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A novel general  relativistic plane-wave metric  is  presented with a proposal  for possible detection. Called a
quasi-inertial oscillation (QIO), the metric is an exact solution to Einstein's vacuum field equations, yet carries
non-Einsteinian longitudinal polarization, permitted by its quasi-inertial status. Although QIOs are metric waves
in spacetime, they differ fundamentally from the standard gravitational waves assumed to be detected by LIGO
and Virgo. QIOs are an oscillating type of quasi-inertial disturbance (QID), a broader class of exact solutions to
Einstein's equations with varying features that travel at the speed of light. The observable properties of QIDs,
and of QIOs in particular, have rarely if ever been studied in the literature. Yet it is shown here that if general
relativity accurately models gravity, QIOs should produce test particle acceleration and are thus in principle
observable by space-based detectors. Due to Riemann flatness, QIOs were historically dismissed as unphysical,
and hence unobservable, by authors such as Taub, McVittie, Weber and others. However, these authors were
seeking  gravitational  waves  capable  of  forming  gravitons,  a  far  more  stringent  requirement  than  mere
observability. Moreover, the claim that Riemann flatness precludes detection does not apply to metrics for which
the coordinate system is fixed by a physical structure, such as a space-based platform, an accelerating rocket, or
the cosmic microwave background, nor to metrics associated with frame-dependent quantum processes such as
the Unruh effect. Nevertheless, subsequent authors continued to dismiss exact longitudinal plane-wave solutions
and thus overlooked a real possibility of detection. With the benefit of hindsight, it is proposed here that QIOs
may not only be detectable,  but that Riemann flatness does not rule out the potential influence of QIOs on
astrophysical or cosmological backgrounds, including the stochastic gravitational wave and photon backgrounds.
QIOs are presented first  in rectangular coordinates, then in Brinkmann coordinates for comparison with pp-
waves. It is also shown that the Riemann-flat metric of a uniformly accelerating Rindler frame, theoretically
detectable by Unruh radiation, can be constructed as a product of (rectangular) advanced and retarded QIDs,
offering  further  argument  for  observability  through  an  Unruh-type  effect.  Astrophysical  and  cosmological
mechanisms are proposed as physical sources of QIOs. It is further suggested that, since QIOs are energy-free
exact solutions to Einstein's equations, there is nothing to obstruct their generation by accidental alignments of
matter,  and  thus  nothing  to  prevent  the  vacuum  from  being  filled  with  weak  transient  random spacetime
fluctuations. Spacetime fluctuations are of course predicted in theories of quantum gravity; however QIOs would
constitute  a  classical source  of  fluctuations.  Finally,  the  role  of  Riemann  curvature  in  pseudo-Riemannian
spacetime is challenged in view of categorical differences between space and time. It is proposed that Riemann
flatness does not preclude detection for spatially curved metrics in which the Riemann tensor vanishes due to
cancellation  of  space  versus  time  components.  Examples  include  the  Milne  and  Rindler  metrics.  Overall,
questions  are  raised  about  space,  time,  and  the  foundations  of  gravitational  wave  theory,  leading  to  the
suggestion that historical assumptions may have been misapplied in the standard approaches of today.

I. INTRODUCTION 

Interest in gravitational waves (GWs) of both astrophysical
and cosmological origin has flourished since the advent of
the  Advanced  LIGO  and  Virgo  detectors,  whose
observations have unleashed a new era of multi-messenger
astronomy [1].  GWs are believed to interact only weakly
with  matter  and  may  thus  provide  a  powerful  tool  for
investigating inflation models and the high-energy fields of
the early universe [2-6]. It is anticipated that GW detectors
in the near future will offer precise tests of quantum gravity
and of  general  relativity  (GR)  in  the  strong-field  regime
[1,7].  Unresolved  GWs  generated  by  a  variety  of
mechanisms  are  assumed  to  form  a  possibly  anisotropic
stochastic gravitational wave background (SGWB) [8-11],
observable by current or near-future detectors. The SGWB
is predicted to arise from the superposition of unresolved
GWs emanating from a broad  array  of  astrophysical  and

cosmological  sources  [12-15],  including  close  binary
systems,  supermassive  black  hole  mergers  [16],  galactic
millisecond pulsars  [17],  primordial  black holes [18-25],
quasars  [26],  cosmic  strings  [27-30],  inflation  [2,31-33],
primordial  GWs  [34-36],  cosmological  phase  transitions
[37-40],  photon  graviton  conversion  from  black  hole
photon  spheres  [41],  superradiant  instability  of  spinning
black holes in the presence of massive bosons [42], and
magnetohydrodynamic turbulence due to high conductivity
at early epochs [43,44].

The  SGWB  is  in  some  ways  a  gravitational  analog  of
electromagnetic radiation backgrounds such as the cosmic
microwave background (CMB) and the  stochastic photon
background (SPB). The SPB is defined here as a composite
of photon backgrounds arising from or influenced by non-
CMB  sources.  These  backgrounds  include  secondary
photons from relatively cold CMB photons scattered by the



inverse  Compton process off  of  free hot  electrons  in  the
intracluster medium of galaxy groups and clusters, causing
a distortion of  the CMB spectrum known as  the thermal
Sunyaev-Zel'dovich effect [45,46]. Other SPB components
include the cosmic radio background (CRB), believed to be
of  extra-galactic  or  cosmological  origin  and  displaying
temperatures  substantially  greater  than  those  observed  in
radio-emitting  galaxies  [47];  and  the  cosmic  infrared
background  (CIB),  comprising  photons  arising  from
thermal dust emission in star-forming galaxies [45,46].

The SGWB promises to provide one of the best windows
we have into the physics of the early universe [22,48,49],
and is a topic of growing importance in the literature [9,50-
56]. Indeed, there is evidence the SGWB may have already
been detected in pulsar timing array (PTA) data from the
North  American  Nanoherz  Observatory  for  Gravitational
Waves  (NANOGrav)  [15,16,21,43].  However,  the
NANOGrav  data  implies  a  GW polarization  that  departs
from that expected in GR, suggesting a nonstandard form of
gravitational  oscillation  or  a  modified  theory  of  gravity
[15]. This question remains open.

Given  the  relevance  of  the  SGWB  and  other  radiation
backgrounds  to  this  and  other  fundamental  questions  in
gravitation and cosmology, it  is  worthwhile to reexamine
seldom-explored general relativistic phenomena related to
nonstandard  spacetime  disturbances.  The  purpose  of  this
paper  is  to  derive  and  investigate  a  novel  spacetime
disturbance,  to  be  called  the  quasi-inertial  disturbance
(QID),  which  could  conceivably  impact  both  the  SGWB
and  SPB,  and  potentially  shed  light  on  the  NANOGrav
question. Defined as a plane-symmetric general relativistic
spacetime variation  traveling  at  the  speed  of  light  c,  the
QID  is  represented  by  a  dynamic  metric  gμν(t,x) in
rectangular  coordinates  that  exactly  solves  the  vacuum
Einstein equations  Rμν=0. QIDs may be either periodic or
nonperiodic.  The  periodic  variety  investigated  here  are
called quasi-inertial oscillations (QIOs). 

