begin{gathered} 1 \mathrm{mod} \\ 9 \end{gathered}$	$7 \bmod 9$

grouped by $n_{x} \bmod 9$		
$\boldsymbol{n}_{\boldsymbol{s}}$ mod 9	$\boldsymbol{n}_{\boldsymbol{s}} \bmod$ 27	$\boldsymbol{n}_{\boldsymbol{x}}$ $\bmod 9$
$5 \bmod 9$	23 $\bmod 27$	$0 \bmod 3$
$5 \bmod 9$	14 $\bmod 27$	$0 \bmod 3$
$5 \bmod 9$	$5 \bmod 27$	$0 \bmod 3$
$7 \bmod 9$	$25 \bmod$ 27	$0 \bmod 3$
$7 \bmod 9$	$16 \bmod$ 27	$0 \bmod 3$
$7 \bmod 9$	$7 \bmod$ 27	$0 \bmod 3$
$2 \bmod 9$	$2 \bmod 27$	$1 \bmod 9$
$1 \bmod$	$1 \bmod$ 27	$1 \bmod 9$
$4 \bmod 9$	22 $\bmod 27$	$2 \bmod 9$
$8 \bmod 9$	17 $\bmod 27$	$2 \bmod 9$
$2 \bmod 9$	20 $\bmod 27$	$4 \bmod 9$
$1 \bmod$	$10 \bmod$ 27	$4 \bmod 9$
$4 \bmod 9$	$4 \bmod 27$	$5 \bmod 9$

$7 \bmod 9$	$16 \bmod$ 27	$0 \bmod 3$
$7 \bmod 9$	$7 \bmod$ 27	$0 \bmod 3$
$8 \bmod 9$	17 $\bmod 27$	$2 \bmod 9$
$8 \bmod 9$	$8 \bmod 27$	$5 \bmod 9$
$8 \bmod 9$	26 $\bmod 27$	$8 \bmod 9$

Dist1

$20 \bmod$ 27	$2 \bmod 9$	$4 \bmod 9$
$22 \bmod$ 27	$4 \bmod 9$	$2 \bmod 9$
$23 \bmod$ 27	$5 \bmod 9$	$0 \bmod 3$
$25 \bmod$ 27	$7 \bmod 9$	$0 \bmod 3$
$26 \bmod$ 27	$8 \bmod 9$	$8 \bmod 9$

Dist 2

$8 \bmod 9$	$8 \bmod 27$	$5 \bmod 9$
$2 \bmod 9$	11 $\bmod 27$	$7 \bmod 9$
$1 \bmod$ 9	$19 \bmod$ 27	$7 \bmod 9$
$4 \bmod 9$	13 $\bmod 27$	$8 \bmod 9$
$8 \bmod 9$	26 $\bmod 27$	$8 \bmod 9$

Dist3

Table 2.0: $\mathrm{n}_{\mathrm{x}} \bmod 9$ for $\mathrm{n}_{\mathrm{s}} \bmod 9 \& \mathrm{n}_{\mathrm{s}} \bmod 27$

Theorem 5.0

All elements in n_{x} are well ordered and for all n_{s} and n_{x} modulo 9 is well distributed.

$$
\begin{gathered}
\text { values of } \mathrm{n}_{\mathrm{x}} \bmod 9 \forall \mathrm{n}_{\mathrm{s}} \bmod 9 \text { is } \text { well distributed } \mid \\
3 \mathrm{n}_{\mathrm{x}}+1=\mathrm{n}_{\mathrm{s}} \cdot 2^{\mathrm{b}} \& \mathrm{n}_{\mathrm{s}} \neq \mathrm{n}_{\mathrm{x}} \& \mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{s}}=2 \mathrm{k}-1 \& \mathrm{j}, \mathrm{j}^{\prime}, \mathrm{k}, \mathrm{~b} \in \mathbb{Z}^{+}, \\
\mathrm{q}\left(\mathrm{n}_{\mathrm{s}} \cong 1 \bmod 9\right)=\mathrm{q}\left(\mathrm{n}_{\mathrm{s}} \cong 2 \bmod 9\right)=\mathrm{q}\left(\mathrm{n}_{\mathrm{s}} \cong 4 \bmod 9\right)=\mathrm{q}\left(\mathrm{n}_{\mathrm{s}} \cong 5 \bmod 9\right)=\mathrm{q}\left(\mathrm{n}_{\mathrm{s}}\right. \\
\cong 7 \bmod 9)=\mathrm{q}\left(\mathrm{n}_{\mathrm{s}} \cong 8 \bmod 9\right) \text { for }\left\{U^{\prime}\right\}, \mathrm{n}_{\mathrm{s}} \cong 0 \bmod 3
\end{gathered}
$$

Proof:

T5.		All elements in n_{x} are well ordered and for all $\mathrm{n}_{s}, \mathrm{n}_{\mathrm{x}}$ modulo 9 is well distributed.
T5.1	IF	$\begin{aligned} \mathrm{q}\left(\mathrm{n}_{\mathrm{s}} \cong 1 \bmod 9\right) & =\mathrm{q}\left(\mathrm{n}_{\mathrm{s}} \cong 2 \bmod 9\right)=\mathrm{q}\left(\mathrm{n}_{\mathrm{s}} \cong 4 \bmod 9\right) \\ & =\mathrm{q}\left(\mathrm{n}_{\mathrm{s}} \cong 5 \bmod 9\right)=\mathrm{q}\left(\mathrm{n}_{\mathrm{s}} \cong 7 \bmod 9\right) \\ & =\mathrm{q}\left(\mathrm{n}_{\mathrm{s}} \cong 8 \bmod 9\right) \text { for }\left\{U^{\prime}\right\} \end{aligned}$
Proof:		Based upon the fact that there are always and exactly 3 sets of odd elements modulo 9 , between $9(m)$ and $9(m+1)$ depending if m is odd or even. If m is odd, then odd elements that lie in between $9 m \& 9(m+1)$ are congruent to $2 \bmod 9,4 \bmod 9$ and $8 \bmod 9$ If m is even, then odd elements that lie in between $9 m \& 9(m+1)$ are congruent to $1 \bmod 9,5 \bmod 9$ and $7 \bmod 9$
T5.2.1		Table 2.0
Proof:		Substitute 1 mod 9 with $1+9$ j, $2 \bmod 9$ with $2+9$ j, $4 \bmod 9$ with $4+9$ j, 5 mod9 with $5+9$ j, 7 mod 9 with $7+9$ j, 8 mod 9 with $8+9$ j; Find $n_{x 1}$ with $\beta=1$ or 2 as per n_{s} modulo 3 following theorem $3 \mid 1+9 \mathrm{k}, 2+$ $9 \mathrm{j}, 4+9 \mathrm{j}, 5+9 \mathrm{j}, 7+9 \mathrm{j}, 8+9 \mathrm{j}=2 \mathrm{k}-1, \mathrm{k}, j \in \mathbb{Z}^{+}$

T5.2.2		$\begin{aligned} q\left(\mathrm{n}_{\mathrm{x}} \cong 1 \bmod 9\right) & =q\left(\mathrm{n}_{\mathrm{x}} \cong 2 \bmod 9\right)=q\left(\mathrm{n}_{\mathrm{x}} \cong 4 \bmod 9\right) \\ & =q\left(\mathrm{n}_{\mathrm{x}} \cong 5 \bmod 9\right)=q\left(\mathrm{n}_{\mathrm{x}} \cong 7 \bmod 9\right) \\ & =q\left(\mathrm{n}_{\mathrm{x}} \cong 8 \bmod 9\right)=\frac{1}{9} q\left(\left\{U^{\prime}\right\}-\{1\}\right)=\frac{1}{3} q\left(\mathrm{n}_{x}\right. \\ & \cong 0 \bmod 3)=\frac{1}{3} q\left(\mathrm{n}_{x} \cong 1 \bmod 3\right)=\frac{1}{3} q\left(\mathrm{n}_{x}\right. \\ & \cong 2 \bmod 3) \end{aligned}$
Proof:		by table 2.0
T5.2.3		values of $\mathrm{n}_{\mathrm{x}} \bmod 9 \forall \mathrm{n}_{\mathrm{s}} \bmod 9$ is well distributed
Proof:		By T5.2.2
T5.0	THEN,	All elements in n_{x} are well ordered and for all n_{s} and n_{x} modulo 9 is well distributed.
Proof:		By C5 and T5.2.3

Theorem 5 is based upon modular analysis implying the cyclic nature of transformation from $\left\{\tau_{t}\right\}$ from $\left\{\tau_{t+1}\right\}$. Thus, one may extend the understanding to whole universal set $\left\{U^{\prime}\right\}$ and all the reverse transformations elements can go through.

Notation:

三三 double equivalence implies more than 1 transformation. $\mathrm{n}_{\mathrm{s}} \equiv \equiv \mathrm{n}_{\mathrm{s}}$ implies that some number n_{s} transforms to n_{s} with more than 1 transformation; $n_{x} \neq n_{s}$

Proposition 2: some number loops to itself

Proposition 2.a: the loop happens with single transformation such that $n_{s} \equiv n_{s}$
Proposition 2.b: the loop happens with more than one transformation such that $n_{s} \equiv \equiv n_{s}$ such that $n_{x} \neq n_{s}$

Proposition 2.a $\boldsymbol{n}_{\boldsymbol{s}} \equiv \boldsymbol{n}_{\boldsymbol{s}}$: Case for single transformation loop has trivial solution $1 \equiv 1$ with no other possible solution. $n_{x}=n_{s}$

$$
3 \mathrm{n}_{\mathrm{x}}+1=\mathrm{n}_{\mathrm{s}} 2^{\mathrm{b}} \Rightarrow 3 \mathrm{n}_{\mathrm{s}}+1=\mathrm{n}_{\mathrm{s}} 2^{\mathrm{b}} \Rightarrow \mathrm{n}_{\mathrm{s}}\left(2^{\mathrm{b}}-3\right)=1 \Rightarrow\left(2^{\mathrm{b}}-3\right)=\frac{1}{\mathrm{n}_{\mathrm{s}}}
$$

For any value of $n_{s}>1$, right hand side gives a rational solution and on the right-hand side, no value of b could dish out rational solution. Thus, no other value of n_{s} satisfies the condition $n_{s} \equiv n_{s}$

$$
n_{s} \equiv n_{s} \mid n_{x}=n_{s}=1
$$

Definition 4.0:

$\left\{\tau_{0}\right\}$ is an arbitrarily defined ordered set that is similar to $\left\{U^{\prime}\right\}$ such that $\left\{U^{\prime}\right\}=\{1\} \cup\left\{\tau_{0}\right\}$

All elements of $\left\{\tau_{0}\right\}$ are zero reverse transformations away from $\{U$ ' $\}$. The element " 1 " is excluded as $n_{s} \equiv n_{s} \mid n_{x}=n_{s}=1$
τ_{t} is a set that contains all elements that are t reverse transformations away from its associated element in $\left\{U^{\prime}\right\}$

$$
\left\{\tau_{\mathrm{t}}\right\}=\left\{\tau_{\mathrm{t}}^{1 \mathrm{~m} 3}\right\} \cup\left\{\tau_{\mathrm{t}}^{2 \mathrm{~m} 3}\right\} \cup\left\{\tau_{\mathrm{t}}^{0 \mathrm{~m} 3}\right\}
$$

