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This paper is dedicated to the memory of my Father who taught me arithmetic,
To my wife Wahida, my daughter Sinda and my son Mohamed Mazen

’I feel that these aren’t the right techniques to solve the Riemann hypothesis itself, it’s going to
need some big idea from somewhere else.’

James Maynard (07/15/2024)

Abstract. In 1859, Georg Friedrich Bernhard Riemann had announced the
following conjecture, called Riemann Hypothesis : The nontrivial roots (zeros)
s = σ + it of the zeta function, defined by:

ζ(s) =

+∞∑
n=1

1

ns
, for ℜ(s) > 1

have real part σ =
1

2
. In this note, I give the proof that σ =

1

2
using an

equivalent statement of the Riemann Hypothesis concerning the Dirichlet η
function.

1. Introduction

In 1859, G.F.B. Riemann had announced the following conjecture [2] known
Riemann Hypothesis:

Conjecture 1.1. Let ζ(s) be the complex function of the complex variable s =
σ + it defined by the analytic continuation of the function:

ζ1(s) =
+∞∑
n=1

1

ns
, for ℜ(s) = σ > 1

over the whole complex plane, with the exception of s = 1. Then the nontrivial
zeros of ζ(s) = 0 are written as :

s =
1

2
+ it

In this paper, our idea is to start from an equivalent statement of the Riemann
Hypothesis, namely the one concerning the Dirichlet η function. The latter is
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related to Riemann’s ζ function where we do not need to manipulate any expres-
sion of ζ(s) in the critical band 0 < ℜ(s) < 1. In our calculations, we will use the

definition of the limit of real sequences. We arrive to give the proof that σ =
1

2
.

1.1. The function zeta(s). We denote s = σ + it the complex variable of C.
For ℜ(s) = σ > 1, let ζ1 be the function defined by :

ζ1(s) =
+∞∑
n=1

1

ns
, for ℜ(s) = σ > 1

We know that with the previous definition, the function ζ1 is an analytical func-
tion of s. Denote by ζ(s) the function obtained by the analytic continuation
of ζ1(s) to the whole complex plane, minus the point s = 1, then we recall the
following theorem [3]:

Theorem 1.2. The function ζ(s) satisfies the following :
1. ζ(s) has no zero for ℜ(s) > 1;
2. the only pole of ζ(s) is at s = 1; it has residue 1 and is simple;
3. ζ(s) has trivial zeros at s = −2,−4, . . .;
4. the nontrivial zeros lie inside the region 0 ≤ ℜ(s) ≤ 1 (called the critical

strip) and are symmetric about both the vertical line ℜ(s) = 1

2
and the real axis

ℑ(s) = 0.

The vertical line ℜ(s) = 1

2
is called the critical line.

For our proof, we will use the function presented by G.H. Hardy [4] namely
Dirichlet eta function [3]:

η(s) =
+∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s)

The function eta is convergent for all s ∈ C with ℜ(s) > 0 [3].

We have also the theorem (see page 16, [4]):

Theorem 1.3. For all t ∈ R, ζ(1 + it) ̸= 0.

So, we take the critical strip as the region defined as 0 < ℜ(s) < 1.

1.2. A Equivalent statement to the Riemann Hypothesis. Among the
equivalent statements to the Riemann Hypothesis is that of the Dirichlet eta
function which is stated as follows [3]:

Equivalence 1.4. The Riemann Hypothesis is equivalent to the statement that
all zeros of the Dirichlet eta function :

η(s) =
+∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s), σ > 1 (1.1)
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that fall in the critical strip 0 < ℜ(s) < 1 lie on the critical line ℜ(s) = 1

2
.

The series (1.1) is convergent, and represents (1 − 21−s)ζ(s) for ℜ(s) = σ > 0
([4], pages 20-21). We can rewrite:

η(s) =
+∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s), ℜ(s) = σ > 0 (1.2)

η(s) is a complex number, it can be written as :

η(s) = ρ.eiα =⇒ ρ2 = η(s).η(s) (1.3)

and η(s) = 0 ⇐⇒ ρ = 0.