QIOs possess neither energy nor Riemann curvature and are
best described as quasi-inertial rather than as gravitational
phenomena.  QIDs,  of  which  QIOs  form  an  oscillating
subclass,  are  perhaps  the  simplest  dynamic  metrics  that
exactly  solve  Einstein's  vacuum field  equations  (EVFE),
and one might wonder why such solutions are not routinely
studied. The historical reason for this omission is precisely
their  curvature-free  nature,  a  property  that  led  earlier
researchers  such  as  Taub  and  McVittie  to  dismiss
previously known QIO solutions as spurious or unphysical,
and hence unviable as GW candidates [57-59]. The claim
that curvature-free waves are unphysical will be referred to
here  as  Taub's  rule.  However  the  above  authors  were
seeking  GWs  capable  of  forming  gravitons,  a  unique
requirement  beyond  mere  observability.  Hence  in  Taub's
usage,  the  term  unphysical does  not  automatically  mean
unobservable.  Indeed,  that  QIOs  are  observable  forms  a
central theme of the present work. Here and throughout this

paper,  a  metric  is  defined  as  observable if  the  varying
features of the metric can in principle be measured in some
physical reference frame, where the term varying features
denotes explicit space or time dependent quantities.

It is well known that Riemann flat metrics, i.e. metrics with
a vanishing Riemann tensor  Rμναβ=0, can be transformed
into  the  Minkowski  metric  by  a  suitable  change  of
coordinates.  Such  a  transformation  property  is  often
assumed  to  mean  that  the  metric  is  also  undetectable.
However, this assumption does not hold for metrics whose
coordinates are defined by a physical platform or structure,
such as the surface of a planet, a rotating space station, an
accelerating rocket, or the CMB, nor for metrics associated
with frame-dependent quantum effects, such as the Unruh
effect  [60].  Indeed,  physical  structures defining  de facto
preferred  coordinate  frames,  a  setup  unavoidable  in
practice,  offer  detection  capabilities  that  are  often
overlooked  in  pure  mathematical  contexts,  in  which  all
frames are held to be equally viable even if based on null
[61] or other unrealizable coordinates. The existence of a
de  facto preferred  frame,  of  course,  does  not  violate
covariance,  but  arises  simply  as  an  artifact  of  the
indispensable  role  of  the  observer.  Indeed,  when
observational  aspects  are  paramount,  de  facto preferred
frames are sometimes employed in the literature to provide
deeper insight into GR solutions. An informative example
is offered by Hobson [62], who constructs preferred frames
for Schwarzschild and Reissner-Nordstrom metrics based
on trajectories  of  massive particles.  These frames define
coordinates that are well-behaved at the event horizon and
useful in clarifying many observable phenomena, including
Hawking radiation. Thus specific coordinate frames can be
essential for detecting or describing the varying features of
a metric. With this understanding, it is shown in Section IV
that QIOs are in principle observable by suitable detectors
aboard any solid space-based platform, where the platform
must  be  larger  than  the  QIO  wavelength  to  hold  the
detectors  rigid.  It  follows that,  contrary to  the  historical
interpretation of Taub's rule, QIOs are nontrivial from an
observational standpoint.

It  is  further  conjectured  in  Section  VI  that  Riemann
flatness  does  not  rule  out  detection  for  metrics  with  the
property  that  the  Riemann  tensor  vanishes  due  to
cancellation between space and time components. Such a
cancellation may be questionable in any case by virtue of
manifest  differences between space  and time,  as  will  be
argued. Flat yet observable metrics with the above property
include the Milne and Rindler metrics. Note that although
these metrics have zero  spacetime curvature, their  spatial
curvature is nonzero, supporting the additional conjecture
that spatial curvature alone offers a sufficient criterion for
detection. The Milne and Rindler metrics will be discussed
briefly in the next paragraph. The Rindler metric will be
explored more thoroughly in Section IV.



The idea that Riemann flatness does not preclude detection
can be made intuitive by the following three examples. In
the first example, we consider the Rindler frame, as defined
by  Sugiyama  et  al.  in  [63],  which  corresponds  to  an
observation platform undergoing constant acceleration. The
Rindler metric can be made Minkowskian by a coordinate
transformation,  meaning  the  metric  is  Riemann  flat.
Nevertheless an observer in a Rindler frame can detect the
varying features of the metric both by inertial forces and
theoretically also by Unruh radiation, the latter a prediction
of  quantum  field  theory  for  non-inertial  or  curved
spacetimes  [60,64-66].  The  Rindler  metric  is  particularly
relevant to QID observability in that Rindler metrics can be
expressed as a product of rectangular advanced and retarded
QIDs.  This  result  is  derived  in  Section  IV.  The  close
relationship  between  Rindler  metrics  and  QIDs  suggests
that  QIDs  might  also  be  detectable  through  a  form  of
Unruh-type radiation. This is a topic for future research.

The second example involves the metric for a constantly
expanding Milne universe, given by

ds2 = dt2 ─ b2 t2 (dr2 +r2 dΩ2)

where  b is a constant coefficient. Milne originally derived
this  metric  in  a  special  relativistic  framework  [67].
However,  the  metric  may  also  be  derived  in  the  GR
formalism as a solution to Einstein's field equations. In the
latter case, the Milne metric constitutes a special case of the
Friedmann-Robertson-Walker (FRW) metric

ds2 = dt2 ─ a2(t)(dr2 +r2 dΩ2)

for  an  empty  universe,  where  the  comoving  coordinates
expand at a constant rate with scale factor a(t)=bt [68-72].
The  Milne  metric  can  be  transformed  into  a  patch  of
Minkowski space and is therefore Riemann flat. However a
hypothetical Milne universe, whose spatial coordinates are
defined by small comoving test stars, would be detectable
by  a  linear  Hubble  redshift  relation,  where  in  GR,  the
redshift  is  assumed  to  arise  from  spatial  expansion,  a
behavior  incompatible  with  Minkowski  spacetime.  It  is
significant  that  the  Milne  universe,  despite  its  zero
spacetime curvature,  has nonzero  spatial curvature,  again
supporting the conjecture that spatial curvature suffices for
detection. As an interesting aside, the Milne metric, though
a solution to Einstein's field equations for empty space only,
is not unrealistic when compared to modern astronomical
data on cosmic acceleration. Indeed, some authors maintain
that SNIa data, as of 2020, do not convincingly demonstrate
acceleration, but instead constitute a fair, or even excellent,
fit to the Milne universe [69,71,72].

The  third  example  involves  the  metric  of  a  rotating
coordinate frame. This metric can also be made constant by
a change of coordinates, meaning it too is curvature free.
Yet  such  a  metric  is  observable  through for  example  the
Coriolis  force,  an inertial  force measurable  in  any earth-
based laboratory. In addition, rotating frames are believed

detectable  by  Unruh  radiation  [73].  The  above  three
examples support the present postulate that, contrary to a
prima facie interpretation of Taub's rule, the vanishing of
the  Riemann  tensor  does  not  make  detection  impossible
with respect to ordinary rigid observation platforms.