$\left\{\tau_{\mathrm{t}}^{1 \mathrm{~m} 3}\right\}$ is a set that contains all the elements that congruent to $1 \bmod 3$ and are t reverse transformations away from its associated element in $\left\{U^{\prime}\right\}$
$\left\{\tau_{\mathrm{t}}^{2 \mathrm{~m} 3}\right\}$ is a set that contains all the elements that congruent to $2 \bmod 3$ and are t reverse transformations away from its associated element in $\left\{U^{\prime}\right\}$
$\left\{\tau_{t}^{0 \mathrm{~m} 3}\right\}$ is a set that contains all the elements that congruent to $0 \bmod 3$ and are t reverse transformations away from its associated element in $\left\{\mathrm{U}^{\prime}\right\}$

Let q be an element counting function such that $\mathrm{q}\left\{\tau_{\mathrm{t}}^{1 \mathrm{~m} 3}\right\}$ represents total number of elements that are $1 \bmod 3$ and are t reverse transformations away from $\left\{U^{\prime}\right\}$. Similarly, $q\left\{\tau_{t}^{2 m 3}\right\}$ represents total number of elements that are $2 \bmod 3$ that are t reverse transformations away from $\left\{U^{\prime}\right\}$ and $q\left\{\tau_{t}^{0 m 3}\right\}$ represents total number of elements that are $0 \bmod 3$ that are t reverse transformations away from $\left\{U^{\prime}\right\}$.
$\mathrm{q}\left\{\tau_{t}^{\dashv 0 \mathrm{~m} 3}\right\}$ refers to inverse of $\mathrm{q}\left\{\tau_{t}^{0 \mathrm{~m} 3}\right\}$ that is elements that are not $0 \bmod 3$.

$$
\mathrm{q}\left\{\tau_{\mathrm{t}}^{-10 \mathrm{~m} 3}\right\}=\mathrm{q}\left\{\tau_{\mathrm{t}}^{1 \mathrm{~m} 3}\right\} \cup \mathrm{q}\left\{\tau_{\mathrm{t}}^{2 \mathrm{~m} 3}\right\}
$$

All elements that are no congruent to 0 mod3, will have a representation in $\left\{\tau_{\mathrm{t}+1}\right\}$

$$
\begin{gathered}
\mathrm{q}\left\{\tau_{\mathrm{t}+1}\right\}=\mathrm{q}\left\{\tau_{\mathrm{t}}^{-10 \mathrm{~m} 3}\right\}=\mathrm{q}\left\{\tau_{\mathrm{t}}^{1 \mathrm{~m} 3}\right\} \cup \mathrm{q}\left\{\tau_{\mathrm{t}}^{2 \mathrm{~m} 3}\right\} \\
\\
q\left\{\tau_{0}\right\}=q\left(\left\{U^{\prime}\right\}-[1]\right)
\end{gathered}
$$

The notation $q\left(\left\{U^{\prime}\right\}-[1]\right)$ implies; all elements of $\left\{U^{\prime}\right\}$ except the element " 1 ".

Proposition 2.b $\boldsymbol{n}_{\boldsymbol{s}} \equiv \equiv \boldsymbol{n}_{\boldsymbol{s}}$: We explore the possibility for any number to loop with more than one transformation such that $n_{x} \neq n_{s}$.

Methodology for checking validity of proposition 2.b

Loop $n_{s} \equiv \equiv n_{s}$ implies that when the number of transformations $t \rightarrow \infty$ one should have a valid value for n_{s} and all the possible interim values of n_{x} such that no value of n_{x} for any given n_{s} can be congruent $0 \bmod 3$, such that $n_{x} \neq n_{s}$

$$
\begin{gathered}
n_{x} \nsubseteq 0 \bmod 3 \\
\Rightarrow \forall n_{s}:\left(n_{x} \cong 1 \bmod 3 \vee n_{x} \cong 2 \bmod 3\right)
\end{gathered}
$$

Corollary 3 ; n_{s} cannot be congruent to $0 \bmod 3$ even as $t \rightarrow \infty$. Using elimination of $n_{s} \cong 0 \bmod 3$ as the set τ_{0} is expanded to τ_{1} expanded to τ_{2} expanded to $\tau_{3} \ldots$ expanded to $\tau_{t \rightarrow \infty}$, one can test if loop is possible. If there is some element that loops with more than one transformation then said process
of elimination should leave us with some definite value with n_{s} and n_{x} not being congruent to 0 mod3

For the set $\left\{\tau_{0}\right\}, \mathrm{t}=0$

$$
\left\{\tau_{0}\right\}=\left\{\tau_{0}^{1 \mathrm{~m} 3}\right\} \cup\left\{\tau_{0}^{2 \mathrm{~m} 3}\right\} \cup\left\{\tau_{0}^{0 \mathrm{~m} 3}\right\}
$$

Using Corollary 5; One third of all elements would be eliminated as they are congruent to 0 mod3. For deriving $\left\{\tau_{1}\right\}$ from $\left\{\tau_{0}\right\}$, continue with reverse transformation for rest non-eliminated elements;

$$
\left\{\tau_{1}\right\}=\left\{\tau_{0}^{\dashv \mathrm{m} 3}\right\}=\left\{\tau_{0}^{1 \mathrm{~m} 3}\right\} \cup\left\{\tau_{0}^{2 \mathrm{~m} 3}\right\}
$$

