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Abstract

It is well known to mathematicians, that there is an infinite number of primes as proven via simple logic by Euclid
in the 4th Century BC1,2 and confirmed by Leonhard Euler in 17373. In 1846 French mathematician Alphonse de
Polignac4 proposed that any even number can be expressed in infinite ways as the difference between two consecutive
primes, since when or perhaps possibly even before that all the way back to Euclid, mathematicians have been trying
to prove that there is an infinite number of TWIN PRIMES. In this paper a relatively simple proof is presented,
that there is indeed an infinity of TWIN PRIMES based on a new approach without any assumptions.

1 Introduction

TWIN PRIMES are prime numbers that are separated by two such as 3 and 5, 5 and 7, 11 and 13, 17 and 19 but
not 23 and 25 because 25 is composite (5x5). This means that prime numbers can be twinned or isolated as in 23,
37 and 47 but twin composites such as 119 (7x17) and 121 (11x11) plus 143 (11x13) and 145 (5x29) also exist. For
completeness it is also pointed out that 2 and 3 are not a TWIN PRIME pair because the primes are only separated
by 1 rather than 2. It should also be obvious that all primes greater than 3 must be of the form 6k±1 and that the
number of TWIN PRIMES are even rarer than the number of primes as we progress along the number line, to raise
the legitimate question of whether the TWIN PRIMES are finite or indeed infinite.

2 History

In 1919, Norwegian mathematician Viggo Brun5 showed that the sum of the reciprocals of the TWIN PRIMES con-
verges to a sum, now known as Brun’s constant. In contrast, the sum of the reciprocals of the primes diverges to
infinity6, which together could have been interpreted as an indication that TWIN PRIMES could be finite. Brun’s
constant was calculated in 1976 as approximately 1.90216054 using TWIN PRIMES up to 100 billion7. In 1994 Amer-
ican mathematician Thomas Nicely discovered a flaw in the then new Pentium chip that was producing inconsistent
results in his calculations of Brun’s constant8. In 2010 Nicely gave a value for Brun’s constant9 of 1.902160583209 ±
0.000000000781 based on all TWIN PRIMES less than 2 × 1016. In 2003, American mathematician Daniel Goldston
and Turkish mathematician Cem Yildirim10 published “Small Gaps Between Primes,” that established the existence
of an infinite number of prime pairs within a small difference of 16, with certain assumptions, most notably that of the
Elliott-Halberstam conjecture11, which turned out to be false but was corrected with help from Hungarian mathemati-
cian János Pintz in 200512. American mathematician Yitang Zhang built on their work to show in 2013 without any
assumptions, that there was an infinite number of primes differing by 70 million or less13. This bound was improved
to 246 in 201414, and by assuming either the Elliott-Halberstam conjecture or a generalized form of that conjecture,
the difference was 12 and 6, respectively15. In 2015 James Maynard introduced a refinement of the GPY sieve to avoid
previous limitations16. These techniques may enable progress on the Riemann hypothesis, which is connected to the
prime number theorem as one of the key Millennium Problems attracting a reward of 1 million dollars17.

3 Approach taken

Overall, a combination of a bespoke TWIN PRIME sieving process before a proof by contradiction was utilised in a
new approach. This ultimately ended up establishing that infinite TWIN PRIMES necessarily follows from having
infinite primes as will be shown in the following discussion and arguably can therefore lead to an additional general
definition of all 6k±1 prime numbers not just those within a TWIN PRIME.

4 A Sieve for TWIN PRIMES

After much late-night thought when unable to sleep, the idea emerged that a unique identifier was required for each
TWIN PRIME. Armed with the knowledge that each prime number greater than 3 must be of the form 6k±1, it was
decided to use k as the unique identifier for each TWIN PRIME or composite as shown in Figure 1 below. Note the
figure also works for the first TWIN PRIME (k=2/3) and the first two primes that are separated by one (k=5/12),
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which as indicated earlier is not a TWIN PRIME. In the chart below k= 2/3, 1,2,3, 5, 7, 10, 12, 17, 18, 23 and 25 all

Figure 1: shows a unique identifier for each TWIN PRIME in the form of a ladder

produce TWIN PRIMES, but k=5/12 does not give a TWIN PRIME, k=4, 6, 8, 9, 11, 13, 14,15, 16, 19, 21 and 22
give isolated primes and k = 20 and 24 give twin composites respectively, for k from 5/12 to ∞.

