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ABSTRACT: The article presents a simple proof of Fermat's Last Theorem (FLT) 

for a cube, obtained on the basis of the binomial expansion. The difference of two 

natural numbers having equal natural degrees certainly has a representation 

according to the incomplete binomial formula. It is proved that the cube of a natural 

number cannot be represented as an incomplete binomial, which means a simple 

proof of the FLT for 𝑛 = 3 is obtained. 
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1 INTRODUCTION 

Fermat's Last Theorem (FLT) are formulated as follows: for any natural number 𝑛 > 2 , the 

formula 

(1.1) 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛   

has no solutions in natural numbers 𝑎, 𝑏, 𝑐 [1].  

Fermat wrote: “It is impossible to decompose a cube into two cubes, a biquadrate into two 

biquadrates, and in general no degree greater than a square into two degrees with the same exponent. 

I found a truly wonderful proof of this, but the margins of the book are too narrow for him "[1]. The 

Last Fermat's Theorem was proved in 1994 by Andrew Wiles using complex mathematical tools 

based on elliptic curves that were not known in Fermat's time [2]. In this regard, the search for a 

simple proof of the FLT continues at the present time, which shows the relevance of the problem. 

It is known that Euler, using complex numbers, presented a rather complicated proof of the 

FLT for a cube [1]. A review of papers [3, 4, 5, 6] devoted to FLT shows that until now there has 

been no simple proof of FLT for n = 3, therefore, obtaining a proof of simple FLT for n = 3 is also 

an urgent problem. It also follows from the survey of these works that the ideas and methods used 

to prove the FLT for n = 3 in this work, as well as the results obtained, are new. 

 

2 DIFFERENCE OF EQUAL DEGREES AND BINOMINAL DECOMPOSITION 

2.1 Difference of equal powers of two natural numbers 

Before presenting the proof of the FLT for 𝑛 = 3 , we show that the difference of equal powers 

of two natural numbers is singular. 
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1) Any natural power of a natural number 𝑎 >1 can be represented as a natural power of the 

sum of two natural numbers, 𝑎𝑛 = (𝑏 + 𝑑)𝑛, 𝑎, 𝑏, 𝑑, 𝑛 ∈ Ν; 

2) Any natural power of a natural number represented in the form (𝑏 + 𝑑)𝑛 can be expanded 

by the binomial formula; 

3) The difference of equal powers of two natural numbers 𝐴 = 𝑐𝑛 − 𝑏𝑛 can be represented as 

𝐴 = (𝑏 + 𝑑)𝑛 − 𝑏𝑛; 

4) From point 3 it follows that the difference of equal degrees of two natural numbers does not 

correspond to the decomposition by the binomial formula, since the decomposition by the 

binomial formula will reduce two numbers 𝑏𝑛. 

Based on items 3 and 4, the following theorem can be formulated: 

Theorem 2.1. The difference of two natural numbers having equal natural degrees 𝑐𝑛 − 𝑏𝑛 = 𝐴, 

which can be represented as (𝑏 + 𝑑)𝑛 − 𝑏𝑛 = 𝐴, where 𝑐𝑛 > 𝑏𝑛, 𝑐, 𝑏, 𝑑, 𝑛 ∈ Ν, certainly has a 

representation in the form of an incomplete binomial expansion, in which, in comparison with the 

usual binomial expansion, the term 𝑏𝑛 is absent. 

The proof of Theorem 2.1 is elementary, and it is described in the above items 2 and 3 of the 

proof. From Theorem 2.1 it follows that the difference of two natural numbers having equal natural 

degrees has a strict representation, namely, it corresponds to the decomposition according to the 

binomial formula, in which 𝑏𝑛 is absent. 

To clarify the term “incomplete binomial expansion”, we will accept the following definitions. 

Definition 2.1. If one element 𝑏𝑛 (or 𝑑𝑛) is subtracted from the binomial expansion of any natural 

number of the form (𝑏 + 𝑑)𝑛, consisting of 𝑛 + 1 elements, then the resulting expression consisting 

of 𝑛 elements is called an incomplete binomial expansion. 