For the set $\left\{\tau_{1}\right\}, \mathrm{t}=1$

$$
\left\{\tau_{1}\right\}=\left\{\tau_{0}^{\dashv 0 \mathrm{~m} 3}\right\}=\left\{\tau_{0}^{1 \mathrm{~m} 3}\right\} \cup\left\{\tau_{0}^{2 \mathrm{~m} 3}\right\}=\left\{\tau_{1}^{1 \mathrm{~m} 3}\right\} \cup\left\{\tau_{1}^{2 \mathrm{~m} 3}\right\} \cup\left\{\tau_{1}^{0 \mathrm{~m} 3}\right\}
$$

Using Corollary 5; One third of all elements would be eliminated as they are congruent to 0 mod3. For deriving $\left\{\tau_{2}\right\}$ from $\left\{\tau_{1}\right\}$, continue with reverse transformation for rest non-eliminated elements; And so on...

Note: For deriving $\left\{\tau_{t}\right\}$ from $\left\{\tau_{t-1}\right\}$, we do not consider the infinite values of n_{x} for any given n_{s}, we only consider the base solution of n_{x} that is $n_{x 1}$ as other solutions like $n_{x 1+1}, n_{x 1+2} \ldots$ would automatically be considered as it already exists in $\left\{U^{\prime}\right\}$.

Including all the possible values of $\left\{n_{x}\right\}$, gives us infinite solutions for every element in $\left\{U^{\prime}\right\}$ and going back just one more step would break our analysis because of the infinities popping up everywhere. We keep the relationship between $\left\{\tau_{t}\right\}$ and $\left\{\tau_{t-1}\right\}$ as bijective and invertible to able to keep track of number of elements in every set by avoiding the abyss of infinities. Also, no element is kept out of our study as all the possible solutions of $\left\{n_{x}\right\}$ are already a part of $\left\{U^{\prime}\right\}$

Example:

$$
\left\{\tau_{0}\right\}=\left\{U^{\prime}\right\}=\{1\} \cup\{3,5,7,9,11,13,15 \ldots\}
$$

\{ U^{\prime} \}	$\left\{\tau_{0}\right\}$	$\left\{\tau_{1}\right\}$	$\left\{\tau_{2}\right\}$	$\left\{\tau_{3}\right\}$	$\left\{\tau_{4}\right\}$
1	Does not exist $n_{x}=n_{s}$				
3	3	Does not exist $n_{s} \cong 0 \bmod 3$			
5	5	3	Does not exist $n_{s} \cong 0 \bmod 3$		
7	7	9	Does not exist $n_{s} \cong 0 \bmod 3$		
9	9	Does not exist $n_{s} \cong 0 \bmod 3$			
11	11	7	9	Does not exist $n_{s} \cong 0 \bmod 3$	
13	13	17	11	7	9
15	15	Does not exist $n_{s} \cong 0 \bmod 3$			
17	17	11	7	9	Does not exist

19	19	25	33	Does not exist $n_{s} \cong 0 \bmod 3$	
21	21	Does not exist $n_{s} \cong 0 \bmod 3$	15	Does not exist $n_{s} \cong 0$ mod3	
23	23	33	Does not exist $n_{S} \cong 0$ mod3		
25	27	Does not exist $n_{S} \cong 0 \bmod 3$	25	33	Does not exist $n_{S} \cong 0$ mod3
27	29	19			
29					

Table 1.0: deriving $\left\{\tau_{t}\right\}$ from $\left\{\tau_{t-1}\right\}$
Consider $; n_{s}=11,\left\{n_{x}\right\}=\{7,29,117,469,1877 \ldots\}$

$$
\text { For } n_{s}=11, \quad\left\{n_{x 1}=7, n_{x 1+1}=29, n_{x 1+2}=117 n_{x 1+3}=469, n_{x 1+4}=1877 \ldots\right\}
$$

At T=1, only consider $n_{s}=7$, other values like 29. 117, 469 etc may be ignored as they are going to be evaluated in their respective rows row.

$$
\begin{gathered}
\forall \mathrm{n}_{\mathrm{s}} \not \equiv \not \equiv \mathrm{n}_{\mathrm{s}} \mid 3 \mathrm{n}_{\mathrm{x}}+1=\mathrm{n}_{\mathrm{s}} \cdot 2^{\mathrm{b}} \& \mathrm{n}_{\mathrm{s}} \neq \mathrm{n}_{\mathrm{x}} \& \mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{s}}=2 \mathrm{k}-1 \& \mathrm{j}, \mathrm{j}^{\prime}, \mathrm{k}, \mathrm{~b} \in \mathbb{Z}^{+} \& \\
\ldots \mathrm{n}_{\mathrm{s}} \equiv \mathrm{n}_{(\mathrm{t}-1) \mathrm{x}} \equiv \ldots \equiv \mathrm{n}_{2 \mathrm{x}} \equiv \mathrm{n}_{1 \mathrm{x}} \equiv \mathrm{n}_{\mathrm{x}} \equiv \mathrm{n}_{\mathrm{s}} \equiv \mathrm{n}_{(\mathrm{t}-1) \mathrm{x}} \equiv \ldots \equiv \mathrm{n}_{2 \mathrm{x}} \equiv \mathrm{n}_{1 \mathrm{x}} \equiv \mathrm{n}_{\mathrm{x}} \equiv \mathrm{n}_{\mathrm{s}} \equiv \mathrm{n}_{(\mathrm{t}-1) \mathrm{x}} \cdots
\end{gathered}
$$