It is important to emphasize that the wave features of QIOs
are arguably more real the inertial forces found in Rindler
or rotating frames, since the latter forces can be measured
only on specific accelerating platforms, while QIOs can in
principle be measured on all sufficiently large rigid space-
based  platforms.  Moreover,  Rindler  and  rotating  metrics
are thought to describe spacetime distortions arising from
the  motion of the platform, while a QIO metric describes
spacetime  distortions  arising  from the  motion  of distant
matter,  a  phenomenon  somewhat  reminiscent  of  Mach's
principle. Due to these distinctions, a QIO is defined here
as  quasi-inertial rather  than  inertial.  With  regard  to
observation,  it  therefore  seems  plausible  that  broad-
spectrum, low-amplitude QIOs populate the universe and
exert a hidden influence on the dynamic properties of the
vacuum,  particularly  in  the  sparse  realms  of  the
intergalactic  medium.  Higher-frequency  QIOs  would  be
expected  to  penetrate  galaxies,  and  could  conceivably
pierce  solid  matter  in  the  ultraviolet  limit,  causing
elementary particle fluctuations, perhaps by a process akin
to the ponderomotive effect discussed by Deepen Garg et
al. in [74].

In  the  vacuum region  of  a  QIO,  the  energy-momentum
tensor Tμν on the rhs of Einsteins field equations vanishes
by definition, where Einstein’s equations are given by

Rμν  −  ½ gμν R = κTμν 

for  Rμν the  Ricci  tensor,  R the  curvature  scalar,  and

κ=─8πG/c2. Thus  a  QIO does not  contribute  to  its  own
background  energy-momentum  field  and  constitutes  an
energy-free plane  wave.  The physical  interpretation of  a
QIO therefore requires  an understanding  of  gravitational
field  energy  which,  while  common  in  many  GR
applications  [58],  differs  from  that  in  the  literature  on
standard  GWs.  There  is  of  course  nothing  in  the  GR
formalism that prohibits energy-free wave solutions [74].
Energy-free  GWs,  sometimes  associated  with  "soft
gravitons", are an active topic of research, and methods of
detection are  now under  discussion  [75,76].  Historically,
the energy relation  E=hν for  GWs arose from analogies
with  electromagnetism  or  quantum  mechanical  wave
functions. More sophisticated definitions of effective GW
energy  density  have  also  emerged  [9].  However,  these
definitions are approximate and often ambiguous [58,77].
Moreover,  introducing  field  energy  into  GR  frequently
involves  ad hoc definitions of quasi-local energy density,
which is problematic due to gauge dependence [9,78-80].
These  issues  are  avoided  by  assuming  the  gravitational
field does not contribute to the energy-momentum tensor in
any case, and indeed that the field itself contains no energy.
It might be objected that waves cannot propagate without



energy,  implying  spacetime  somehow  impedes  wave
motion.  However  according  to  the  present  interpretation,
the gravitational field is synonymous with the geometry of
spacetime, to which energy, impediments, or other material
properties cannot be attributed.

Gravitational  radiation  in  the  form  of  standard  GWs  is
believed to have two possible polarizations in GR, both of
them  transverse  spin-2  tensor  modes.  These  are  called
Einsteinian polarizations.  Modified gravity theories,  such
as  f(R) and  other  metric  theories,  permit  up  to  four
additional modes, including two spin-1 vector modes and
two spin-0 scalar modes, where the latter are the breathing
mode and the longitudinal mode [81-92]. These are referred
to  as  non-Einsteinian polarizations.  QIOs,  although
consistent  with  GR,  carry  non-Einsteinian  longitudinal
polarization, allowable due to their quasi-inertial nature. It
is  often  claimed  that  the  detection  of  longitudinal  GWs
would prove some form of modified gravity prevails in our
present universe [81,89,93,94]. However unless the detector
were able to distinguish longitudinal GWs from QIOs, the
latter  might  conceivably  be  misindentified  as  a  GW
carrying  non-Einsteinian  polarization.  Modified  gravity
theories  that  permit  longitudinal  GWs  include  tensor-
vector-scalar  theories  such  as  TeVeS,  bimetric  gravity
theories, the Einstein-Ether theory [93], the Lightman-Lee
theory [90],  f(R) and Horndeski theories [95], higher-order
R2 scalar gravity [96], and massive gravity theories [50,89],
including massive teleparallel Horndeski gravity [97].

Some authors propose that the high-energy regime of the
early  universe  may  have  been  governed  by  a  type  of
modified  gravity  that  allows emission  of  non-Einsteinian
longitudinal GWs [4]. These primordial longitudinal GWs
(PLGWs),  should they exist,  are  expected to  traverse the
cosmos  and  be  observable  by  future  longitudinal  GW
detectors. However, if GR accurately describes the universe
today, and if non-Einsteinian modes are impossible in GR,
it seems evident that PLGWs would be unable to propagate
through the regions of  our present  cosmic neighborhood.
PLGWs emitted  under  a  modified  gravity  regime  would
therefore  decay  or  change  form  on  their  way  to  our
observatories.  It  is  postulated here that  PLGWs might  in
fact change form, losing both energy and curvature as they
propagate  over  cosmic  distances,  finally  evolving  into  a
wavelike  imprint  whose  features  are  consistent  with  GR.
According to this postulate, QIOs may arise as an end state
of PLGW evolution, a scenario to be discussed in Section V.

Should provable sources exist and a realistic interpretation
be established,  QIOs may lead to  new physics and exert
measurable effects on the SGWB. It is also conceivable that
QIOs could induce oscillations in the free electrons of the
intracluster medium, which would in turn emit photons as a
component  of  the  SPB.  This  process  would  create  an
additional  photon  background  masquerading  as  a
component  of  the  CMB,  but  with  spectral  and  isotropy
signatures  distinct  from  that  of  the  blackbody  radiation

emitted  at  recombination.  QIOs  might  in  addition  be
directly observable as a component of the SGWB by future
longitudinal mode gravitational wave detectors [98]. Such
effects would be particularly relevant today, in view of the
recent  emergence  of  tantalizing  evidence  for  SGWB
detection [18,99-101].

Traditionally,  GWs  were  derived  based  on  long-debated
conventions about what constitutes a viable wave solution
to Einstein's field equations [57,58,60,109,110]. One such
convention  requires  the  waves  be  described  by
perturbations  on  a  background  metric,  where  the
perturbation term  hμν in the metric  gμν=fμν+hμν must be
small  compared  to  the  background  term  fμν [111-115].
Standard GWs are therefore approximations valid only in
the weak-field regime, (see however [76,116-118]),  if they
are  valid  at  all,  a  position  debated  in [119].  The
background metric is usually chosen to have a high degree
of  symmetry,  and  may  for  example  be  the  Minkowski
metric,  the  Schwarzschild  metric  [120],  the  Friedman-
Robertson-Walker  (FRW)  metric  [3,18,121-123]  or  the
Newtonian gauge representation of the FRW metric [2,43].