For completeness of information, below we give the definition of the term "redundant 

binomial expansion". 

Definition 2.2. If we add one element 𝑏𝑛 (or 𝑑𝑛) to the binomial expansion of any natural number 

of the form (𝑏 + 𝑑)𝑛, consisting of 𝑛 + 1 elements, then the resulting expression consisting of 𝑛 +

2  elements is called a redundant binomial expansion. 

Note: Excess binomial decomposition is not considered in this work, the definition is provided for 

information only. 

Since in the formula 𝑎𝑛 = 𝑐𝑛 − 𝑏𝑛 the number 𝑎 corresponds to the condition 𝑎 < 𝑏 < 𝑐, 

while representing this formula in the form (𝑠 + 𝑑)𝑛 = (𝑏 + 𝑑)𝑛 − 𝑏𝑛, where the interval between 

the numbers 𝑑 can have different natural values, i.e. 𝑑 = 1,2, …, the following question may arise: 

Question 1. Is it correct for all-natural numbers 𝑎, 𝑏, 𝑐, 𝑛, 𝑑 to represent the number 𝑎𝑛, 

calculated by the formula 𝑎𝑛 = 𝑐𝑛 − 𝑏𝑛, by the formula 𝑎𝑛 = (𝑠 + 𝑑)𝑛? 
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Answer to question 1: it is obvious that if 𝑎, 𝑛 > 1, then 𝑎 > 𝑑, since 𝑎𝑛 = (𝑏 + 𝑑)𝑛 − 𝑏𝑛 =

𝑆𝑏𝑑 + 𝑑𝑛, where 𝑆𝑏𝑑 is a natural number, depending on the numbers 𝑏, 𝑑, 𝑛, or 

(2.1) 𝑎 = √𝑆𝑏𝑑 + 𝑑𝑛𝑛
 > 𝑑. 

It follows from formula (2.1) that the number 𝑎 corresponds to the condition 𝑑 < 𝑎 < 𝑏. In this 

regard, 𝑎𝑛 can be represented as 𝑎𝑛 = (𝑠 + 𝑑)𝑛.   

 

2.2 Incomplete binomial decomposition 

 

Below we show an incomplete binomial expansion for the general case. 

Let a natural power of a natural number 𝑎𝑛 = (𝑠 + 𝑑)𝑛 be given. We want to represent this number 

in the form of an incomplete binomial expansion, where the element 𝑠𝑛 is absent, for this we proceed 

as follows. 

First, we perform the binomial expansion of the number (𝑠 + 𝑑)𝑛, then we obtain 

(2.2) (𝑠 + 𝑑)𝑛 = ∑ (𝑛
𝑘

)𝑠𝑛−𝑘𝑑𝑘𝑛
𝑘=0 = (𝑛

0
)𝑠𝑛 + (𝑛

1
)𝑠𝑛−1𝑑 + ⋯ + (𝑛

𝑘
)𝑠𝑛−𝑘𝑑𝑘 + ⋯ + (𝑛

𝑛
)𝑑𝑛,   

where (𝑛
𝑘

) =
𝑛!

𝑘!(𝑛−𝑘)!
= 𝐶𝑛

𝑘  are binomial coefficients. 

Next, from formula (2.2), we remove the first term (𝑛
0
)𝑠𝑛, after that, to compensate for the removed 

𝑠𝑛, we add the number 𝑥 to the numbers 𝑠, then we get the following formula 

(2.3) (𝑠 + 𝑑)𝑛 = (𝑛
1

)(𝑠 + 𝑥)𝑛−1𝑑 + ⋯ + (𝑛
𝑘

)(𝑠 + 𝑥)𝑛−𝑘𝑑𝑘 + ⋯ + (𝑛
𝑛

)𝑑𝑛.   

Formula (2.3) is a representation of the number (𝑠 + 𝑑)𝑛 in the form of an incomplete binomial 

expansion. 

Thus, the representation of the natural power of a natural number in the form of an incomplete 

binomial is equivalent to the distribution of the first term (𝑛
0
)𝑠𝑛 of the complete binomial using the 

number 𝑥 to other terms of the binomial. 

