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Abstract

The one-loop radiative correction to the photon propagator can be graphically
represented by the Feynman diagram of the second order. The physical meaning
of this diagram is the process γ → (e− + e+) → γ, where γ is denotation
for photon, and e−, e+ is the electron-positron pair. It means that photon
can exist in the intermediate state with e+, e− virtual particles. The photon
propagation function based on such process with electron-positron pair e−, e+,
is determined from the effective emission and absorption sources. The Schwinger
source methods of quantum field theory is applied. Then, the Coulomb potential
and Bohr energy with radiative corrections is determined.

1 Introduction

The theory of the electrostatic field is based on Coulomb’s law that summarizes exper-

imental data. This law states that two charged bodies with infinitely small dimensions

(two point charges) repel each other if they have like charges and attract each other if

they have unlike charges. The force of their interaction force is proportional to ∼ q1q2
R12

,

where q1 and q2 are charges of the first and second bodies, respectively and R12 is distance

between them.

Next, we consider of an electrostatic field in a vacuum. A perfect vacuum cannot

naturally be achieved in experiments, and a certain amount of air always remains in the

vessels being evacuated. This does not at all mean, however, that the laws of an electric

field in a vacuum cannot be studied experimentally Tamm (1979).
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The force of interaction of charges being inversely proportional to the square of the

distance between them can be directly verified experimentally. It can be verified by

sequentially measuring the forces of interaction between pairs of charges.

As regards the sign of charges, it is pure convention that the charges which appear

on glass when it is rubbed with silk or flannel are positive. Hence, the charges that are

repelled by these charges on the glass are also positive.

It is very important that Coulomb’s law holds only for the interaction of point charges,

i.e. charged particles of infinitely small dimensions.

The expression ”infinitely small” should naturally not be understood here in its

strictly mathematical sense. In physics, the expression ”infinitely small” (or ”infinitely

great”) quantity is always understood in the sense of ”sufficiently small” (or ”sufficiently

great”) quantity-sufficiently small with respect to another quite definite physical quantity.

(Tamm, 1979).

In the formulation of Coulomb’s law, the infinitely small (point) value of the dimensions

of charged bodies is understood in the sense that they are sufficiently small relative to the

distance between these bodies, sufficiently small in the sense that with the given distance

between the bodies the force of their interaction no longer changes within the limits of

the preset accuracy of measurements upon a further reduction of their dimensions and an

arbitrary change in their shape (Tamm, 1979).

When determining the resultant of electric forces, we must naturally take account of

the circumstance that these forces are vectors. R12 stands for a radius-vector drawn from

point 1 to point 2, and R12 = |R12| for the numerical value of the distance between points

1 and 2. It is obvious that R12 = −R21.

Coulomb’s law, as in general of any law on which the relevant branch of theoretical

physics is based, belongs not only to the direct experimental verification of this law. It

also belongs, and this is much more significant, to the agreement with experimental data

of the entire complex of theoretical conclusions having this law as one of their cornerstones

Tamm (1979).

The radiative corrections to the Coulomb potential follows from the quantum elec-

trodynamics and cannot be determined by the classical mathematical procedures of the

classical electromagnetism. So, we explain in the next section the method of the deter-

mination of the Green function of photon from which the radiative corrections to the

Coulomb potential follow.

2 The modified propagation function of photon

It is known from the traditional theory of the Feynman propagator of photon that the

one-loop radiative correction to the photon propagator can be graphically represented

by the Feynman diagram of the second order. The physical meaning of this diagram is

the process γ → (e− + e+) → γ, where γ is denotation for photon, and e−, e+ is

the electron-positron pair. It means that photon can exist in the intermediate state with

e+, e− virtual particles.
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The modified photon propagation function involving only the two-particle exchange

process between sources is then diagrammatic expressed by the analogical way in the

Schwinger source theory of QED.

Now, the goal of this contribution is to determine, in the framework of the source

methods, the photon propagator corresponding to the intermediate electron-positron pair.

The emission photon source emits by manner of the inter medial virtual photon the

electron-positron pair which is absorbed by the detection source. Such process is possible

when a source emits too much energy to produce only a photon. For the virtual photon

the relation k2 6= 0 and the excitation cannot propagate very far because the balance of

energy and momentum is broken.

We can split the process into two parts. The lower part and the upper part. The lower

part is the emission part and the upper one is the absorption part. The emission part

corresponds to the emission effective source. The effective two-particle source is here the

electromagnetic vector potential.

There is no renormalization procedure necessary, neither for the mass nor for the

charge. Here is the way from free traveling photon (k2 = 0) to the modified effective

photon propagator which experiences from the source an excess of energy (k2 = −M2), so

that after an extremely short time, it can produce an electron-positron pair. Everything

happens between the ”vacua” < 0−| and |0+ >. These are not the vacua with particle-

antiparticle pairs, etc. They are absolutely empty until an external source delivers or

takes the necessary attributes of energy, momentum, spin, etc. to or from the particles

to be produced or annihilated (Dittrich, eBook).