The weak-field approximation to GR is often referred to as
linearized gravity [111-115,124]. However, the motivation
for linearizing GR to derive GWs is somewhat obscure in
the  literature.  Weinberg  drew an  analogy with  the  wave
equations of particle physics to conclude that GWs carry
energy  E=hν,1 which  in  turn  contributes  to  the  energy-
momentum tensor  Tμν and prevents solutions to the exact
Einstein  equations,  a  dilemma  supposedly  avoided  by
linearization [125]. Some authors adopt linearized GR to
make the field equations tractable [126], while others work
in  the  weak-field  regime  without  explicit  justification
[112,114,115].  Still  others  claim  that  exact  plane  wave
solutions are unphysical, perhaps due to Riemann flatness
or to the energy-free nature of the waves [104], although
the reason is not always stated [79]. These claims led to the
belief that only linearized GWs are viable [57,58,79,110].
(See  however  [108]  for  discussion  of  exact  plane  wave
solutions.) It thus appears linearized gravity is adopted due
to any of  three motivating factors: to  simplify Einstein's
equations,  to compensate  for  assumed GW energy,  or  to
avoid supposedly unphysical exact plane wave solutions.
These three factors, while potentially relevant to standard
GWs, are irrelevant in the context of exact plane waves, a
viewpoint highlighted in the next paragraph.

First, regarding simplification of Einstein's equations, it is
important to recognize that in rectangular coordinates, the
field  equations  can  be  reduced  to  two  elementary  wave
equations  that  are  easily  solved  in  exact  form.  Indeed,
exact plane wave derivations use fewer assumptions and
are often far simpler than linearized GW solutions. Second,
with regard to Weinberg's claim that GW energy feeds back
into  Tμν,  requiring  perturbations  to  make  the  energy
negligible, it should be noted that in other GR applications,
gravitational  field  energy  is  assumed  to  make  no



contribution  to  the  energy-momentum  tensor  in  the  first
place [114,126], rendering moot any need for perturbations.
Moreover, some authors point out that metric perturbations
are  unphysical  and  inherently  incorrect  due  to  gauge
dependence, casting doubt on the validity of all supposed
GW detections to date [119]. Third, regarding the viability
of exact plane wave solutions, there are contexts in which
exact  plane  waves  are  considered  more  viable  than
linearized waves. In such cases, perturbation methods may
be  inadequate,  again  due  to  gauge  dependence  [3].  In
particular, the GW memory effect, defined as a distortion in
a GW detector that persists after the wave has passed [127],
involves exact plane wave solutions [105] and is described
by Christodoulou as "an inherently nonlinear phenomenon
that  cannot  be  captured  by  perturbation  theory  [128].”
(Interestingly, QIDs may also produce a memory effect, as
will  be  shown in  Section  II.)  In  any  event,  fundamental
logic calls into question how a physical process could even
exist for which approximate solutions are more viable than
exact ones, an enigma not addressed this paper.

Another  convention  adopted  in  traditional  derivations  of
GWs is  that  of  the  traceless transverse (TT)  gauge.  This
stems from the consensus, based on Taub's rule, that real
GWs must have nonzero curvature, and therefore that the
Riemann tensor  Rμναβ must not vanish [129]. Accordingly,
Taub,  Weber,  and  others  obtained  GW  solutions  by
identifying nonzero components of the Riemann tensor and
showing that  these correspond to  transverse polarizations
[57,79,110].  Standard  GWs  were  thus  assumed  to  be
transverse  waves  much  like  electromagnetic  waves
[12,130], a similarity often touted as confirmation of Taub's
method. Transverse polarization of course means that a GW
with x-directed flow will cause space in the y,z directions to
be alternately stretched and contracted, while space in the x
direction  remains  unchanged.  The  QIO,  in  contrast,  is  a
longitudinal plane wave. Hence a QIO with x-directed flow
will  cause  space  in  the  x direction  to  be  stretched  and
contracted, leaving space in the  y,z directions unchanged.
Notably, a QIO causes time to be stretched and contracted
with magnitude and phase identical to that of space.

There appears an intriguing possibility that colliding QIOs
might  manifest  nonzero  Riemann  curvature.  The  idea  of
colliding gravitational wave fronts was explored historically
in [102], and is discussed in [103] in the context of Kundt
waves,  of  which  QIOs are  perhaps  a  special  case  [104].
Kundt waves are defined in [103] as exact wave solutions to
Einstein's field equations for the vacuum with shearfree null
hypersurface  wave  fronts  that  may  or  may  not  be
hyperplanes; the QIO would be a case of a hyperplane wave
front.  However,  available references to  prove a QIO is a
Kundt wave are  currently unknown to this  author.  QIOs,
when  expressed  in  lightcone  or  Brinkmann coordinates
[75,104], also resemble the exact gravitational plane waves
known as  pp-waves [106,107], defined in [108] as plane-
fronted GWs with parallel rays. However the pp-wave and
QIO classes of metric share only a trivial common subclass.

QIOs will be transformed into Brinkmann coordinates and
compared with pp-waves in Section III.

This paper is organized as follows. The elementary wave
nature of Einstein's equations will be shown in Section II,
where  the  vacuum field equations are  solved  for  a  QIO
metric in rectangular coordinates. In Section III, lightcone
coordinates are used to derive a transformation that renders
the QIO metric Minkowskian. QIOs will also be presented
in Brinkmann coordinates and compared with pp-waves. In
Section IV it  will  be shown that the particle Lagrangian
L=mds/dt predicts test mass acceleration in the field of a
QIO, indicating QIOs can in principle be observed in any
non-freely  falling  frame.  In  addition,  QIO  observability
will be argued by analogy with the Rindler metric, which
can be constructed as a product of  rectangular advanced
and  retarded  QIDs.  Section  V is  devoted  to  generation,
propagation and detection of QIOs, offering the hypothesis
that QIOs may be an end product of PLGW evolution, and
featuring a skeletal design for a space-based QIO detector.
Section  VI  highlights  categorical  differences  between
space and time, leading to the conjecture that in  pseudo-
Riemannian  spacetime,  Riemann  curvature  is  not  a
necessary criterion for observability.

Greek indices run from 0 to 3 throughout this paper. Units
G=c=1 will  be  used,  although  these  constants  are
sometimes  inserted  for  clarity.  We  will  work  in  the
signature (+−−−), using Dirac's sign convention [114]. The
notation ∂μ designates  the partial derivative ∂/∂xμ. 

II. DERIVING THE QIO FROM EINSTEIN'S FIELD
EQUATIONS

It  is  of  course  true  that  a  curvature-free  metric  exactly
solves EVFE,  since if  the metric  obeys  Rμναβ=0,  it  also
obeys the contracted equation  Rμν=0. However, it will be
instructive to solve EVFE explicitly in order to highlight
the simple wave nature of Einstein's equations, especially
as  this  contrasts  with  the  comparative  complexity  of
standard linearized GWs. Accordingly, it is shown in this
section that QIDs, and hence QIOs, are exact solutions to
Einstein's field equations. Physical and intuitive properties
of QIDs will also be discussed below Eqs. (2).