 Further, for convenience, we represent formula (2.2) in the following brief form 

 (2.4) (𝑠 + 𝑑)𝑛 = 𝑠𝑛 + 𝑆𝐷, or 𝑎𝑛 = 𝑠𝑛 + 𝑆𝐷, 

where 𝑆𝐷 is an incomplete binomial decomposition of the number (𝑠 + 𝑑)𝑛. 

Formula (2.3) can also be represented in a compact form 

(2.5)  (𝑠 + 𝑑)𝑛 = 𝑆𝐷(𝑥), 

where 𝑆𝐷(𝑥) is the incomplete binomial decomposition of the number (𝑠 + 𝑥)𝑛. 
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2.3 Difference of squares of two natural numbers  

 

The reason that the difference between the squares of natural numbers can be the square of a natural 

number, although it is expressed by the formula of incomplete binomial decomposition, is explained 

by the fact that, in this case, by the formula of incomplete binomial decomposition, it is possible to 

obtain the set of all odd numbers and most of the even numbers. 

Using the formula for the binomial decomposition of the square of the sum of natural numbers, 

we show what has been said: 

(2.6)  (𝑏 + 𝑑)2 − 𝑏2 = 𝑏2 + 2𝑏𝑑 + 𝑑2 − 𝑏2. 

The left side will be denoted by the letter 𝐴, 

(2.7)  𝐴 = 𝑏2 + 2𝑏𝑑 + 𝑑2 − 𝑏2, or 𝐴 = 2𝑏𝑑 + 𝑑2. 

If we take 𝑑 = 1, then we have 

(2.8)  𝐴 = 2𝑏 + 1.   

From formula (2.8) it follows that for the interval 𝑑 = 1, the difference of the squares of 

neighboring natural numbers forms the set of all odd numbers. If the interval is 𝑑 = 2, then the 

difference of adjacent squares forms a set, the elements of which are the majority of even numbers 

greater than 2, since the difference formula will have the form 

(2.9)  𝐴 = 4𝑏 + 4.      

From what has been said it follows that the difference of the squares of some neighboring 

natural numbers can be equal to the square of the natural number, although the difference of the 

squares will not correspond to the decomposition by the binomial formula. 

Based on the regularity of the difference of equal powers of two natural numbers, we 

formulate the following theorem. 

 

Theorem 2.2. The natural power of a natural number 𝑎𝑛 cannot be represented as an incomplete 

binomial expansion in integers for 𝑎 > 1,  𝑛 > 2. 

Theorem 2.2 together with Theorem 2.1 means that 𝑐𝑛 − 𝑏𝑛 ≠ 𝑎𝑛, that is, the difference of 

two natural numbers having equal natural degrees cannot be equal to the natural power of a natural 

number. 
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3 A SIMPLE PROOF OF FLT FOR n = 3  

 

3.1 Patterns of cubes of natural numbers 

 

It follows from the FLT that if it is not true, then the following equality has a natural solution, 

(3.1) 𝑐3 − 𝑏3 = 𝑎3. 

Since the cube of a natural number can be represented as 𝑐3 = (𝑏 + 𝑑)3, which has the following 

binomial expansion 

(3.2) (𝑏 + 𝑑)3 = 𝑏3 + 3𝑏2𝑑 + 3𝑏𝑑2 + 𝑑3, 

we represent formula (3.1) in the form 

𝑏3 + 3𝑏2𝑑 + 3𝑏𝑑2 + 𝑑3 − 𝑏3 = 𝑎3, or 

(3.3) 𝑎3 = 3𝑏2𝑑 + 3𝑏𝑑2 + 𝑑3. 

Formula (3.3) means that if the FLT is incorrect, then the cube of a natural number can be 

represented as an incomplete binomial expansion. 

Further, given that the number a can be represented as the sum of two natural numbers, its cube can 

be represented as 𝑎3 = (𝑠 + 𝑑)3. After that, we perform the binomial expansion of the number 

(𝑠 + 𝑑)3,  

(3.4)  (𝑠 + 𝑑)3 = 𝑠3 + 3𝑠2𝑑 + 3𝑠𝑑2 + 𝑑3. 