The vacuum amplitude corresponding to the primitive interaction that occurs is

involved in the vacuum to vacuum amplitude with i/h̄ = i, for h̄ = 1 (Dittrich, 1978)

〈0+|0−〉 = eiWint , (1)

where

Wint =
∫

(dx)jµ(x)Aµ(x) (2)

with

jµ(x) =
1

2
ψ(x)γ0eqγµψ(x) (3)

and the vacuum amplitude corresponding to the considered process is

〈0+|0−〉 = i
∫

(dx)ψ(x)γ0eqγµψ(x)Aµ(x), (4)

where q is the charge matrix: q =

(
0 −i
i 0

)
.

The vacuum amplitude for the non-interacting spin 1/2 particle is involved in the

general formula (Dittrich, 1978)

〈0+|0−〉 = 〈0+|0−〉η〈0+|0−〉η = eiW (η)eiW (η) (5)
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with

W (η) =
∫
ψγ0η, (6)

from which we extract the vacuum amplitude for the two non-interacting spin 1/2 particles

in the form (Schwinger, 1970; 2018)

〈0+|0−〉 =
1

2

[
i
∫

(dx)ψ(x)γ0η(x)
]2

= −1

2

∫
(dx)(dx′)ψ(x)γ0η(x)η(x′)γ0ψ(x′) →

−1

2

∫
ψ1(x)γ0η2(x)η2(x

′)γ0ψ1(x
′). (7)

The comparison of eq. (7) with eq. (4) supplies the matrix

iη2(x)η2(x
′)|eff emiss = eqγµγ0A2µδ(x− x′), (8)

or, in the momentum representation

iη2(p)η2(p
′)|eff emiss = eqγµγ0A2µ(k) (9)

with k = p+ p′.

By the same procedure just performed we get for the absorption effective source the

following formula:

iη1(p)η1(p
′)|eff abs = eqγµγ0A1µ(−k) (10)

with k = p+ p′.

Let us remark that the antisymmetry of the left side of eq. (8) for all indices expressing

the Fermi-Dirac statistics is involved in the charge matrix q.

The amplitude which describes emission and absorption of the two noninteracting

particles which propagate freely between the effective source can be separated from the

vacuum amplitude

〈0+|0−〉 = exp
{∫

(dx)(dx′)η1(x)γ0G+(x− x′)η2(x′)
}

(11)

as its quadratic term of its expansion. Here

G+(x− x′) = i
∫
dωpe

ip(x−x′)(m− γp), (12)

where dωp = d(p)
2π3

1
2p0

and p0 = +
√

p2 +m2 (Dittrich, 1978).

Then,

〈0+|0−〉 =
1

2

∫
dωp

∫
dωp′

[
η1(−p)γ0(m− γp)η2(p)η2(p′)γ0(m+ γp′)η1(p

′)
]

(13)

Using relation
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η1a(−p)Mabη1b(−p′) = −Mabη1b(−p′)η1a(−p) = −tr[Mη1(−p′)η1(−p)], (14)

where a and b are indexes for the eight-dimensional mathematical object η and symbol tr

denotes the eight-dimensional trace.

Using eq. (14) we can write

〈0+|0−〉 =
1

2

∫
dωp

∫
dωp′tr

[
(m− γp)η2(p)η2(p′)γ0(−m− γp′)η1(−p)η1(−p)γ0

]
. (15)

After inserting of the effective emission and absorption sources with k = p+ p′

iη2(p)η2(p
′)|eff emiss = eqγµγ0A2µ(k) (16)

iη1(−p′)η1(−p)|eff abs = eqγµγ0A1µ(−k) (17)

into eq. (13) we get with (γ0)2 = 1,

〈0+|0−〉 = −1

2

∫
dωp

∫
dωp′tr [(m− γp)eqγA2(k)(−m− γp′)eqγA1(−k)] . (18)

Substituting the unit factor

1 = (2π)3
∫
dM2dωkδ(k − p− p′), (19)

we find

〈0+|0−〉 = −e2
∫
dM2dωkA

µ
1(−k)Iµν(k)Aν2(k), (20)

where

Iµν(k) = Iνµ(k) = (2π)3
∫
dωpdωp′δ(k − p− p′).tr[γµ(m− γp)γν(−m− γp′)]. (21)

Using relations p2 +m2 = 0, p′2 +m2 = 0 we find

tr[γµ(m− γp)γν(−m− γp′)] = tr[(γp+m)γµ(γp′ −m)(m− γp)γν(−m− γp′)]. (22)