Proof:

P2.b. 0		if $\mathrm{n}_{\mathrm{s}} \geq 3, \forall \mathrm{n}_{\mathrm{s}} \not \equiv \equiv \equiv \mathrm{n}_{\mathrm{s}}$
P2.b. 1	IF	$\begin{aligned} \ldots \mathrm{n}_{\mathrm{s}} \equiv \mathrm{n}_{(\mathrm{t}-1) \mathrm{x}} & \equiv \ldots \equiv \mathrm{n}_{2 \mathrm{x}} \equiv \mathrm{n}_{1 \mathrm{x}} \equiv \mathrm{n}_{\mathrm{x}} \equiv \mathrm{n}_{\mathrm{s}} \equiv \mathrm{n}_{(\mathrm{t}-1) \mathrm{x}} \equiv \ldots \equiv \mathrm{n}_{2 \mathrm{x}} \\ & \equiv \mathrm{n}_{1 \mathrm{x}} \equiv \mathrm{n}_{\mathrm{x}} \equiv \mathrm{n}_{\mathrm{s}} \equiv \mathrm{n}_{(\mathrm{t}-1) \mathrm{x}} \cdots \end{aligned}$
Proof:		By definition: if a loop exists then one may continue transformation (forward or backward) infinite times
P2.b.2.1		$\nexists \mathrm{n}_{1 \mathrm{x}}$, if $\mathrm{n}_{\mathrm{x}} \cong 0 \mathrm{mod} 3$
Proof:		$\begin{gathered} \mathrm{n}_{\mathrm{x}} \cong 0 \bmod 3=3 \mathrm{j} \\ \left.\mathrm{n}_{1 \mathrm{x}}=\frac{\mathrm{n}_{\mathrm{x}} 2^{\mathrm{b}}-1}{3}=\frac{3 \mathrm{j} 2^{\mathrm{b}}-1}{3}=\frac{3 \mathrm{j}^{\prime}-1}{3} \right\rvert\, \mathrm{j}^{\prime}=\mathrm{j} 2^{\mathrm{b}} \\ \mathrm{n}_{1 \mathrm{x}} \cong \frac{2 \bmod 3}{3} \notin\left\{\mathrm{U}^{\prime}\right\} \end{gathered}$
P2.b.2.2	If	$\mathrm{n}_{\mathrm{x}} \cong 0 \bmod 3$, then $\mathrm{n}_{\mathrm{s}} \not \equiv \equiv \equiv \mathrm{n}_{\mathrm{s}}$
Proof:		$\begin{gathered} \mathrm{n}_{\mathrm{s}} \equiv \mathrm{n}_{(\mathrm{t}-1) \mathrm{x}} \\ \text { if } \mathrm{n}_{\mathrm{x}} \cong 0 \bmod 3 \Rightarrow \nexists \mathrm{n}_{1 \mathrm{x}} \Rightarrow \nexists \mathrm{n}_{2 \mathrm{x}} \Rightarrow \nexists \mathrm{n}_{3 \mathrm{x}} \ldots \Rightarrow \nexists \mathrm{n}_{(\mathrm{t}-1) \mathrm{x}} \end{gathered}$ Due to contradiction the condition is false.