Note that formula (3.3) is equivalent to removing from formula (3.4) the first term of the binomial 

expansion 𝑠3, then increasing the numbers 𝑠 on the right-hand side of formula (3.4) by 𝑥 to 

compensate for 𝑠3, i.e. formula (3.3) is equivalent to the following formula 

(3.5) 𝑎3 = 3(𝑠 + 𝑥)2𝑑 + 3(𝑠+𝑥)𝑑2 + 𝑑3. 

From formula (3.5) it follows that when the cube of a natural number is represented as an incomplete 

binomial, the removed term of the binomial 𝑠3 is distributed to other terms of the binomial using 

the number 𝑥. 

Example 1. Given 83 = 512 represented as 83 = (6 + 2)3, it is required to represent 83 as an 

incomplete binomial. Using formula (3.5), we write 83 = 3(6 + 𝑥)22 + 3(6+𝑥)22 + 23.  

 Next, by the selection method, we find 𝑥, 𝑥 ≈ 2,2196, after that, using the incomplete binomial 

formula, we calculate 83, 

83 = 3(6 + 2,2196)22 + 3(6+2,2196)22 + 23 = 405,3709 + 98,6352 + 8 ≈ 512,006.   

Then, based on formulas (3.3) and (3.4), taking into account 𝑎3 = (𝑠 + 𝑑)3, we obtain the 

following equality 

𝑠3 + 3𝑠2𝑑 + 3𝑠𝑑2 + 𝑑3 = 3𝑏2𝑑 + 3𝑏𝑑2 + 𝑑3 or 

(3.6) 𝑠3 = 3𝑏2𝑑 + 3𝑏𝑑2 + 𝑑3 − (3𝑠2𝑑 + 3𝑠𝑑2 + 𝑑3). 
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Formula (3.6) means that if the FLT is incorrect, then the difference between the incomplete 

binomial decompositions of the cubes of two natural numbers will be equal to the cube of the natural 

number included in the subtracted incomplete binomial (𝑠3). 

Thus, we will further prove that formulas (3.5) and (3.6) have no natural solution. If natural numbers 

are used in formula (3.6), then we obtain the inequality 

(3.7) 𝑠3 ≠ 3𝑏2𝑑 + 3𝑏𝑑2 + 𝑑3 − (3𝑠2𝑑 + 3𝑠𝑑2 + 𝑑3). 

It should be noted that if we consider cubes of arbitrary natural numbers, then the number of cubes 

of natural numbers, which are the difference of incomplete binomials of cubes of two natural 

numbers, is infinitely large. 

Example 2. The difference of incomplete binomial expansions of the numbers (36 + 1)3 and 

(35 + 1)3  will be equal to the cube 6, 

((36 + 1)3 − 363) − ((35 + 1)3 − 353) = 3997 − 3781 = 216 = 63. 

To prove the FLT based on formula (3.6), we must consider the positive difference of any 

natural numbers located at a distance 𝑙 (𝑙 = 1,2, … ), from each other, which are equal to the 

incomplete binomial decomposition of the cube of natural numbers. To do this, we compose a set 

of incomplete binomial decompositions of cubes of natural numbers differing by 1, i.e. elements of 

this set are calculated by the formula 𝑞 = 3𝑠2𝑑 + 3𝑠𝑑2 + 𝑑3, 𝑑 = 1, 𝑠 = 1, 2, … 

(3.8) 𝑄 = {𝑞|𝑞 = (𝑠 + 1)3 − 𝑠3;  𝑠 ∈ ℕ}. 

Further, on the basis of the first set, we compose the second set of natural numbers, each element of 

which corresponds to the positive difference of any two elements of the first set and is calculated 

by the formula 

(3.9) 𝐺 = {𝑔|𝑔 = [(𝑠 + 𝑙 + 1)3 − (𝑠 + 𝑙)3] − [(𝑠 + 1)3 − 𝑠3];  𝑙 ∈ ℕ}. 