To  proceed,  we  substitute  into  EVFE a  diagonal  metric
gμν(t,x) in  rectangular  coordinates  obeying  the  relations
g11(t,x)=−g00(t,x) and  g22=g33=−1.  This  class  of  metric
may be represented by the line element

ds2 = gμνdxμdxν = a(t,x)dt2 − a(t,x)dx2 − dy2 − dz2     (1)

where a(t,x) is any positive function of t and x. When this
metric  is  substituted  into  EVFE,  the  field  equations
simplify, after some calculation (given below), to a pair of
homogeneous wave equations

∂0
2a(x,t) − ∂1

2a(x,t) = 0,                    (2a)

[∂0 a(x,t)]2 − [∂1 a(x,t)]2 = 0.                 (2b)



It is clear from Eqs. (2) that the metric of Eq. (1) reduces
EVFE to two elementary equations with exact plane-wave
solutions.  That  Einstein's  equations  in  rectangular
coordinates can be reduced to this simple form is apparently
not  well  known  and  rarely  if  ever  mentioned  in  the
literature.  One  might  expect  these  equations  to  be
occasionally discussed, if only to illustrate the simple wave
structure of EVFE, and their omission may seem surprising.
As  previously  noted,  earlier  authors  in  search  of  the
graviton  dismissed  such  solutions  as  spurious,  causing
subsequent authors to ignore them [118], an omission that
can now be addressed with the benefit of hindsight.

Examining Eqs. (2), it is easy to see that if  a(t,x) can be
expressed in a form a(t,x)=β(u), where β is any function of
a null variable u such that u≡ct−x, with c the speed of light,
the metric gμν of Eq. (1) exactly solves Eqs. (2) and hence
solves EVFE. Such a solution, expressed in terms of  u, is
defined,  in  the  context  of  rectangular  coordinates,  as  a
forward-propagating or  retarded QID.  QID solutions  are
also  possible  for  a(t,x)=γ(v),  where  γ is  any  function  of
variable  v with  v≡ct+x.  These  solutions  are  defined  as
backward-propagating or  advanced QIDs.  Retarded  and
advanced  QIDs  will  be  shown  in  Section  IV  to  be
mathematically related to the Rindler metric. We will focus
on retarded QIDs in this section.

A QID can be viewed as a ripple in spacetime that may take
any shape, periodic or non-periodic. As the ripple passes a
freely floating test clock or  ring of  test masses,  a space-
based observer on a nearby non-freely falling platform in
coordinate frame  (t,x,y,z) could in principle detect dilation
and contraction of both the rate of the test clock and the
diameter of the test ring, as will be demonstrated in Section
III.  The  effect  on  test  clocks  and  test  rings  can  be  read
directly from the line element,

ds2 = β(ct−x)dt2 − β(ct−x)dx2 − dy2 − dz2

where the clock rate  dτ=β½dt and diameter  dD=β½dx are
functions of observer time t. This class of metric is shown
by Taub to be Riemann flat [57]. Despite its flatness, QID
observability  will  be substantiated in  Section III  both by
invoking  the  particle  Lagrangian  and  by  examining  the
closely related Rindler metric. 

As  an  interesting  aside,  QIDs  are  capable  of  producing
memory effects, a scenario mentioned in Section I. Memory
effects would arise when the value of the function β(ct−x)
differs  between negative and positive asymptotic  regions,
so that the passage of the QID permanently changes clock
rates and test ring diameters. In another curious application,
QIDs could conceivably take the shape of  Dirac delta or
impulse  functions,  and  thus  may  constitute  energy-free
counterparts  of  the  exact  plane-wave  Lorentz-boosted
shockwaves discussed in [132].

In the present work, we are mainly interested in periodic
QIDs, or QIOs. The line element for a QIO plane wave with

x-directed  flow is  a  special  case  of  Eq.  (1)  and  can  be
represented by 

ds2=(1+bei(νt─kx))dt2 ─ (1+bei(νt─kx))dx2 ─ dy2 ─ dz2   (3)

where b is a constant amplitude, ν is a constant frequency,
k is the wave number with k≡1/λ for constant wavelength
λ, and phase velocity w is given by w=ν/k. If the amplitude
b is such that  0≤|b|<1, the metric is singularity-free. Our
investigation will focus on nonsingular QIOs. 

That the phase velocity w must equal the speed of light c is
not assumed  a priori, but is derived by solving Einstein's
field  equations.  We  begin  the  procedure  by  stating
Einstein's law of gravity for the vacuum

Rμν=0.                                     (4)

Here Rμν is the Ricci tensor given by

Rμν = Γα
μα,ν ─ Γα

μν,α ─ Γα
μνΓβ

αβ + Γα
μβΓβ

μα         (5)

where  a  comma  denotes  partial  derivative,  and  the
Christoffel  symbols  Γ are  defined  by  the  Levi-Civita
connection

Γαμν = ½(gαμ,ν + gαν,μ ─ gμν,α). 

To prove the metric gμν of Eq. (3) exactly solves Eq.(4), we
first  assume  a  general  diagonal  metric  of  the  form
gμν=diag[g00(t,x),g11(t,x),−1,−1].  It  is  sufficient  to  show
that R00 and R11 vanish for phase velocity w=c, noting that
R22 and R33 are automatically zero due to the vanishing of
all Christoffel symbols with indices  2 or  3.  We evaluate
R00 and  R11 by taking  the  rhs  of  Eq.  (5)  and  summing
separately the first  pair of  terms,  denoted  Rμμ(1+2),  and
the second pair of terms, denoted Rμμ(3+4). We then show
that each of these sums vanishes for metrics of the form
diag[g00(ct−x),−g00(ct−x),−1,−1],  of  which  QIOs  are  a
special  case.  The  calculation  does  not  require  explicit
evaluation of the non-zero Christoffel symbols.

For R00, the first pair of terms on the rhs of Eq. (5) are: 

R00(1+2) ≡ Γα
0α,0 ─ Γα

00,α                                   

           = ∂0 (Γ0
00 + Γ1

01) − (∂0Γ0
00 + ∂1 Γ1

00). 

Cancelling and lowering indices gives:

R00(1+2) = ∂0(g11 Γ101) − ∂1(g11 Γ100).

Since Γ101=½∂0 g11 and Γ100=−½∂1 g00, this becomes

  R00(1+2) = ½∂0(g11 ∂0 g11) + ½∂1(g11∂1g00)

=½[(∂0g11)(∂0g11)+(∂1g11)(∂1g00)+g11(∂0
2g11+∂1

2g00)].

Now since g11=1/g11 we have that

∂0 g11 = −(g11)2 ∂0 g11

∂1g11 = −(g11)2 ∂1g11



and hence

      R00(1+2) = −½(g11)2 [(∂0 g11)2 + (∂1g11)(∂1g00)]

                         + ½ g11 (∂0
2g11 + ∂1

2g00).  