It may be easily seen that

kµIµν(k) = 0, (23)

which implies the gauge invariance of 〈0+|0−〉 in the form

Aµ(k)→ Aµ(k) + ikµλ(k). (24)

The symmetrical tensor constructed from the vector kµ is
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Iµν =

(
gµν −

kµkν
k2

)
I(M2), (25)

where I(M2) can be calculated from relation

3I(M2) = (2π)3
∫
dωpdωp′δ(p+ p′ − k)tr[γµ(m− γp)γν(−m− γp′)]. (26)

Then, using (Dittrich, 1978)

γµγµ = −4; γµγpγµ = 2γp (27)

tr[γµγν ] = −4gµν ; trγµ = 0 (28)

−M2 = k2 = (p+ p′)2 = −2m2 + 2pp′ (29)

and

(2π)3
∫
dωpdωp′δ(p+ p′ − k) =

1

(4π)2

(
1− 4m2

M2

)1/2

, (30)

we obtain

I(M2) =
4

3

(
M2 + 2m2

) 1

(4π)2

(
1− 4m2

M2

)1/2

. (31)

Now, we can write the vacuum amplitude in the form

〈0+|0−〉 = −e2
∫
dM2dωkA

µ
1(−k) ×

(
gµν +

kµkν
M2

)
4

3

(
M2 + 2m2

) 1

(4π)2

(
1− 4m2

M2

)1/2

Aν2(k). (32)

Since k2Aµ(k) = Jm and k2 = −M2, we have for the effective sources J1,2(∓k):

Aµ2(k) = − 1

M2
Jµ2 (k); Aµ1(−k) = − 1

M2
Jµ1 (−k) (33)

and after substitution of eq. (33) into vacuum amplitude (32) we get

〈0+|0−〉 = i
α

3π

∫ dM2

M2

(
1 +

2m2

M2

)(
1− 4m2

M2

)1/2

idωkJ
µ
1 (−k)J2µ(k). (34)

Now, we substitute for the momentum representation of Jµ(k)

Jµ1 (−k) =
∫

(dx)Jµ1 (x)eikx (35)

Jµ2 (−k) =
∫

(dx′)Jµ2 (x′)eikx
′

(36)

and put
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∆+(x− x′;M2) = i
∫
dωke

ik(x−x′). (37)

Then,

〈0+|0−〉 = i
α

3π

∫ dM2

M2

(
1 +

2m2

M2

)(
1− 4m2

M2

)1/2

×

∫
(dx)(dx′)Jµ1 (x)∆+(x− x′;M2)J2µ(x′). (38)

The amplitude (38) involves the electron-positron pair production and the complete

radiation process is described by the amplitude

〈0+|0−〉 =
∫

(dx)(dx′)Jµ1 (x)D̃+(x− x′;M2)J2µ(x′), (39)

where the momentum representation of D̃+(x − x′) can be now written with the regard

to eq. (38) in the form:

D̃+(k) =
1

k2 − iε
+

α

3π

∫ ∞
4m2

dM2

M2

(
1 +

2m2

M2

)(
1− 4m2

M2

)1/2
1

k2 +M2 − iε
, (40)

or,

D̃+(k) =
1

k2 − iε
+
∫
dM2 a(M2)

k2 +M2 − iε
(41)

where

a(M2) =
α

3π

1

M2

(
1 +

2m2

M2

)(
1− 4m2

M2

)1/2

. (42)

is the weight function of the e+e− - particle production. Let us remark that for M � 2m

the radiative correction to the Green function of the free photon D̃+ behave like

∫ ∞
4m2

dM2

M2

1

k2 +M2
(43)

and therefore there is no convergence problem of integral in eq. (41).

3 The modified Coulomb potential

The introduction of the modified propagation function implies the change of the inter-

action between static charges which originally interact by manner of the Coulomb law.

Let us first recall the definition of the potential by means of the Green function. This

definition of the potential is not involved in the Roche majestic article on the historical

development of the potential (Roche, 2003).

So, from the Green function of the massive scalar particle (Schwinger, 1970; 2018)
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∆+(x− x′) = i
∫
dωpe

ip(x−x′)−ip0|x0−x′0| (44)

we get as the consequence of it the massless Green function (Schwinger, 1970; 2018; 2-3.91)

D+(x− x′) = ∆+(x− x′,m = 0) = D+(x− x′, τ) = (45)

i

4π2

1

|x− x′|

∫ ∞
0

dp0 sin
(
p0|x− x′|

)
e−ip

0|τ | (46)

with τ = x0 − x′0. The potential corresponding to the Green function (3) is then defined

by the following way (Schwinger, 1970; 2018; 2-3.92):