Note that the expression 𝑔 = [(𝑠 + 𝑙 + 1)3 − (𝑠 + 𝑙)3] − [(𝑠 + 1)3 − 𝑠3] corresponds to the 

formula 𝑔 = 3𝑑(𝑠 + 𝑙)2 + 3𝑑2(𝑠 + 𝑙) − (3𝑑𝑠2 + 3𝑑2𝑠),  𝑑 = 1, 𝑠 = 1, 2, … , 𝑙 = 1, 2, …. 

The second set includes the positive differences of all incomplete binomial decompositions of cubes 

of natural numbers. To show the relationship of cubes and their incomplete binomials, as well as 

the difference of incomplete binomials, Tables 1 and 2 are compiled. 

An example of elements of the set 𝑄 is the numbers shown in column 4 of Table 1, and an 

example of elements of the set 𝐺 is the numbers shown in columns 5, 6, 7 of the same table. 

Note that the incomplete binomial decomposition is also the difference of two natural numbers to 

the power of n located at a distance 𝑑 from each other, so they are equal to the difference of the 

cubes of natural numbers differing by the number 𝑑. 
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Note: In Tables 1 and 2 Incomplete binomial expansions, denoted by the letters 𝑆𝐷𝑖, correspond to 

elements of the set 𝑄, and the difference of incomplete binomials, denoted by 𝑆𝐷𝑗 − 𝑆𝐷𝑖, 

correspond to elements of the set 𝐺. 

 For convenience, we represent formula (3.6) in the following compact form 

(3.9) 𝑠3 = 𝐵𝐷 −  𝑆𝐷, 

where 𝐵𝐷 is an incomplete binomial decomposition of the number (𝑏 + 𝑑)3; 𝑆𝐷 − incomplete 

binomial decomposition of the number (𝑠 + 𝑑)3. 

Note that the differences of incomplete binomial expansions located at different distances from each 

other can be calculated in a different way: 1) First, incomplete binomial expansions of cubes of 

natural numbers located at different distances from each other are calculated, i.e. first, incomplete 

binomial decompositions of cubes of natural numbers are calculated for different 𝑑; 2) Then the 

differences of neighboring incomplete binomial decompositions of cubes of natural numbers are 

calculated for each 𝑑.  

 

Table 1. Difference of incomplete binomial expansions for 𝑑 = 1 

𝒂 = 𝒔 + 𝒅 𝒂𝟑 𝒔𝟑 𝑺𝑫 
𝑺𝑫𝒋 − 𝑺𝑫𝒊 

𝒍 = 𝟏 𝒍 = 𝟐 𝒍 = 𝟑 
1 2 3 4 5 6 7 

1=0+1 1 0  1       

    6   

2=1+1 8 1 7    18   

    12  36 

3=2+1 27 8 19   30   

    18  54 

4=3+1 64 27 37  42   

    24  72 

5=4+1 125 64 61  54  
    30  90 

6=5+1 216 125 91  66  
    36  108 

7=6+1 343 216 127  78  
    42  126 

8=7+1 512 343 169  90  
    48  144 

9=8+1 729 512 217  102  
    54   

10=9+1 1000 729 271    
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The numbers shown in column 5 of Table 1 are part of the elements of the set 𝐺, which are 

equal to the difference of neighboring incomplete binomials calculated for 𝑑 = 1 and 𝑙 = 1, and the 

numbers given on columns 6 and 7, which are equal to the difference of incomplete binomials for 

𝑙 = 2 and 𝑙 = 3, respectively, are elements of subsets of the set 𝐺. An example of the second method 

calculating the difference of adjacent incomplete binomial decompositions of cubes of natural 

numbers for each 𝑑 is Table 2. 

The numbers shown in column 5 of Table 2 are part of the elements of the set 𝐺, which are 

equal to the difference of neighboring incomplete binomials calculated for 𝑑 = 1 and 𝑙 = 1,  and 

the numbers given on columns 7 and 9, which are equal to the difference of incomplete binomials 

for 𝑑 = 2  and 𝑑 = 3, respectively, are elements of subsets of the set 𝐺. 