P2.b.3.1		$\mathrm{q}\left\{\tau_{\mathrm{t}+1}\right\}=\mathrm{q}\left\{\tau_{\mathrm{t}} \mathrm{H}^{-10} 3\right\}$
Proof:		Using P2.b.2.2
P2.b.3.2		$\mathrm{q}\left\{\tau_{\mathrm{t}}\right\}=\mathrm{q}\left\{\tau_{\mathrm{t}}^{0 \mathrm{~m} 3}\right\}+\mathrm{q}\left\{\tau_{\mathrm{t}}^{1 \mathrm{~m} 3}\right\}+\mathrm{q}\left\{\tau_{\mathrm{t}}^{2 \mathrm{~m} 3}\right\}$
Proof:		According to Theorem 5 for all numbers upon applying reverse transformation there is ordered distribution of elements modulo 3. Addition being commutative, the order of elements modulo 3 does not matter.
P2.b.3.3		$\mathrm{q}\left\{\tau_{\mathrm{t}+1}\right\}=\frac{2^{1}}{3^{1}} \mathrm{q}\left\{\tau_{\mathrm{t}}^{-10 \mathrm{~m} 3}\right\}$
Proof:		$\mathrm{q}\left\{\tau_{\mathrm{t}+1}\right\}$ is the set of elements that are one more reverse transformation from $\mathrm{q}\left\{\tau_{\mathrm{t}}\right\}$. According to P2.2.2, $\mathrm{q}\left\{\tau_{\mathrm{t}}^{0 \mathrm{~m} 3}\right\}$ will not have any representation in $\mathrm{q}\left\{\tau_{\mathrm{t}+1}\right\}$ as relevant $\mathrm{n}_{1 \mathrm{x}}$ does not exist. Eliminating such elements, we have; $\mathrm{q}\left\{\tau_{\mathrm{t}+1}\right\}=\mathrm{q}\left\{\tau_{\mathrm{t}}^{-10 \mathrm{~m} 3}\right\}=\mathrm{q}\left\{\tau_{\mathrm{t}}^{1 \mathrm{~m} 3}\right\}+\mathrm{q}\left\{\tau_{\mathrm{t}}^{2 \mathrm{~m} 3}\right\}=\mathrm{q}\left\{\tau_{\mathrm{t}}\right\}-\mathrm{q}\left\{\tau_{\mathrm{t}}^{0 \mathrm{~m} 3}\right\}$ Using Theorem 5 describing one third of elements being $0 \bmod 3$ $\mathrm{q}\left\{\tau_{\mathrm{t}+1}\right\}=\mathrm{q}\left\{\tau_{\mathrm{t}}^{-10 \mathrm{~m} 3}\right\}=\mathrm{q}\left\{\tau_{\mathrm{t}}\right\}-\frac{1}{3} \mathrm{q}\left\{\tau_{\mathrm{t}}\right\}=\frac{2}{3} \mathrm{q}\left\{\tau_{\mathrm{t}}\right\}$
P2.b.4.1	At t=0	$\begin{gathered} \mathrm{q}\left\{\tau_{0}^{0 \mathrm{~m} 3}\right\}=\frac{2^{0}}{3^{1}} \mathrm{q}\left(\left\{\mathrm{U}^{\prime}\right\}-[1]\right) \cong 0 \bmod 3 \\ \mathrm{q}\left\{\tau_{0}^{\dashv 0 \mathrm{~m} 3}\right\}=\frac{2^{1}}{3^{1}} \mathrm{q}\left(\left\{\mathrm{U}^{\prime}\right\}-[1]\right) \nsubseteq 0 \bmod 3 \end{gathered}$
Proof:		According to Theorem 5: one third of elements are $0 \bmod 3$ $\mathrm{q}\left\{\tau_{0}^{0 \mathrm{~m} 3}\right\}=\frac{1}{3} \mathrm{q}\left(\left\{\mathrm{U}^{\prime}\right\}-[1]\right)=\frac{2^{0}}{3^{1}} \mathrm{q}\left(\left\{\mathrm{U}^{\prime}\right\}-[1]\right) \cong 0 \bmod 3$ Elements that are not $0 \bmod 3$ have their respective $n_{1 x}$ represented in the set $q\left\{\tau_{0}^{\dashv 0 \mathrm{~m} 3}\right\}$ $\begin{aligned} & \mathrm{q}\left\{\tau_{0}^{\dashv 0 \mathrm{~m} 3}\right\}=\mathrm{q}\left(\left\{\mathrm{U}^{\prime}\right\}-[1]\right)-\mathrm{q}\left(\tau_{0}^{0 \mathrm{~m} 3}\right) \\ &=\mathrm{q}\left(\left\{\mathrm{U}^{\prime}\right\}-[1]\right)-\frac{1}{3} \mathrm{q}\left(\left\{\mathrm{U}^{\prime}\right\}-[1]\right) \\ &=\frac{2^{1}}{3^{1}} \mathrm{q}\left(\left\{\mathrm{U}^{\prime}\right\}-[1]\right) \not \equiv 0 \bmod 3 \end{aligned}$
P2.b.4.2	At $\mathrm{t}=1$	$q\left\{\tau_{1}^{0 \mathrm{~m} 3}\right\}=\frac{2^{1}}{3^{2}} q\left(\left\{U^{\prime}\right\}-[1]\right) \& q\left\{\tau_{1}^{\dashv 0 \mathrm{~m} 3}\right\}=\frac{2^{2}}{3^{2}} q\left(\left\{U^{\prime}\right\}-[1]\right)$
Proof		According to Theorem 5: one third of elements are $0 \bmod 3$ $\mathrm{q}\left\{\tau_{1}^{0 \mathrm{~m} 3}\right\}=\frac{1}{3} \mathrm{q}\left\{\tau_{0}^{\dashv 0 \mathrm{~m} 3}\right\}=\frac{1}{3} \cdot \frac{2^{1}}{3^{1}} \mathrm{q}\left(\left\{\mathrm{U}^{\prime}\right\}-[1]\right)=\frac{2^{1}}{3^{2}} \mathrm{q}\left(\left\{\mathrm{U}^{\prime}\right\}-[1]\right)$