Figure 2: outlines the composition of each prime and composite and the sieved percent

To determine if an integer K can produce a TWIN PRIME one simply divides K (K > k) by each prime number of the
form 6k±1 and evaluates the remainder (R), since K ≡ R (mod 6k±1). If the remainder is equal to k or the modulus
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|R - 6k±1| = k, then the K under consideration cannot produce a TWIN PRIME. Consider 5 which is 6k-1 where k
= 1, then using modulo maths, 4, 6, 9, 11, 14, 16, 19, 21, 24, 29, 31, 34, 36, 39, 41, 44, 46, 49 for K up to 50 cannot
produce TWIN PRIMES and are thus sieved out, representing 40 % of integer K values up to ∞ for K>k.

If we then consider the next prime 7, which is 6k+1 where k=1, then using modulo maths, 6, 8, 13, 15, 20, 22,
27, 29, 34, 36, 41, 43, 48, 50; cannot produce TWIN PRIMES and are therefore sieved out but as there are some
numbers in common between 5 and 7, only numbers that were not already assigned to 5 are assigned to 7 to make this
8,13,15,20,22,27,42, 43, 48, 50; so far fewer are sieved out up to 50 (approximately half as many).

The next prime 11, which is 6k-1 for k=2 sieves out the values 9,13,20,24,31,35,42,46 etc and yet again there are values
in common with 5 and 7 which have been removed so this gives 35,42; for sieved K up to 50, which were assigned to 11
and are far fewer. Using this approach for k from 1 to 7, results are summarised in Figure 2 for the first 14 6k±1 values.

Figure 3: sieving process for 6k±1 up to k=14 to indicate 1st and repeat sieve attempts

It should be obvious that every 6k±1 prime will then sieve out K values that were not sieved out before. It should
also be noted that when 6k±1 is a composite the percent sieved out is zero. Details of how the 6k±1percentages were
determined is presented above accordingly. Each row in Figure 3 represents the value of 6k±1, whereas the columns
represent the potential TWIN PRIME indicator K from 1 to 71 but should obviously go on to infinity.

The numbers in black in Figure 3 show each K value that would be sieved out and one can see where a value is
attempted to be sieved out more than once so that only the first row where a K is sieved out is considered since K
cannot be removed more than once. The yellow shaded cells represent where that number has not been sieved out and
identifies a TWIN PRIME. The diagonal represents the fact that all 6k±1 composites start off from a value that is
divisible by 5 thus making it crystal clear to avoid multiple counting of sieved numbers.

Below is explained how percentages for primes greater than 5 were calculated. For 7, first the items that are assigned
to 5 were tagged as 5, with the remaining items tagged as 7. Then the repeat pattern of the 7’s was established (in this
case the 1st 10 repeats). The percentage was then calculated in several ways but ultimately, was shown to be 1.2/7.
The repeat pattern for each prime number starting at 7 is the product of all the previous prime numbers, starting at
5 multiplied by 2. Thus for 7 the repeat pattern was 10, for 11 the pattern was 2*5*7 or 70, for 13 the pattern was
then 2*5*7*11 or 770 for 17 the pattern was 2*5*7*11*13 or 10010 and so on for each prime.

The additional equations for the sieving by prime numbers are presented below:-

For 29=1.2*(1-2/-2*(12/7)/11-2*(1-2/7-2*(1-2/7)/11)/13-2*(1-2/7-2*(1-2/7)/11-2*(1 -2/7-2*(1-2/7)/11)/13)/17-2*(1-
2/7-2*(1-2/7)/11-2*(1-2/7-2*(1-2/7)/11)/13-2*(1-2/7-2*(1-2/7)/11-2*(1-2/7-2*(1-2/7)/11)/13)/17)/19-2*(1-2/7-2*(1-
2/7)/11-2*(1-2/7-2*(1-2/7)/11)/13-2*(1-2/7-2*(1-2/7)/11-2*(1-2/7-2*(1-2/7)/11)/13)/17 -2*(1-2/7-2*(1-2/7)/11-2*(1-
2/7-2*(1-2/7)/11)/13-2*(1-2/7-2*(1-2/7)/11-2*(1-2/7-2*(1-2/7)/11)/13)/17)/19)/23)/29