We next evaluate the last two terms on the rhs of Eq. (5):

R00(3+4)=−Γα
00Γ βαβ + Γα

0βΓβ
0α

Using the relevant Christoffel symbols in their general form

Γ000 = ½∂0g00,  Γ100 = −½∂1g00,  Γ101 = ½∂0g11,

Γ001 = ½∂1g00,  Γ111 = ½∂1g11,

we obtain after some calculation 

R00(3+4) = −(1/4) g00g11(∂0g00) (∂0g11)                              

+ (1/4)(g11)2(∂1g00)(∂1g11) − (1/4)g11g00(∂1g00)2

+ (1/4)(g11)2(∂0g11)2                                                      

Combining  R00(1+2) and  R00(3+4) and  cancelling  terms
gives:

R00 = − (1/4)(g11)2 [(∂0g11)2 + (∂1g11)(∂1g00)]

          − (1/4)g00g11 [(∂0g00)(∂0g11) + (∂1g00)2]

          + ½ g11 (∂0
2g11 − ∂1

2g00)                       

By the same procedure, we obtain for R11:

R11 = − (1/4)(g00)2 [(∂1g00)2 − (∂0g00)(∂0g11)]

          − (1/4)g00g11 [(∂1g11)(∂1g00) + (∂0g11)2]

          + ½ g00 (∂1
2g00 − ∂0

2g11)                       

The results so far apply to metrics of the type

ds2 = g00(t,x)dt2 + g11(t,x)dx2 − dy2 − dz2

where  g00 and  g11 may be different functions of  t and  x.
Next, we consider a metric for which these components are
related by g00=−g11. This metric may be given by the line
element

ds2 = −g11(t,x)dt2 + g11(t,x)dx2 − dy2 − dz2. 

Now we can express both R00 and R11 in terms of g11 alone,
obtaining

R00 = ½(g11)2[(∂1g11)2−(∂0g11)2] + ½g11(∂0
2g11−∂1

2 g11)

R11 = ½(g11)2[(∂0g11)2−(∂1g11)2] + ½g11(∂0
2g11−∂1

2 g11)

If each of the two terms on the rhs of the above equations
vanishes  separately,  then  R00=R11=0 as  required.  This
condition is equivalent to two simultaneous wave equations

(∂0g11)2 − (∂1g11)2 = 0                    (6a)

∂0
2g11 − ∂1

2 g11 = 0.                     (6b)

These equations are identical to the wave equations given
by Eqs. (2). If we now let g11(t,x)=β(a) for β any function
of the variable  a such that  a≡wt−x with  w an unknown
phase velocity, it is immediately clear, by taking the partial
derivatives of g11, that

∂0g11 = (dβ/da)∂0a = wdβ/da 

∂1g11 = (dβ/da)∂1a = −dβ/da 

and  hence,  for  w=c=1,  we  have  ∂0g11=−∂1g11,  which
exactly solves Eq. (6a). Similarly, it is clear by taking the
second derivative that 

    ∂0
2g11 = w2(d2β/da2)

∂1
2g11 = d2β/da2   

and again, for  w=c=1, we see that Eq. (6b) is solved. We
have thus proven that any QID metric of the form

ds2 = β(ct−x)dt2 − β(ct−x)dx2 − dy2 − dz2          (7)

exactly  solves  Einstein's  equations  for  the  vacuum.  It
follows that the QIO metric of Eq. (3), a special case of the
QID, is also an exact solution to EVFE. 

III. DETECTION OF QIOs: THE PARTICLE
LAGRANGIAN AND RINDLER FRAME

There has been long-standing skepticism in the literature
regarding  detection  of  exact  longitudinal  gravitational
plane  waves.  This  skepticism  arose  from  mathematical
principles  underlying  Taub's  rule.  More  explicitly,  since
exact longitudinal plane-wave metrics produce a vanishing
Riemann  tensor,  they  possess  no  intrinsic  spacetime
curvature, meaning the wavelike features of the metric can
be  removed  by  a  coordinate  transformation.  Many
researchers  therefore  concluded  that  exact  longitudinal
plane  waves  were  unphysical  [57,58],  further  supposing
they  were  also  unobservable.  However,  it  will  be
demonstrated  below  that  QIO  metrics  are  not  only
observable, but can in principle be observed by non-freely-
falling detectors aboard any space-based platform, where
the platform must be larger than the QIO wavelength to
ensure the detectors are rigid in the oscillating field.

We  will  argue  the  observability  of  QIOs  using  two
approaches.  First,  we  will  demonstrate  that  the  particle
Lagrangian for a QIO predicts an effective acceleration of
test masses, a condition for detectability ordinarily deemed
sufficient. Second, detectability will be argued from a more
abstract  standpoint  based  on  the  idea,  inspired  by  the
Rindler  metric,  that  nonzero Riemann curvature is  not  a
necessary  criterion  for  the  existence  of  effective  forces,
and  hence  for  detectability.  This  argument  entails  a  far-
reaching analysis of the Rindler frame, which is analogous



to the frame of a planetary surface in the limit of extreme
diameter [65,133]. 

To introduce the first approach, it must be emphasized that
mathematical  principles do not tell  us  how to interpret  a
metric  physically.  Interpretation  requires  intuition,
observation, and well-tested deductive procedures. We now
offer  a  well-tested  procedure  for  determining  whether  a
metric is detectable. The salient point is that the procedure
requires no knowledge of the Riemann curvature. We will
use the example of the Schwarzschild metric at the earth's
surface. The Schwarzschild metric is expressed by the line
element

ds2=(1−2M/r)dt2 − (1−2M/r)−1dr2 − r2dΩ2,       (8)

where  M is  the  central  mass.  From  the  particle  action
S=m∫ds given  by  Dirac  in  Ref.  [114],  with  ds the
Schwarzschild line element and  m the test  mass,  we use
parameter t to construct a particle Lagrangian L=mds/dt, so
that the force will be expressed in terms of observer time t.
(The result of course does not depend the choice of timelike
parameter.)  Based  on this  Lagrangian,  we can derive  the
effective force Feff, as judged by an observer at infinity, on
a freely falling test mass dropped from some small height
above the earth's surface. The effective force will then be
adjusted for an earth-based observer. The appropriate Euler-
Lagrange equation is

(d/dt) [∂L / ∂(dx1/dt)] = ∂L / ∂x1 

with x1=r. To make the calculation simpler, we note that the
Euler-Lagrange  equation  greatly  simplifies  for  diagonal
metrics in cases where test particles are free to move in the
x1 direction only (i.e.  dg22/dt=dg33/dt=0), and are initially
at  rest  or  have  velocity  v<<c.  The  simplified  Euler-
Lagrange equation is found to be

m d2x1/dt2 = m ∂1g00 / 2g11.              (9)

The effective force at the earth's  surface, as judged from
infinity, is thus 

Feff ≡ ma = −GMm (1 − 2GM/Re) / Re
2

where  Re is the earth's radius,  GMm/Re
2 is the Newtonian

force, and (1−2GM/Re) is the GR correction. Note that this
correction, in the case of a black hole, would cause Feff to
vanish at the event horizon, corresponding to infinite time
dilation for infalling matter as seen from infinity.

To transform Feff to an earth-based frame, a factor k must be

inserted to  adjust  for  time dilation  dτ=(1-2M/Re)½dt and

length  contraction  dΛ=(1-2M/Re)
−½dr.  The  factor  k is

given by

k = (dt/dτ)2 (dΛ/dr) = (1−2M/Re)
−3/2.

This yields an effective force at the earth's surface of

Fearth = kFeff = −GMm / (1 − 2GM/Re)
½

Re
2

Since  Fearth is  measurable  by  the  acceleration  of  a  test
mass,  the  metric  is  clearly  observable.  Generalizing  this
procedure,  the  conditions  for  observability  are:  1)  that
there exist a coordinate frame Xμ in which an observation
takes place; 2) that the metric can be represented in terms
of these coordinates by a line element ds2=gμνdXμdXν; and

3) that the particle Lagrangian L=mds/dX0 for line element
ds indicates an effective force on a test mass.