2. Preliminaries of the proof that the zeros of the function
eta(s) are on the critical line ℜ(s) = 1/2

Proof. We denote s = σ + it with 0 < σ < 1. We consider one zero of η(s) that
falls in critical strip and we write it as s = σ + it, then we obtain 0 < σ < 1 and
η(s) = 0 ⇐⇒ (1− 21−s)ζ(s) = 0. We verify easily the two propositions:

s, is one zero of η(s) that falls in the critical strip, is also one zero of

ζ(s) in the critical strip (2.1)

Conversely, if s is a zero of ζ(s) in the critical strip, let ζ(s) = 0 =⇒ η(s) =
(1 − 21−s)ζ(s) = 0, then s is also one zero of η(s) in the critical strip. We can
write:

s, is one zero of ζ(s) that falls in the critical strip, is also one zero of

η(s) in the critical strip (2.2)

Let us write the function η:

η(s) =
+∞∑
n=1

(−1)n−1

ns
=

+∞∑
n=1

(−1)n−1e−sLogn =
+∞∑
n=1

(−1)n−1e−(σ+it)Logn =

=
+∞∑
n=1

(−1)n−1e−σLogn.e−itLogn

=
+∞∑
n=1

(−1)n−1e−σLogn(cos(tLogn)− isin(tLogn))

The function η is convergent for all s ∈ C with ℜ(s) > 0, but not absolutely
convergent. We definite the sequence of functions ((ηn)n∈N∗(s)) as:

ηn(s) =
n∑

k=1

(−1)k−1

ks
=

n∑
k=1

(−1)k−1 cos(tLogk)

kσ
− i

n∑
k=1

(−1)k−1 sin(tLogk)

kσ

with s = σ + it and t ̸= 0.
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Let s = σ + it with 0 < σ < 1 be one zero of the function eta, then :

+∞∑
n=1

(−1)n−1

ns
= 0

or:

∀ϵ′ > 0 ∃n0,∀N > n0,

∣∣∣∣∣
N∑

n=1

(−1)n−1

ns

∣∣∣∣∣ < ϵ′

It follows that we can write limn−→+∞ηn(s) = 0 = η(s). We obtain:

limn−→+∞

n∑
k=1

(−1)k−1 cos(tLogk)

kσ
= 0

limn−→+∞

n∑
k=1

(−1)k−1 sin(tLogk)

kσ
= 0

Using the definition of the limit of a sequence, we can write:

∀ϵ1 > 0 ∃nr,∀N > nr, | ℜ(η(s)N) |< ϵ1 =⇒ ℜ2(η(s)N) < ϵ1
2 (2.3)

∀ϵ2 > 0 ∃ni, ∀N > ni, | ℑ(η(s)N) |< ϵ2 =⇒ ℑ2(η(s)N) < ϵ2
2 (2.4)

Then:

0 <
N∑
k=1

cos2(tLogk)

k2σ
+ 2

N∑
k,k′=1;k<k′

(−1)k+k′cos(tLogk).cos(tLogk′)

kσk′σ < ϵ21

0 <
N∑
k=1

sin2(tLogk)

k2σ
+ 2

N∑
k,k′=1;k<k′

(−1)k+k′sin(tLogk).sin(tLogk′)

kσk′σ < ϵ22

Taking ϵ = ϵ1 = ϵ2 and N > max(nr, ni), we get by making the sum member to
member of the last two inequalities:

0 <
N∑
k=1

1

k2σ
+ 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(tLog(k/k
′))

kσk′σ < 2ϵ2 (2.5)

We can write the above equation as :

0 < ρ2N < 2ϵ2 (2.6)

or ρ(s) = 0.

3. Case 0 < ℜ(s) < 1/2

Suppose there exists s = σ+ it one zero of η(s) or η(s) = 0 =⇒ ρ2(s) = 0 with
0 < σ < 1

2
=⇒ s lies inside the critical band. We write the equation (2.5):

0 <

N∑
k=1

1

k2σ
+ 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(tLog(k/k
′))

kσk′σ < 2ϵ2
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or:
N∑
k=1

1

k2σ
< 2ϵ2 − 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(tLog(k/k
′))

kσk′σ

But 2σ < 1, it follows that limN−→+∞

N∑
k=1

1

k2σ
−→ +∞ and then, we obtain :

+∞∑
k,k′=1;k<k′

(−1)k+k′ cos(tLog(k/k
′))

kσk′σ = −∞ (3.1)

4. Case ℜ(s) = 1/2

We suppose that σ =
1

2
. Let’s start by recalling Hardy’s theorem (1914) ([3],

page 24):

Theorem 4.1. There are infinitely many zeros of ζ(s) on the critical line.

From the propositions (2.1-2.2), it follows the proposition :

Proposition 4.2. There are infinitely many zeros of η(s) on the critical line.