For 31=1.2*(1-2/7-2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7-2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17
-2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -
2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7
-2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23 -2*(1-2/7
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-2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-
2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-2/7 -2*(1-
2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11
-2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/1 1-2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23)/29)/31

For 37=1.2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7-2*(1-2/7)/11 -2*(1-2/7-2*(1-2/7)/11)/13)/17
-2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -
2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23 -
2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -
2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23)/29 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -
2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19-2*(1-2/7-2*(1-
2/7)/11-2*(1-2/7-2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11
-2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23 -2*(1-2/7 -2*(1-2/7)/11
-2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-
2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7
-2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-
2/7)/11)/13-2*(1-2/7-2*(1-2/7)/11-2*(1-2/7-2*(1-2/7)/11)/13)/17)/19)/23)/29)/31)/37

Figure 4: shows the ratio of K’s sieved out by prime number which is exponential

For 41=1.2*(1-2/7-2*(1-2/7)/11 -2*(1-2/7-2*(1-2/7)/11)/13-2*(1-2/7-2*(1-2/7)/11-2*(1-2/7 -2*(1-2/7)/11)/13)/17
-2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -
2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23 -
2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7
-2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23)/29 -
2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7
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-2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7
-2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-2/7 -
2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-
2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23)/29)/31 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -
2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-2/7 -
2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-
2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23 -2*(1-2/7 -
2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-
2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-2/7 -2*(1-
2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11
-2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23)/29 -2*(1-2/7 -2*(1-
2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11
-2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-2/7 -2*(1-2/7)/11 -
2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-
2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23 -2*(1-2/7 -2*(1-2/7)/11 -
2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-
2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7
-2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-
2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23)/29)/31)/37)/41

For 43=1.2*(1-2/7-2*(1-2/7)/11-2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17
-2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -
2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23 -
2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7
-2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23)/29 -
2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7
-2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7
-2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-2/7 -
2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-
2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23)/29)/31 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -
2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-2/7 -
2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-
2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23 -2*(1-2/7 -
2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-
2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-2/7 -2*(1-
2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11
-2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23)/29 -2*(1-2/7 -2*(1-
2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11
-2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-2/7 -2*(1-2/7)/11 -
2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-
2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23 -2*(1-2/7 -2*(1-2/7)/11 -
2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-
2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7
-2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-
2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23)/29)/31)/37 -2*(1-2/7 -2*(1-2/7)/11
-2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-
2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-
2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7
-2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-
2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7
-2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -
2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-
2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23)/29 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7
-2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-
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2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-
2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13
-2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13
-2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -
2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23)/29)/31 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13
-2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7
-2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-
2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7
-2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -
2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-
2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23)/29 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7
-2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-
2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-
2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11
-2*(1-2/7 -2*(1-2/7)/11)/13)/17)/19)/23 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11
-2*(1-2/7 -2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-
2/7 -2*(1-2/7)/11)/13)/17)/19 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7
-2*(1-2/7)/11)/13)/17 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-2/7)/11)/13 -2*(1-2/7 -2*(1-2/7)/11 -2*(1-2/7 -2*(1-
2/7)/11)/13)/17)/19)/23)/29)/31)/37)/41)/43

The procedure was then repeated for 11 to ultimately show that the percentage is 1.2*(1-2/7)/11 so that the percentage
reduces to factors of 7 and 11 as shown above. This then did clearly confirm that the percentage assigned as sieved
out by each prime number only depended on 1.2, 2 and the previous prime number values. The 1.2 is made up of
0.6, which is the percentage remaining after the 40 percent was removed by 5, which is then multiplied by 2 since
each prime number sieves out 6k-1 and 6k+1 from K all the way up to infinity. This clearly explains why a consistent
pattern was obtained.

However, it could be argued that this does not prove that every new prime number of the form 6k±1 necessarily sieves
out K values that were not sieved out before, so this is addressed below. For 7 it is already outlined above that new
K values are sieved out that were not sieved out by 5, so let’s consider 11 and above. Note that 5 never sieves out a
K values that is a multiple of 5 and nor does 7 sieve a K value that is a multiple of 7 or indeed for any 6k±1prime
number. Let’s now consider 11 and reflect on the fact that if we take multiples of 5x7 (35) as K then neither 5 nor 7
can sieve out such values.