Based on the above, it can be argued that considering the difference of incomplete binomial 

expansions for 𝑑 = 1 and 𝑙 = 1 is equivalent to considering the difference of incomplete binomial 

expansions for any natural 𝑑 and 𝑙. 

 

Table 2. Difference of incomplete binomials for different 𝑑 for 𝑙 = 1 

𝒂 = 𝒔 + 𝒅 
𝒂𝟑  

𝒅 = 𝟏 
𝒔𝟑 𝑺𝑫, 

𝒅 = 𝟏 
𝑺𝑫𝒋
− 𝑺𝑫𝒊 

𝑺𝑫, 
𝒅 = 𝟐 

𝑺𝑫𝒋
− 𝑺𝑫𝒊 

𝑺𝑫, 
𝒅 = 𝟑 

𝑺𝑫𝒋
− 𝑺𝑫𝒊 

1 2 3 4 5 6 7 8 9 

a=0+d 1 0  1          

    6     

a=1+d 8 1 7   26   63    

    12  30  54 

a=2+d 27 8 19  56   117    

    18  42  72 

a=3+d 64 27 37  98  189   

    24  54  90 

a=4+d 125 64 61  152  279  
    30  66  108 

a=5+d 216 125 91  218  387  
    36  78  126 

a=6+d 343 216 127  296  513  
    42  90  144 

a=7+d 512 343 169  386  657  
    48  102   

a=8+d 729 512 217  488    
    54     

a=9+d 1000 729 271      
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As follows from Tables 1 and 2, in two ways, equal values of the difference of incomplete binomials 

are obtained, i.e. the same result. Taking into account the above, we give a proof of the FLT for a 

cube with  𝑑 = 1, 𝑏 = 𝑠 + 𝑙,   𝑙 ∈ ℕ. 

 

3.2 Simple proof of the FLT for n = 3  

 

Further, for 𝑛 = 3, we prove that the Diophantine equation 𝑎3 = 𝑐3 − 𝑏3, which has the 

representation (𝑠 + 𝑑)3 = (𝑏 + 𝑑)3 − 𝑏3, has no natural solution. Note that the proof of the FLT 

for 𝑛 = 3 means that the cube of a natural number cannot be represented as an incomplete binomial 

expansion using only natural numbers. 

Formula (3.5) can be represented as 

(3.10) 𝑠3 = 3𝑑(𝑠 + 𝑙)2 + 3𝑑2(𝑠 + 𝑙) − (3𝑑𝑠2 + 3𝑑2𝑠), 

where 𝑏 = 𝑠 + 𝑙; 𝑙 is a natural number. 

Considering that (𝑠 + 𝑙)2 = 𝑠2 + 2 ∙ 𝑠 ∙ 𝑙 + 𝑙2, we simplify the formula after the following 

transformations: 

𝑠3 = 3𝑑(𝑠2 + 2 ∙ 𝑠 ∙ 𝑙 + 𝑙2) + 3𝑑2(𝑠 + 𝑙) − (3𝑑𝑠2 + 3𝑑2𝑠); 

𝑠3 = 3𝑑𝑠2 + 6𝑑𝑠𝑙 + 3𝑑𝑙2 + 3𝑑2𝑠 + 3𝑑2𝑙 − 3𝑑𝑠2 − 3𝑑2𝑠; 

𝑠3 = 6𝑑𝑠𝑙 + 3𝑑𝑙2 + 3𝑑2𝑙;   

(3.11) 𝑠3 = 6𝑑𝑙 (𝑠 +
𝑙

2
+

𝑑

2
). 

For 𝑑 = 1, we obtain the equality 

(3.12) 𝑠 =
𝑠3

6𝑙
−

𝑙+1

2
. 