Let sj = 1
2
+ itj one of the zeros of the function η(s) on the critical line, so

η(sj) = 0. The equation (2.5) is written for sj:

0 <
N∑
k=1

1

k
+ 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(tjLog(k/k
′))√

k
√
k′

< 2ϵ2

or:
N∑
k=1

1

k
< 2ϵ2 − 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(tjLog(k/k
′))√

k
√
k′

If N −→ +∞, the series
N∑
k=1

1

k
is divergent and becomes infinite. then:

+∞∑
k=1

1

k
≤ 2ϵ2 − 2

+∞∑
k,k′=1;k<k′

(−1)k+k′ cos(tjLog(k/k
′))√

k
√
k′

Hence, we obtain the following result:

limN−→+∞

N∑
k,k′=1;k<k′

(−1)k+k′ cos(tjLog(k/k
′))√

k
√
k′

= −∞ (4.1)

if not, we will have a contradiction with the fact that :

limN−→+∞

N∑
k=1

(−1)k−1 1

ksj
= 0 ⇐⇒ η(s) is convergent for sj =

1

2
+ itj
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5. Case 1/2 < ℜ(s) < 1

Let s = σ+it be the zero of η(s) in 0 < ℜ(s) < 1
2
, object of the section 3. From

the proposition (2.1), ζ(s) = 0. According to point 4 of theorem 1.2, the complex
number s′ = 1− σ + it = σ′ + it′ with σ′ = 1− σ, t′ = t and 1

2
< σ′ < 1 verifies

ζ(s′) = 0, so s′ is also a zero of the function ζ(s) in the band 1
2
< ℜ(s) < 1,

it follows from the proposition (2.2) that η(s′) = 0 =⇒ ρ(s′) = 0. By applying
(2.5), we get:

0 <
N∑
k=1

1

k2σ′ + 2
N∑

k,k′=1;k<k′

(−1)k+k′ cos(t
′Log(k/k′))

kσ′k′σ′ < 2ϵ2 (5.1)

As 0 < σ < 1
2
=⇒ 2 > 2σ′ = 2(1−σ) > 1, then the series

∑N
k=1

1

k2σ′ is convergent

to a positive constant not null C(σ′). As 1/k2 < 1/k2σ′
for all k > 0, then :

0 < ζ(2) =
π2

6
=

+∞∑
k=1

1

k2
<

+∞∑
k=1

1

k2σ′ = C(σ′) = ζ1(2σ
′) = ζ(2σ′)

From the equation (5.1), it follows that :

+∞∑
k,k′=1;k<k′

(−1)k+k′ cos(t
′Log(k/k′))

kσ′k′σ′ = −C(σ′)

2
= −ζ(2σ′)

2
> −∞ (5.2)

5.0.1. Case t = 0. We suppose that t = 0 =⇒ t′ = 0. We known the following
proposition:

Proposition 5.1. For all s = σ real with 0 < σ < 1, η(s) > 0 and ζ(s) < 0.

We deduce the contradiction with the hypothesis s′ = σ′ is a zero of η(s) and:

The equation (5.2) is false for the case t′ = t = 0. (5.3)

5.0.2. Case t′ = t ̸= 0. We suppose that t′ ̸= 0. Let s′ = σ′ + it′ = 1 − σ + it a
zero of η(s), we have:

+∞∑
k,k′=1;k<k′

(−1)k+k′ cos(t
′Log(k/k′))

kσ′k′σ′ = −C(σ′)

2
= −ζ(2σ′)

2
> −∞ (5.4)

the left member of the equation (5.4) above is finite and depends of σ′ and t′, but
the right member is a function only of σ′ equal to −ζ(2σ′)/2.

We recall the following theorem (see page 140, [4]):

Theorem 5.2.

limT−→+∞
1

T

∫ T

1

| ζ(σ” + iτ) |2 dτ = ζ(2σ”) (σ” >
1

2
) (5.5)
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Let t0 so that t0 ≥ 1. As the integral of the left member of the above equation
is convergent, the equation (5.5) can be written as:

limT−→+∞
1

T

∫ T

t0

|ζ(σ” + iτ)|2dτ = ζ(2σ”)

and ζ(2σ”) is independent of any t0 then in particular for t0 = t′. As σ” is any
σ” > 1/2, I choose σ” = σ′ and t0 = t′, it follows that ζ(2σ′) does not depend
of t′ so that s′ = σ′ + it′ is a root of η. Hence, the contradiction with equation
(5.2). Then the equation (5.4) is false.

It follows that the equation (5.4) is false for the case t′ ̸= 0. (5.6)

It follows that the equation (5.2) is false and η(s′) does not vanish for σ′ ∈
]1/2, 1[.

From (5.3-5.6), we conclude that the function η(s) has no zeros for all s′ =
σ′+it′ with σ′ ∈]1/2, 1[, it follows that the case of the section (3) above concerning

the case 0 < ℜ(s) < 1

2
is false too. Then, the function η(s) has all its zeros on

the critical line σ =
1

2
. From the equivalent statement (1.4), it follows that the

Riemann hypothesis is verified. □

We therefore announce the important theorem as follows:

Theorem 5.3. The Riemann Hypothesis is true:
All nontrivial zeros of the function ζ(s) with s = σ + it lie on the vertical line

ℜ(s) = 1

2
.
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