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Equations, consistent with the kinematic relativistic relations and electro dynamics’ equations, are

obtained in the tetrameric Euclidean space. Under the transition to a unitary tetrameric space, Born-

Jordan permutable relations are obtained.

The relativistic quantum theory, formed in the last century, was methodically developed based on

provisions of the quantum (wave or matrix) mechanics. The covariance in relation to Lorenz transforma-

tions [1] was traditionally the criterion of applicability of equations or operators. Thus, the acceptability of

the Maxwell-Dirac equations in Majorana form [2], Feynman-Dyson S-matrix [3]and many others was

defined. Numerous experiments confirmed the majority of positions of both quantum electrodynamics

(QED) and quantum field theory [4,5]. Nevertheless, the undisputable validity of the basics of the relativ-

istic quantum theory does not always lead to the equally successful practical application of physical-

chemical researches [6]. The reason, as it seems, lies not in the lack of computational capabilities, but in

some overload of fundamental equations (for instance, relativistic Hamiltonian [7]), which eliminates

analytical solutions without using approximations [8]. Owing to works of Pauli, Dirac, Schwinger and

their followers, no one doubts the intimate connection between quantum phenomena and relativistic ef-

fects. Therefore, it seems appropriate to formulate the solved problem in a different way. Do the provi-

sions of the special theory of relativity (STR) contain the data on the possible discreteness of the quantity

observed? The clarification of this issue could have led to a simplification of the apparatus of the relativ-

istic quantum theory. In its turn, this would allow to get rid of a number of approximations (for instance,

quantum chemistry abounds with them [9]), which do not allow to take the full advantage of achieve-

ments of the quantum mechanical description.
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In general, it is not necessary to introduce imaginary axes to achieve the Lorentz invariance. To

prove this statement, let us consider the orthonormal basis in the tetrameric Euclidean space. The position

of a particle is defined by four linearly independent coordinates:

( ), ,x y z= + = + + +s w r w x y z , (1)

three of which are space coordinated (x, y, z), and w is hidden, possessing properties of the local time of a

particle. The Michelson–Morley experiments, which are reflected in the postulate on the lightspeed con-

sistency, can be laid down as the consistency principle of the change of position (module of the full dif-

ferential of the coordinate).

2 2 2 2 2d d d d d const= + + + =s w x y z . (2)

The specified scalar (square of the change of the position) is accepted as an invariant for any particle

considered in the indicated reference frame. The uniform movement of a particle can be defined as the

constancy of the position change (ds vector). The choice of the reference frame associated with a uni-

formly moving material point is an orthogonal transformation of the WXYZ coordinate axes into such

W’X’Y’Z’ , that the W’ axis is collinear with the ds vector. Introducing momenta, conjugated by coordi-

nates as quantities proportional to their changes (full differentials), in virtue of the postulate on the

equivalency of the uniformly moving reference frames, we can express

2 2 2 2 2

0 x y z= + + +P P P P P , (3)

where P is a full (relativistic) particle momentum, P0 is a latent momentum orthogonal to all of three

components of the Px, Py and Pz kinetic momentum. Obviously, the formula (3) corresponds to the basic

relativistic equation

( )
2

2 2 2 2

2 x y z

E
mc

c
= + + +P P P ,  (4)

where m is a stable particle mass, shall its total energy E be set equal to Pc, and P0 = mc. From the postu-

late on the consistency on the stable mass, it follows that

2

0
const=P . (5)

In this case, w coordinate, conjugated to the P0 momentum, is cyclic one, which is true in the ab-

sence of the interactions. Equations (1)-(3) and (5) are completely consistent with the kinematic equa-

tions, arising from the special theory of relativity. It should be noted, that the metric tensor of the space,

where the indicated equations are observed, corresponds to the Kronecker symbol

ij ij
g δ= . (6)
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To define the first f integrals in this basis it is sufficient to comply with the equality:

0
0

x y z

f f f f

w x y z

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
P P P P . (7)

One of the first integrals is straightforward. For this purpose, we can use the Lanczos statement

[10], made on the basis of the variational principles as applied to the relativistic mechanics. “The presence

of a scalar potential energy is equivalent to the particle mass increase by the value of the potential energy

per the square of the light-speed”. Thus, shall U be the potential energy of the particle, the formula (3) is

transformed into

2
2 2 2

2
2

x y z

U
mU f

c
+ + + + =P P P , (8)

it, in the classic limit (с is sufficiently large), corresponds the law of conservation of the energy. The

equation (3) gives one more important consequence. The total differential of the dP relativistic momen-

tum, assigned to the ds module of the change of the position (which is an invariant), is related to the P

value itself by the J linear antisymmetric operator

d

ds
=

P
JP , (9)

where the matrix of J operator is represented as follows:

10 20 30

10 21 31

20 21 32

30 31 32

0

0

0

0

j j j

j j j

j j j

j j j

− − − 
 

− − =
 −
 
 

J . (10)

As applied to the electrodynamics problem, the three spatial components of the indicated value in

(9) are proportional to the force acting on the e charge in the electromagnetic field

( , , )
,

yx z
e e d x y z

s s s c c dw

∂∂ ∂  
+ + = +  ∂ ∂ ∂  

PP P r
E H , (11)

where E and H are experimentally observed values of the intensity of electric and magnetic fields, dw is a

latent differential module. Considering the proportionality of momenta to changes in the conjugate coor-

dinate, formulas for the matrix elements of J operator are as follows:
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10 20 30

0 0 0

21 31 32

0 0 0

                   

            

yx z

y xz

eEeE eE
j j j

cP cP cP

eH eHeH
j j j

cP cP cP

= = =

= − = = −

, (12)

where P0 is the module of the P0 momentum. The existence condition of the operator, opposite to J one,

consists in the inequality to zero of the determinant of a matrix of J operator

( )
22

2 2

0

,
det 0

e

c P
= ≠

E H
J . (13)

Subject to this condition, the following equation holds

( )
0

,

cP d

e ds
=

P
P V

E H , (14)

where V is a linear anti-symmetric operator, with its elements of a matrix be expressed as follows

10 20 30

21 31 32

              

           

x y z

z y x

v H v H v H

v E v E v E

= = =

= − = = −
. (15)

According to the assumption on the presence of A (A0, Ax, Ay, Az) tetra-vector of the electromagnetic

field [11], the expression (14) can be presented as follows:

( )
0

0

0

,
, ,

yx z

x y z

dPdP dP dP
e d ds ds ds ds

cP ds
w x y z

A A A A

 
= ∇ =  ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂

h i j k

E H P
P A . (16)

The “nabla” sign indicates the tetrameric differential operator

w x y z

∂ ∂ ∂ ∂
∇ = + + +

∂ ∂ ∂ ∂
h i j k , (17)

where h, i, j and k are single unit vectors of w, x, y and z axes respectively. Components of A vector are

related to E and H strengths contingent on the (14)-(16) relations:

( ) ( )( )

( ) ( )0

, , , ,

, , , ,

x y z r x y z

x y z r x y z

H H H rot A A A

E E E gradA A A A
w

=

∂
= −

∂

H A

E A
. (18)

The difference from the generally accepted formula [11] lies in the + sign in front of the gradient of

the scalar potential of A tetra-vector. However, considering the gauge invariance of equations of the elec-
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tromagnetic field, this difference is not a contradiction. The fundamentally important consequence out of

the equation (16) is the fact of the orthogonality of the total momentum and differential operator (17)

0( , , ) 0
r x y z

P
div P P P

w

∂
∇ = + =

∂
P P . (19)

This equality is nothing but the condition of flow continuity [11]. Thus, the proposed dynamic

model of the STR in the tetrameric Euclidean space in a number of fundamental moments is consistent

with the presentation in a form of Minkowski space-time. To find quantum conditions in the basis (1) it is

advisable to consider N linear operator such that

=s NP . (20)

It is easy to show that the matrix of the indicated operator is as follows

10 20 30

10 21 31

2

20 21 32

30 31 32

1

Q L L L

L Q L L

L L Q L

L L L Q

− − − 
 

− − =
 −
 
 

N
P

, (21)

where Q is a scalar product (s,P), and Lij are determinants composed of cyclic changes of the components

of coordinates and momenta, which according to the condition (7), are the first integrals given that mo-

menta are clearly independent of coordinates.

10 0 20 0 30 0

21 31 32

         

           

x y z

x y x z y z

L xP wP L yP wP L zP wP

L yP xP L zP xP L zP yP

= − = − = −

= − = − = −
. (22)

Under real-valued and at least one non-zero Lij (hereinafter referred to as the general case) it is pos-

sible to define roots of the characteristic polynominal of N operator – complex ones. It is a necessary and

sufficient condition for the self-adjoint N operator. By itself, this fact is of no importance in the Euclidian

spaces, but it enables us to justify the use of a unitary space instead of the Euclidean one in order to find

quantum conditions. It should be noted that below this replacement is made for convenience only. The

study of N operator in the Euclidean space in the same way leads to the principle, named after Werner

Heisenberg. However, the necessity to consider the bivectors instead of vectors and 2x2 matrix instead of

eigenvalues deprives this  way of some clarity.