By the condition of the problem, all the numbers of the formula must be integers, and the ratio 
𝑠3

6𝑙
  

for natural 𝑠, 𝑑 = 1 and 𝑙 will be an integer if 𝑠 = 6𝑙𝑘, therefore, based on formula (3.12), we can 

write 6𝑙𝑘 =
(6𝑙𝑘)3

6𝑙
−

𝑙+1

2
. This implies 6𝑙𝑘 = (6𝑙)2𝑘3 −

𝑙+1

2
,  or 

(3.13) 𝑘 = 6𝑙𝑘3 −
𝑙+1

2∙6𝑙
 . 

Obviously, this equality does not have an integer solution, since for any natural number k we obtain 

the following inequality, 

(3.14)  𝑘 < 6𝑙𝑘3 −
𝑙+1

12𝑙
. 

This inequality is valid for any natural numbers 𝑘 and 𝑙. 

Since we are using the first method, where 𝑑 = 1 and 𝑙 = 1, we can write 

𝑘 < 6𝑘3 −
1

6
. 
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Note that the ratio 
𝑠3

6𝑙
  for natural 𝑠, 𝑑 = 1 and 𝑙 will also be an integer if 𝑠3 = 6𝑙𝑘. In this case, there 

should be 𝑙𝑘 = 62, this is possible in the following three cases: 1) 𝑘 = 1, 𝑙 = 62; 2)𝑘 = 62, 𝑙 =

1;  3)𝑘 = 6, 𝑙 = 6.   For these three cases, using formula (3.12), we obtain 

𝑠 =
𝑠3

6𝑙
−

𝑙 + 1

2
, 

 1)   6 ≠
63

63
−

6+1

2
;  6 ≠ 1 −

7

2
;   2) 6 ≠

63

6
−

1+1

2
;  6 ≠ 62 − 1;   3) 6 ≠

63

62
−

6+1

2
;  6 ≠ 6 −

7

2
. 

As can be seen, in all three cases we have obtained an inequality, which is a proof of the validity 

of inequality (3.7). 

If 𝑙𝑘 ≠ 62, while 𝑠3 = 6𝑙𝑘, then it should be 𝑠3 = (6𝑡)3 and 𝑠 = 6𝑡, in this case 𝑙𝑘 = 62𝑡3, 

as it should be 6𝑙𝑘 = (6𝑡)3. 

It follows that 𝑙 = 62 and 𝑘 = 𝑡3 (or 𝑘 = 62 and 𝑙 = 𝑡3). For 𝑙 = 62 and 𝑠 = 6𝑡 by formula (3.12) 

we obtain 

6𝑡 =
(6𝑡)3

63 −
62+1

2
  or 6𝑡 = 𝑡3 −

37

2
. 

From here we find 𝑡, 

(3.15)  𝑡 =
𝑡3

6
−

37

12
. 

Obviously, equation (3.15) has no natural solution. 

Thus, we have proved that formula (3.6) has no natural solution, which means that an 

elementary proof of the PTF for n = 3 has been obtained. 

 

CONCLUSION 

The difference of two natural numbers having equal natural degrees certainly has a 

representation in the form of an incomplete binomial decomposition, therefore, if the FLT is 

incorrect, then the natural power of a natural number must be represented as an incomplete binomial 

in integers. It is proved that the square of a natural number can be represented as an incomplete 

binomial in integers, and the cube of a natural number cannot be represented as an incomplete 

binomial. This is due to the fact that when the square of a natural number is represented as an 

incomplete binomial, the removed term (the first term of the binomial is the square of a natural 

number) is added to only one member of the incomplete binomial having degree 1, and when the 

cube of a natural number is represented as an incomplete binomial, the removed term ( the first term 

of the binomial is the cube of a natural number) is distributed to several members of the incomplete 

binomial, with different powers greater than 1. 

With an increase in the exponent 𝑛, the number of terms of the incomplete binomial expansion 

with different degrees, on which the distant binomial term will be distributed (the first binomial 
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term is a natural number to the power 𝑛 > 3), also increases strongly. It follows that if the cube of 

a natural number cannot be distributed into terms of a polynomial in the form of integers, then it is 

all the more impossible to distribute the degree of a natural number for 𝑛 > 3. 

Thus, we can assert that the proof of the FLT for 𝑛 = 3 follows from the proof of the FLT as a 

whole. 
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