		Elements that are not 0 mod 3 have their respective $\mathrm{n}_{1 \mathrm{x}}$ represented in the set $\left.q_{1} \tau_{1}^{-10 \mathrm{~m} 3}\right\}$ $\mathrm{q}\left\{\tau_{1}^{\dashv 0 \mathrm{~m} 3}\right\}=\mathrm{q}\left\{\mathrm{\tau}_{1}\right\}-\mathrm{q}\left\{\tau_{1}^{0 \mathrm{~m} 3}\right\}=\frac{2^{2}}{3^{2}} \mathrm{q}\left(\left\{\mathrm{U}^{\prime}\right\}-[1]\right)$
P2.b.4.3	Mathematical Induction	$\begin{aligned} q\left\{\tau_{\mathrm{t}}^{0 \mathrm{~m} 3}\right\}= & \frac{1}{3} q\left\{\tau_{\mathrm{t}-1}^{-10 \mathrm{~m} 3}\right\}=\frac{2^{\mathrm{t}}}{3^{\mathrm{t+1}}} \mathrm{q}\left(\left\{\mathrm{U}^{\prime}\right\}-[1]\right) \\ \& & \mathrm{q}\left\{\tau_{\mathrm{t}}^{-10 \mathrm{~m} 3}\right\}=\frac{2^{1}}{3} q\left\{\tau_{\mathrm{t}-1}^{-10 \mathrm{~m} 3}\right\}=\frac{2^{\mathrm{t+1}}}{3^{\mathrm{t+1}}} \mathrm{q}\left(\left\{\mathrm{U}^{\prime}\right\}-[1]\right) \end{aligned}$
Proof:		Assumed case for mathematical induction
P2.b.4.4		$\begin{gathered} \mathrm{q}\left\{\tau_{\mathrm{t}+1}^{0 \mathrm{~m} 3}\right\}=\frac{2^{\mathrm{t}+1}}{3^{\mathrm{t}+2}} \mathrm{q}\left(\left\{\mathrm{U}^{\prime}\right\}-[1]\right) \\ \& \mathrm{q}\left\{\tau_{\mathrm{t}+1}^{-10 \mathrm{~m} 3}\right\}=\frac{2^{\mathrm{t}+2}}{3^{\mathrm{t}+2}} \mathrm{q}\left(\left\{\mathrm{U}^{\prime}\right\}-[1]\right) \end{gathered}$
Proof:		Using P2.b.4.4
P2.b.5.1		$\mathrm{q}\left(\left\{\mathrm{U}^{\prime}\right\}-[1]\right)=\sum_{\mathrm{t}=0}^{\mathrm{t} \rightarrow \infty} \mathrm{q}\left\{\tau_{\mathrm{t}}^{0 \mathrm{~m} 3}\right\}$
Proof:		$\begin{aligned} \begin{array}{c} \sum_{t=0}^{\mathrm{t} \rightarrow \infty} \mathrm{q}\left\{\tau_{\mathrm{t}}^{0 \mathrm{~m} 3}\right\}= \end{array} & \mathrm{q}\left\{\tau_{0}^{0 \mathrm{~m} 3}\right\}+\mathrm{q}\left\{\tau_{1}^{0 \mathrm{~m} 3}\right\}+\mathrm{q}\left\{\tau_{2}^{0 \mathrm{~m} 3}\right\}+\mathrm{q}\left\{\tau_{3}^{0 \mathrm{~m} 3}\right\} \\ & +\mathrm{q}\left\{\tau_{4}^{0 \mathrm{~m} 3}\right\}+\mathrm{q}\left\{\tau_{5}^{0 \mathrm{~m} 3}\right\}+\mathrm{q}\left\{\tau_{6}^{0 \mathrm{~m} 3}\right\}+\mathrm{q}\left\{\tau_{7}^{0 \mathrm{~m} 3}\right\} \ldots \\ \sum_{\mathrm{t}=0}^{\mathrm{t} \rightarrow \infty} \mathrm{q}\left\{\tau_{\mathrm{t}}^{0 \mathrm{~m} 3}\right\}= & \mathrm{q}\left(\left\{\mathrm{U}^{\prime}\right\}-[1]\right)\left(\frac{2^{0}}{3^{1}}+\frac{2^{1}}{3^{2}}+\frac{2^{2}}{3^{3}}+\frac{2^{3}}{3^{4}}+\frac{2^{4}}{3^{5}}+\frac{2^{5}}{3^{6}}+\frac{2^{6}}{3^{7}}\right. \\ & +\frac{2^{7}}{\left.3^{8} \cdots\right)} \end{aligned} \quad \begin{aligned} & \text { let } \frac{2^{0}}{3^{1}}+\frac{2^{1}}{3^{2}}+\frac{2^{2}}{3^{3}}+\frac{2^{3}}{3^{4}}+\frac{2^{4}}{3^{5}}+\frac{2^{5}}{3^{6}}+\frac{2^{6}}{3^{7}}+\frac{2^{7}}{3^{8}}+\frac{2^{8}}{3^{9}}+\frac{2^{9}}{3^{10}}+\cdots=s \\ & \left(\frac{2}{3}\left(\frac{2^{0}}{3^{1}}+\frac{2^{1}}{3^{2}}+\frac{2^{2}}{3^{3}}+\frac{2^{3}}{3^{4}}+\frac{2^{4}}{3^{5}}+\frac{2^{5}}{3^{6}}+\frac{2^{6}}{3^{7}}+\frac{2^{7}}{3^{8}}+\frac{2^{8}}{3^{9}}+\cdots\right)\right)=s-\frac{1}{3} \end{aligned}$

		$\begin{gathered} s=1 \\ \sum_{t=0}^{t \rightarrow \infty} q\left\{\tau_{t}^{0 \mathrm{~m} 3}\right\}=q\left(\left\{U^{\prime}\right\}-[1]\right) \end{gathered}$
P2.b. 0	THEN	$\mathrm{n}_{\mathrm{s}} \not \equiv \equiv \equiv \mathrm{n}_{\mathrm{s}}$
Proof:		Using P2.b.5.1 upon applying reverse transformation, the total number of elements that are $0 \bmod 3$ is equal to total number of elements in $\left\{U^{\prime}\right\}-[1]$ implying all the elements of $\left\{U^{\prime}\right\}-[1]$ reach $0 \bmod 3$. Using P2.b.2.2: none of the elements that are $0 \bmod 3$ loop. None of the elements can loop under given transformational conditions.

Alternatively, one could prove that $n_{s} \equiv \equiv n_{s} \mid n_{s} \neq n_{x}$ for any and all arbitrary element/s by just using Corollary 5 encountering similar expression mentioned in proof of P2.b.5.1

However, in the negative domain loop exists, example: $-7 \equiv-5 \equiv-7$, but we don't care as it is out of domain of the conjecture.

Possible solutions at $t \rightarrow \infty$ may be represented as; $n_{s} \equiv \equiv \infty \vee n_{s} \equiv \equiv \mathrm{n}_{\mathrm{s}} \vee \mathrm{n}_{\mathrm{s}} \equiv \mathrm{n}_{\mathrm{s}}$

$$
s=p \vee q \vee r \mid p=\left(n_{s} \equiv \equiv \infty\right), q=\left(n_{s} \equiv \equiv n_{s} \mid n_{s} \neq 1\right), r=\left(n_{s} \equiv n_{s}=1\right)
$$

Using P1.0, P2.b.0 \& P2.a.0, we know

$$
\begin{gathered}
\forall n_{s} \not \equiv \infty \vee n_{s} \not \equiv \equiv \equiv n_{s} \vee n_{s} \equiv n_{s}=1 \\
\dashv p \dashv q \vdash s=r \\
\forall \lim _{\mathrm{t} \rightarrow \infty} \mathrm{n}_{\mathrm{s}} \equiv \equiv 1
\end{gathered}
$$

Thus, the conjecture is true.