The following are a number of suppositions and assumptions. For a N nonself-adjoint (non-

Hermitian) operator in a unitary space as a whole

( ) ( ), ,≠NP P P NP , (23)
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in Euclidean spaces the equality always holds regardless the type of the operator. In addition, an imagi-

nary component is a necessary and sufficient condition for the operator to be nonself-adjoint in a unitary

space.

( )Im , 0≠NP P . (24)

It can be shown that in a unitary space for a non-Hermitian operator, in the general case, the fol-

lowing equation holds

( ) ( )( )Re , , 0− =NP P P NP , (25)

which coincides in form with Born-Jordan permutation relations

( ) ( ), , i const− = ⋅s P P s . (26)

The complex axis in the tetrameric unitary space, according to Minkowski, can be determined by w

axis. The selection of a hidden axis as a complex one is entirely justified, because there are no obvious

reasons to use imaginary values for spatial coordinates. According to the scalar product rule, in a unitary

space the commutator (26) is transformed to a form (a bar over a symbol denotes a complex conjunction)

( ) ( ) ( )0, , 2 I R R oii w P w P− = −s P P s , (27)

where wR and wI are real-valued and imaginary components of w coordinate, P0R and P0I are real-valued

and imaginary components of P0 momentum. It should be noted that in the Minkowski space, where there

is no real-valued component in the time coordinate, permutation relations will be identical to zero. The

statement that the commutator (27) is a motion integral has the following argumentation. The orientation

of the basis of the real-valued and imaginary axes in relation to the coordinate and momentum can be ar-

bitrary. Thus, the real-valued and imaginary components of w and P0 vectors must be invariant in relation

to the groups of coordinate rotations, which entails the constancy of the determinant in the right side (27).

The established fact indicates the absence of the linear independence between real-valued and imaginary

axes of w latent coordinate. In addition, for the commutator (27) the Cauchy-Riemann conditions in the

theory of complex functions are not satisfied. Therefore, a function of the form (27) is no analytical. This

means that the differentiation with respect to the latent coordinate is not defined.

To comply with the equation (20), in a unitary space the form of N operator will be changed due to

the fact that the square of the relativistic momentum as an invariant in the equation (3) will be a product

of the conjugate values

Cre
at
ed

 in
 M

as
te
r P

DF 
Ed

ito
r



7

( )

10 20 30

10 21 31

20 21 32

30 31 32

1

,

Q L L L

L Q L L

L L Q L

L L L Q

− − − 
 

− − =
 −
 
 

N
P P

. (28)

Based on the unique adjoint operator theorem, it is possible to make the following suggestion. Parti-

cles, which have operator of the momentum transformation into a coordinate out of (28) non-Hermitian

ones, are fermions and those, having operators out of (28) Hermitian ones, are boson. It should be noted

that the Hermitian character of N operator leads to the determinant of the right side (27) equality to zero.

This can be achieved in two ways. By the absolute value of zero P0  (the photon is out of any interactions)

and the linear dependence of w and P0 (neutral particles).

The proposed scheme to define quantum conditions on the special theory of relativity is a  develop-

ment of a Hertz concept on the kinematic origin of the potential energy [12]. In its present form, this con-

cept takes a broadside approach. There are no quanta outside the fields. Hidden coordinates and momenta

are either purely imaginary ones (Minkowski space) or strictly real-valued ones (Euclidean space). The

operator of the momentum transformation to a coordinate according to (20) is always self-adjoint. The

observed values can take on a continuous range of values. In the presence of other bodies, the potential

energy takes a shape of the kinematic energy in the latent coordinate. The real-valued one in an explicit

form reversibly replaces the material one in a latent form. Thus, both imaginary momentum and coordi-

nate (already not always cyclical) are converted into complex ones. N operator can be non-Hermitian,

permutation relations take place.

Perhaps, the given wording of quantum conditions will find its place in the interpretation of the EPR

paradox. Free particles outside fields (outside measurements) do not obey quantum laws. The classical

integrals of motion are preserved for them. The measurement process itself is the interaction. Conse-

quently, the particle enters the field effect. Additional quantum conditions arise in the field of the meas-

uring device, which does not cancel the compliance with conservation laws.
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