This procedure will now be applied to show that QIOs are
in principle measurable by non-freely falling space-based
detectors. We first express the QIO metric in the form

ds2 = (1+beiη)dt2 − (1+beiη)dx2 − dy2 − dz2,      (10)

where  η≡νt−kx  for frequency  ν and wave number  k, and
where  phase  velocity  is  w=ν/k=c.  The  detectors  are
assumed  rigid  in  coordinate  frame  (t,x,y,z) on  a  nearby
space-based  observation  platform  larger  than  the  QIO
wavelength. A skeletal design of the platform and detector
will be featured in Section V. Before calculating effective
forces, note that at least two observable quantities can be
read directly from the metric of Eq. (10): 

1.)  Time dilation-contraction: Proper time τ for a floating
test clock is given by

dτ = (1 + beiη)½dt.

2.)  Length  dilation-contraction: Proper  length  Λ for  the
longitudinal  diameter  of  a  floating  test  particle  ring  is
given by

dΛ = (1 + beiη)½dx.

These  two  quantities  are  periodic  and  suggest  wave
behavior.

More  critical  is  whether  the  QIO can  exert  an effective
force on a test mass m. We begin by taking the real part of
the QIO metric of Eq. (10):

ds2 = (1+b cos η)dt2 − (1+b cos η)dx2 − dy2 − dz2.   (11)

To  calculate  the  effective  force,  we  insert  the  particle
Lagrangian  L=mds/dt into  the  simplified Euler-Lagrange
equation of Eq. (9), where now x1=x, obtaining

Feff ≡ m d2x/dt2 = −kb sin η / 2(1+b cos η).       (12)

Note that for b=1, the rhs of Eq. (12) is proportional to the
well-known  half-angle  tangent  formula,  which  displays
periodic  singularities.  To  avoid  these  unphysical
divergences,  we  assume  |b|<1,  thereby  ensuring  a
continuous  oscillation.  Hence  it  is  evident  that  the  QIO
exerts, to first order, an effective periodic force on a test
mass. Theoretically then, an observer would perceive the
test  mass  as  oscillating  in  some  fashion.  This  effective
force is akin to the ponderomotive force described in Ref.



[74], by which zero-energy gravitational plane waves excite
free  particle  motion  in  a  vacuum.  If  the  particle  were
charged,  e.g.  an  electron,  the  oscillation  would  produce
electromagnetic waves as measured in the observer's frame
due  to  the  relativity  of  electromagnetic  radiation.  A
stochastic  background  of  QIOs  might  thus  induce
excitations  in  free  electrons  in  the  intracluster  medium,
which  would  in  turn  emit  blackbody  radiation  in  the
observer's  frame.2 QIOs  might  thereby  contribute  to  a
photon background in the SPB, possibly causing distortion
of the CMB spectrum.

The second approach to arguing QIO detectability involves
the  Rindler  frame,  often  described  as  an  observation
platform  undergoing  uniform  acceleration  in  Minkowski
space. We first present the basic properties of the  Rindler
metric as  defined  in  [63].  The  Rindler  metric  may  be
expressed by the line element

ds2 = e2ax dt2 − e2ax dx2 − dy2 − dz2,             (13)

where a is a constant associated with platform acceleration.
To  show  that  this  metric  produces  a  uniform  effective
acceleration  for  a  test  mass  initially  at  rest,  we  use  the
simplified  Euler-Lagrange  equation  of  Eq.  (9)  to  obtain
immediately

d2x/dt2 = −a.

Thus the effective acceleration is constant, i.e. independent
of  t and  x. For clarity and to avoid confusion, it might be
recalled that the Rindler metric is sometimes defined in the
literature by line elements of the form [60,64]

ds2 = (ax)2 dt2 − dx2 − dy2 − dz2. 

However  this  type  of  metric  produces  an  x-dependent
acceleration.  For  simplicity  therefore  we  will  ignore  the
latter metric and define the Rindler metric as that of Eq.
(13).

The Rindler  metric  is  a  special  case of  the  Taub metric,
defined here as a subclass of the metrics analyzed by A. H.
Taub in his seminal work on GWs of 1951 [57] and also by
McVittie [58]. The Taub metric can be expressed by the line
element 

ds2 = e2U(x,t)(dt2 − dx2) − dy2 − dz2,

for  U(x,t) any function of  x and  t. Taub proves the above
metric solves EVFE only if the function U takes the form

U(x,t) = f(u) + h(v)

where  f is any function of  u≡x−t and  h is any function of
v≡x+t.  It is clear that the Rindler metric of Eq. (13) is a
special  case  of  the  Taub metric  for  which  f(u)=au/2 and
h(v)=av/2. Taub furthermore proves that if the derivatives
df/du and  dh/dv are constant, then the metric is Riemann
flat. Hence the Rindler metric, with df/du=dh/dv=a/2, is flat
as expected. Interestingly, QIDs are also special cases of the

Taub metric for which either g00=g00
+=e2U=e2f(u) for h=0

and  f  an arbitrary function of  u,  or  g00=g00
─=e2U=e2h(v)

for f=0 and h an arbitrary function of v. Here g00
+ denotes

the tt-component of a retarded QID, while g00
─ denotes the

tt-component of an advanced QID. Using these results, we
may  now  express  the  Rindler  metric  as  a  product  of
retarded and advanced QIDs:

ds2 = e2ax(dt2 − dx2) − dy2 − dz2              

      = e2f(u)e2h(v)(dt2 − dx2) − dy2 − dz2

     = g00
+g00

─(dt2 − dx2) − dy2 − dz2,

where f(u)=au/2, h(v)=av/2, and 2f(u)+2h(v)=au+av=2ax.
Thus we have found an intriguing relation between QIDs
and Rindler metrics. As noted earlier, Rindler frames are
believed to be observable by Unruh radiation, suggesting
that  QIDs  may  also  give  rise  to  a  form  of  Unruh-type
radiation. This is a topic for later study.

Intuitively,  if  we  now envision  a  Rindler  frame  as  any
coordinate frame in which test masses undergo a constant
acceleration  from  rest,  then  the  surface  of  the  earth
constitutes an approximate Rindler frame, since test masses
dropped from a small height accelerate at a near constant
rate  −a=g −≅ M/Re

2.  In  the  limit  as  a  planet  becomes
infinitely  large,  the  surface  approaches  an exact  Rindler
frame [65, 133]. 

Now it  is  well-known  that  the  Riemann  curvature  of  a
Schwarzschild  metric  falls  off  as  1/r3 [148],  while  the
effective force falls off as  1/r2. Therefore there exists an
extreme-radius  region  in  which  the  Riemann  curvature
effectively  vanishes,  while  the  force  remains  quite
measurable. Such behavior is already approximated on the
surface of the earth. This behavior at extreme radii would
present a logical contradiction if Riemann curvature were
the  sole  criterion  for  detectability,  since  a  flat  Rindler
metric and a curved extreme-radius Schwarzschild metric
are observationally identical; i.e. test particle acceleration
appears  the  same in  both frames.  In  other  words,  if  the
Rindler  and  extreme-radius  Schwarzschild  metrics  are
observationally  indistinguishable,  one  metric  cannot  be
observable  while  the  other  is  unobservable.  This  again
suggests  that  Riemann  curvature  does  not  dictate
observability relative to rigid physical coordinate frames.