References: Also known as $3 n+1$ problem, the $3 n+1$ conjecture, the Ulam conjecture, Kakutani's problem, the Thwaites conjecture, Hasse's algorithm, or the Syracuse problem. The sequence of numbers involved is sometimes referred to as the hailstone sequence, hailstone numbers or hailstone numerals

1. L. Collatz, On the origin of the $3 x+1$ problem (Chinese), J. of Qufu Normal University, Natural Science Edition 12 (1986) No. 3, 9-11.
2. O'Connor, J.J.; Robertson, E.F. (2006). "Lothar Collatz". St Andrews University School of Mathematics and Statistics, Scotland.
3. Maddux, Cleborne D.; Johnson, D. Lamont (1997). Logo: A Retrospective. New York: Haworth Press. p. 160. ISBN 0-7890-0374-0.
4. Terrence Tao: Almost all orbits of Collatz map attain almost bounded values https://doi.org/10.48550/arXiv.1909.03562
5. R. Terras, A stopping time problem on the positive integers, Acta Arith. 30 (1976), 241 \{252.
6. R. Terras, On the existence of a density, Acta Arith. 35 (1979), 101\{102.
7. J. Lagarias, The $3 x+1$ problem and its generalizations, Amer. Math. Monthly 92 (1985), no. 1,3\{23.
8. J. Lagarias, K. Soundararajan, Benford's law for the $3 x+1$ function, J. London Math. Soc. (2) 74 (2006), no. 2, $289\{303$.
9. J. Lagarias, A. Weiss, The $3 x+1$ problem: two stochastic models, Ann. Appl. Probab. 2 (1992), no. 1, 229\{261.
10. J. C. Lagarias, The $3 x+1$ problem, Amer. Math. Monthly (1985), 3-23.
11. J. C. Lagarias, The set of rational cycles for the $3 x+1$ problem, Acta Arith. 56 (1990), 33-53.
12. D. J. Bernstein and J. C. Lagarias, The $3 x+1$ conjugacy map, Canadian J. Math. 48 (1996), 1154-1169.
13. R. K. Guy, Unsolved problems in number theory, Second Edition, Vol. 1, Problem books in Mathematics, Springer, Berlin 1994.
14. Guy, R. K. (1983). "Don't try to solve these problems". Amer. Math. Monthly. 90 (1): 35-41. doi:10.2307/2975688. JSTOR 2975688. By this Erdos means that there aren't powerful tools for manipulating such objects.
15. G. M. Leigh, A Markov process underlying the generalized Syracuse algorithm, Acta Arith. 46 (1985), 125-143.
16. D. J. Bernstein, A non-iterative 2 -adic statement of the $3 x+1$ conjecture, Proc. Amer. Math. Soc. 121 (1994), 405-408.
17. P. Billingsley, Ergodic theory and information, John Wiley, New York 1965.
18. R. N. Buttsworth and K. R. Matthews, On some Markov matrices arising from the generalized Collatz mapping, Acta Arith. 55 (1990), 43-57.
19. J. W. S. Cassels and A. Fr̈ ohlich, Algebraic Number Theory, Academic Press, London 1967.
20. M. Chamberland, $A 3 x+1$ survey: number theory and dynamical systems, The ultimate challenge: the $3 x+1$ problem, 57\{78, Amer. Math. Soc., Providence, RI, 2010.
21. R. E. Crandall, On the ' $3 x+1$ ' problem, Math. Comp. 32 (1978), $1281\{1292$.
22. T. Carletti, D. Fanelli, Quantifying the degree of average contraction of Collatz orbits, Boll. Unione Mat. Ital. 11 (2018), 445\{468.
23. C. J. Everett, Iteration of the number-theoretic function $f(2 n)=n, f(2 n+1)=3 n+2$, Adv. Math. 25 (1977), no. 1, $42\{45 . \$
24. Korec, A density estimate for the $3 x+1$ problem, Math. Slovaca 44 (1994), no. 1, $85\{89$.
25. Kontorovich, J. Lagarias, Stochastic models for the $3 x+1$ and $5 x+1$ problems and related problems, The ultimate challenge: the $3 x+1$ problem, $131\{188$, Amer. Math. Soc., Providence, RI, 2010.
26. K. R. Matthews and G. M. Leigh, A generalization of the Syracuse algorithm in Fq [x], J. Number Theory, 25 (1987), 274-278.
27. K. R. Matthews and A. M. Watts, A generalization of Hasse's generalization of the Syracuse algorithm, Acta Arith. 43 (1984), 167-175.
28. K. R. Matthews and A. M. Watts, A Markov approach to the generalized Syracuse algorithm, ibid. 45 (1985), 29-42.
29. Penner, Robert C. (1999), Discrete Mathematics: Proof Techniques and Mathematical Structures, River Edje: World Scientific, ISBN 978-981-02-4088-2
30. Leslie Lamport American Mathematical Monthly. Also appeared in Global Analysis in Modern Mathematics, Karen Uhlenbeck, editor. Publish or Perish Press, Houston. Also appeared as SRC Research Report 94. | August 1995, Vol 102(7): pp. 600-608