Performing modulo maths on these K numbers means that if the remainder R obtained matched the 6k±1 prime
number k value, then not only is that number sieved out but it cannot have been also sieved out by a previous prime
number of the form 6k±1. So for instance Modulo (35,11)=2 and 11=6k-1 for k=2 and this is clearly reflected in
Figure 5. Note also that 42 (7x6) is not sieved by 7 and any number ending in 2 is not sieved by 5.

Moreover, there will be an infinity of such K values which are sieved out by 11, since if 35 is multiplied by integers
from 1 to 10 and the absolute value of the modulus is taken, then there will be two of each value from 1 to 5 and
clearly not only does this not stop at 10 as shown below in figure 6, but also none of these values will be sieved by 5
or 7. Clearly this pattern repeats forever, once multiples of 11 are excluded as shown above. It should be obvious that
the process is applicable to products of 6k±1prime numbers.

πn = [p3 ∗ p4 ∗ p5 ∗ p6 ∗ p7 ∗ p8 ∗ . . . . ∗ pn]

can never be sieved out by any of p3 to pn and moreover, this means that πn*N where N is not divisible by pn+1

will always produce a value that is sieved out by pn+1 and indeed an infinite number of them at the very least, where
p1=2, p2=3, p3=5, p4=7, p5=11, p6=13, p7=17 and p8=19 and so on all the way to infinity. However, the majority
of the K=πn*N values produced will never be sieved out by pn+1. As the product of all the previous 6k±1prime
numbers cannot be sieved out by any of those previous prime numbers and nor can integer multiples of that product,
this means that each prime number will necessarily sieve out new K values that were not sieved out by a previous
prime number. Although Figure 5 would seem to indicate that these are not the only K values for a 6k±1 that have
not been sieved out by a previous prime number of the form 6k±1, it was only necessary to show that each prime
number of the form 6k±1 necessarily sieved out K values which were not sieved out before by a previous 6k±1 prime
number. As demonstrated with K = 4, 8 and 28, where the K is part of an isolated prime, sometimes the K resulting
from the square of a 6k±1 (5, 7 and 13) will only be sieved out by that prime and no other. So even if one doubts
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Figure 5: 6k±1 sieved up to k=14 and showing only K values not sieved out before

Figure 6: shows that for 11 there are then four multiples of K= 35 first sieved out by 11

that there is a well-defined pattern in K values sieved out by each 6k±1prime, it was still established that each 6k±1
prime sieves out K values that were not sieved out before by evaluating the product of prime numbers multiplied by
integers. This added to the fact that composites do not sieve out any K values that were not sieved out previously
means that there is an infinite number of TWIN PRIMES otherwise there would have been finite prime numbers as
will be shown in the proof by contradiction that follows.

5 Other attempts at a proof by the author

5.1 Something similar to Eclid’s method

A failed attempt was made to see if Euclid’s Prime Number proof approach could apply. Where Euclid multiplied
all the prime numbers and added 1, the author added 1 and subtracted 1. This looked promising for a while since
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2*3±1 does indeed give a TWIN PRIME (5;7), 2*3*5±1 produced another (29;31) and while 2*3*5*7±1 did not
directly produce another (11x19;211), 6k-1 did provide two prime numbers which were part of TWIN PRIMES.
Moreover 2*3*5*7*11±1 did produce another directly (2309;2311), 2*3*5*7*11*13±1 provided a new one indirectly
(30029;59x509), 2*3*5*7*11*13*17±1 also provided new ones indirectly (8369*61;19*97*277), 2*3*5*7*11*13*17*19±1
provided new ones indirectly (53*197*929;347*27953) but 2*3*5*7*11*13*17*19*23±1 did not provide another either
directly or indirectly (37*131*46027; 317*703763) and only generated isolated primes. This may have something to
do with the fact that 23 is the first isolated prime but whatever the reason the argument could not be sustained that
p1*p2*p3*p4*p5*p6*. . . *pn+1 would always produce a new TWIN PRIME directly or indirectly, so this approach was
abandoned but left as a curiosity for others to explore. Perhaps using only TWIN PRIMES will work since excluding
23 and using 29 and 31 did.