V (x− x′) =
∫ ∞
−∞

dτD+(x− x′, τ) =

1

2π2

1

|x− x′|

∫ ∞
0

dp0
sin(p0|x− x′|)

p0
=

1

4π

1

|x− x′|
. (47)

Replacing D+(x − x′, τ) by its modified spin 1/2 version D̃+(x − x′, τ), we get the

modified Coulomb potential (Schwinger, 1970; 2018):

Ṽ (x) =
1

4π|x|
+

α

3π

∫ ∞
(2m)2

(
1 +

2m2

M2

)(
1− 4m2

M2

)1/2
e−M |x|

4π|x|
=

1

4π|x|

[
1 +

α

π

∫ 1

0
du
u2(1− u2/3)

1− u2
exp

{
− 2m|x|

(1− u2)1/2

}]
, (48)

where

u =

(
1− 4m2

M2

)1/2

. (49)

So, we have seen that the four variable Green function is reduced by time integration to

the the tree-variable Green function and the exponential part of it is the Green function

corresponding to operator −∆ +M2. It can be obtained by the contour integration with

the result

∫ (dp)

(2π)3
eipx

p2 +M2 − iε
=
e−M |x|

4π|x|
. (50)

Now, let us consider two cases in eq. (49):

Ṽ (x) ≈ V (x); 2m|x| � 1 (51)

Ṽ (|x|) ≈ 1

4π|x|

[
1 +

2α

3π

(
lg

1

m|x|
− C − 5

6

}]
; 2m|x| � 1, (52)

where

C = 0, 57721.... (53)
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is the Euler constant. The additional logarithmic behavior under these circumstances

comes from the interval of M -integration such that |x|−1 � M � 2m. The evaluation

of Ṽ (|x|) for 2m|x| � 1 is obtained by partitioning the integral at some value of M that

satisfies the considered inequality.

Let us remark that the used methods of this article can be applied in the area of the

general theory of the potential (Gunter, 1953).

4 Discussion

The effect we are discussing here, is usually named as vacuum polarization. It increases

the strength of the Coulomb interaction with diminishing distance. The increase is quite

small, however, at any realizable distance. Thus, with 2m|x| ∼ 10−3, which represents

a distance of roughly 10−14 cm when the electron mass is used, it is approximately one

percent. In view of the logarithmic dependence on distance, this order of magnitude

cannot be changed significantly by any conceivable improvement in experimental process;

a ten-percent increase in interaction strength requires dropping to a distance ∼ 10−37

cm. And long before such distances could be approached, the situation would change

qualitatively through the growing importance of particles that are heavier than the

electron.

Nevertheless, vacuum polarization effects are measurable at the present level of

experimental technique. The most elementary situation is that of hydrogen atoms where

the strengthened attraction between electron and nucleus depresses the energy values of

zero orbital angular momentum states, these being the ones in which the electron spends

appreciable time near the nucleus (Schwinger, 1983; 2018).

Simple perturbation theory can be applied to the change in interaction energy,

δV (x) = −Ze2δD(x), (54)

where δD(x) represents the difference between D̃(x) and

D(x) =
1

4π
|x|. (55)

In a state with non-relativistic wave function ψ(x), appropriate to the restriction

Zα� 1, we have

δE =
∫
d(x)δV (x)|ψ(x)|2 ∼= −4πZα|ψ(0)|2

∫
d(x)δD(x), (56)

which uses the fact that the perturbation is significant only over distances that are small

compared with atomic dimensions. The integration that appears here is equivalent to

evaluating the zero momentum limit of δD+(k), and

∫
d(x)δD(x) =

α

3π

∫ ∞
4m2

dM2

M4

(
1 +

2m2

M2

)(
1− 4m2

M2

)1/2

=
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α

π

1

(2m)2

∫ 1

0
dvv2

(
1− 1

3
v2
)

=
α

15π

1

m2
. (57)

Only s-states need to be considered. For principal quantum number n

|ψns(0)|2 =
1

π

(
Zα

n
m
)3

(58)

and

δEns = − 4

15π

Z4α5

n3
m, (59)

or,

δEns(
1
2
Z2α2

n2 m
) = − 8

15π

Z2α3

n
, (60)

the latter giving a comparison with the Bohr energy values. More details will not be

supplied now since, this effect is rather minor compared to another that displaces the s-

states in the opposite sense. Let us remark that quantum numbers can take the following

values: n = 1, 2, 3, ... - (principal quantum number), l = 0, 1, 2, ..., n − 1 - (azimuthal

quantum number) and m = −l, ... l, - (magnetic quantum number) (Merzbacher, 1988).

In our case, Only s-states are considered being nonzero.

The existence of the vacuum polarization effect must be inferred from the quantitative

comparison with experiment; in its absence a small but significant discrepancy with

experiment would remain (Schwinger, 1983; 2018).
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