5.2 Determining if TWIN PRIMES would always increase in a selected range

Since numerous prime numbers are readily available on the internet, it is a relatively trivial matter to check how many
TWIN PRIMES occur in selected ranges. The author checked within squares of 6k±1 and observed that the TWIN
PRIMES in each range was always greater than or equal to 2 and generally increased as k was increased. The number
of TWIN PRIMES between 52 and 72 is two because this spans the K range 4 to 8 where neither of the end K’s
(4*6+1=25 and 8*6+1=49) nor the midpoint (6*6-1=35) can produce TWIN PRIMES, which just leaves 5 and 7
which did. Similarly for k=2, one can search in the range 20 to 28 to find two TWIN PRIMES at K=23 and K=25. It
is left to the reader to continue this process for larger values of k, which will show that the number of TWIN PRIMES
in each range does appear to be increasing but this is not proof of infinite TWIN PRIMES as surely many would
rightly point out. A similar approach could be taken between the squares or evaluating up to each (6k+1)2 or making
the range the product of successive prime numbers, but the author could never find a formula to definitely show that
the number of TWIN PRIMES must always increase, so while interesting and compelling this clearly was also not a
proof.

Figure 7: number of TWIN PRIMES within each (6k±1)2 range which spans 4k+1

6 Proof by contradiction

Let’s assume that there is a finite number of TWIN PRIMES. This means that there must be a prime number where in
combination with the previous prime numbers all K values from that point forward up to infinity are sieved out. Now
let’s consider the next prime number, this prime number will have nothing to sieve out as all remaining K’s have been
sieved out. But the only 6k±1 values that don’t sieve out anything that hasn’t already been sieved out are composites,
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so this would have to be a composite. Indeed, all subsequent 6k±1 values would have to be composites. But not all of
the subsequent 6k±1 values can be composite because there is an infinite number of prime numbers thus there must
be an infinite number of TWIN PRIMES otherwise there would have been a finite number of prime numbers, and
this has already been shown to be false. This then implies that at least for numbers of the form 6k±1, an additional
definition of a prime number is a number that sieves out TWIN PRIME K candidates along the integer number line,
that were not already sieved out by a previous prime number. Put another way, as one progresses along the number
line, each new prime number necessarily sieves out new K values which have not been sieved out before by previous
prime numbers, which means that it is not possible to ever exhaust the K values that are available to be sieved out
and therefore TWIN PRIMES are infinite.

If the same logic is used for 7, 5, 3 and 2 then 2 cannot sieve out K values that are multiples of 2 and similarly 3
cannot sieve out any K values that are multiples of 3 which together correspond to multiples of 6 being necessary but
not sufficient for a TWIN PRIME. So then 5 can sieve out K values that are multiples of 6, which is perhaps another
way of saying that all prime numbers greater than 3 must be of the form 6k±1. One could then argue that since 5
cannot sieve out any K value that is a multiple of 5 there will be an infinite number of such K values that can be sieved
out by 7. Note that the ladder model also works for 2 and 3 by default since the remainders after dividing an integer
by 2 must be 1 but the model k=5/12 cannot ever match. Moreover, the remainders after dividing any integer by 3
must be 1 or 2 (-1 mod 3), but neither of these can be equal to the model 5/12 nor 2/3. In the case of 5, the possible
remainders of dividing an integer by 5 (where K > k) are 1, 2, 3 (-2), 4 (-1) so that the modulus of the remainder
can be k=1 but not k=2/3. The one oddity of the model is that 3 and 5 occur twice on the ladder since 3 can be
6k+0.5 where k=5/12 so that 2 becomes 6k-0.5. Then 3 can be 6k-1 for k=2/3, where 5 would be 6k+1 to represent
the first TWIN PRIME. Finally, 5 can then be 6k-1 for k=1, where 7 would be 6k+1 in the second TWIN PRIME
respectively.

For completeness and clarity, it is pointed out that the prime number 2 removes all even numbers from the full number
line (50 %), whereas 3 would remove all numbers that are divisible by 3 from the full number line some of which are
also divisible by 2. For 5 and above the analysis is of TWIN PRIME indicator K (where mod(K,6k+1) matches k)
and not the full number line, which are of the form 6k±1 where 5 sieves 40 % of K values up to infinity.

7 Conclusion

A very simple approach was taken in developing a proof of the TWIN PRIME CONJECTURE since this all began as
a coping strategy for insomnia. The sieving process was used to show that 6k±1 composites do not sieve out any new
K values and then a proof by contradiction was developed by utilising this key bit of information.
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