IV. RIEMANNIAN FLATNESS, LIGHTCONE
COORDINATES AND PP-WAVES

As  stated  earlier,  a  vanishing  Riemann  tensor  means  a
metric  can  be  made  constant,  or  Minkowskian, by  a
coordinate transformation. The appropriate transformation
for QIO metrics will be derived in this section. Ordinarily,
Brinkmann  coordinates  (U,V,y,z) are  used  for
transformations of this type. Brinkmann coordinates may



be expressed in terms of rectangular coordinates (t,x,y,z) as
[72,105]

U=2
−½

(x/c+t),  V=2
−½ 

(x/c−t),   y=y,   z=z.

However,  we  will  work  in  the  physically  equivalent  but
simpler lightcone or null coordinates [131] given by

u=(ct−x),   v=(ct+x),  y=y,  z=z,

where  u and  v are  defined,  in  a  rectangular  context,  as
retarded and  advanced coordinates respectively.  For later
reference,  lightcone  and  Brinkmann  coordinates  may  be
interchanged by the relations 

u=−2
½

cV,       v=2
½

cU.                      (14)

We begin by representing the QIO metric as

ds2=(1+b cos ku)dt2 − (1+b cos ku)dx2 − dy2 − dz2  (15)

where b cos ku is the real part of the oscillating term in the
metric  of  Eq.  (3).  Our  goal  is  to  find  a  transformation
(t,x,y,z)−>(T,X,y,z) that  renders  the  QIO  metric
Minkowskian, where the Minkowski metric is given by the
line element

ds2 = dT2 − dX2 − dy2 − dz2.                    (16)

To accomplish this, we first transform the QIO metric of
Eq.  (15)  into  lightcone  coordinates  (u,v,y,z).  Setting  c  to
unity,  we  note  that  du=dt−dx,  dv=dt+dx,  and  therefore
dudv=dt2−dx2.  Thus  the  QIO  line  element  in  lightcone
coordinates is

ds2 = (1+b cos ku ) dudv − dy2 − dz2.           (17)

Now since 1+b cos ku is a function of u, we may introduce
a coordinate W such that dW=(1+b cos ku)du, obtaining 

ds2 = dWdv − dy2 − dz2.

To render this equivalent to the Minkowski metric of Eq.
(16), we require that

dWdv = dT2 − dX2.

This can be accomplished by the transformation

dT = dt + ½ b cos ku du                  (18a)

dX = dx − ½ b cos ku du.                (18b)

To check  that  this  transformation  produces  a  Minkowski
metric, note first that the difference of Eqs. (18) gives

dT − dX = dt − dx + b cos ku du 

while the sum gives

dT+dX=dt+dx.

Hence

(dT − dX)(dT+dX) = (dt−dx + b cos ku du)(dt + dx).

Since du≡dt−dx, we have immediately that

dT2 − dX2 = (1+ b cos ku) du (dt+dx) = dWdv

as required. Thus we have proven that the transformation
of  Eqs.  (18)  renders  the  QIO  metric  of  Eq.  (15)
Minkowskian.  Integrating  Eq.  (18)  we  obtain  the  final
transformation [58] 

T=t+(b/2k) sin ku,   X=x−(b/2k) sin ku,    y=y,   z=z.

The  coordinates  (T,X,y,z) are  those  of  a  freely  falling
observer. To such an observer, the spacetime would appear
Minkowskian. A complication arises, however, in that the
coordinates  (T,X,y,z) stretch  and  contract  dynamically
relative to the rigid frame (t,x,y,z), and indeed even relative
to the CMB. Hence the coordinate system (T,X,y,z) cannot
be  affixed  to  an  observation  platform  made  of  solid
material. It is thus unlikely such an observer could exist in
practice,  rendering  coordinate  frame  (T,X,y,z) an
abstraction  primarily  of  philosophical  interest.  Now  it
might be argued that if any observer, even an abstract one,
could  perceive  a  metric  as  Minkowskian,  the  metric  is
undetectable. However again, this argument does not hold
for  the  de  facto preferred  frame  of  a  rigid  observation
platform. In any event, the  perception of a freely falling
observer  is  insufficient  to  prove  triviality,  since  all
spacetimes appear Minkowskian, at least locally, to freely
falling observers. One might object that QIOs are not just
locally Minkowskian, but are Minkowskian everywhere, a
property called  nonlocal flatness. Yet in real scenarios, a
freely falling observer cannot always perceive whether the
spacetime is nonlocally flat, and thus cannot automatically
determine whether a metric is Minkowskian. 

It  is  informative  to  compare  QIOs  with  the  pp-waves
commonly discussed in the literature. Pp-waves are exact
plane-wave  metrics  often  expressed  in  Brinkmann
coordinates (U,V,y,z) by the line element [105,107] 

ds2 = − F(V,y,z) dU2 − 2c2dUdV − dy2 − dz2       (19)

For comparison, the QIO line element of Eq. (17), when
expressed  in  Brinkmann  coordinates  using  Eqs.  (14),
becomes

ds2 = − 2c2(1+b cos ku)dUdV − dy2 − dz2.      (20) 

Comparing the pp-wave and QIO line elements, it is clear
the  two  classes  of  metric  share  only  a  trivial  common
subclass, for which  F(V,x,y) in Eq. (19) and  b in Eq. (20)
both vanish.  Thus QIOs are  only trivially  related to  pp-
waves. 

V. QIO GENERATION, PROPAGATION, AND
DETECTION

Theoretical  analysis  of  waves  in  general  and  QIOs  in
particular  may  be  divided  into  three  stages:  generation,
propagation  and  detection,  an  idea  put  forth  in  [79].
Regarding generation, an intriguing source of QIO creation



may reside in the early cosmos,  a high-energy regime in
which  modified  gravity  might  have  prevailed.  It  is
proposed, possibly for the first time, by Alsushi Nishizawa
et al. in Ref.[4] that if GR did not strictly hold in the early
universe, GWs carrying non-Einsteinian scalar and vector
polarization modes could have been emitted during that era
through  mechanisms  such  as  inflation  [122],  phase
transition,  and reheating.  Scalar  modes of  course include
the  longitudinal  mode,  a  signature  of  QIOs.  Though
longitudinal  GWs are  considered impossible  in  GR,  they
are  permissible  in  modified  gravities  such  as  massive
gravity [49] and  f(R) gravity, where the latter is a type of
modified gravity in which the Ricci scalar R in the Einstein-
Hilbert action is replaced by an arbitrary function f(R). This
type of modified gravity includes the Starobinsky model,
for which f(R)=aR+bR2 [96], a theory sometimes proposed
to explain inflation. The implication in [4] is therefore that
early modified gravity could have given rise to primordial
longitudinal GWs, here called PLGWs, which persist to this
day and are in principle observable by properly designed
detectors. However it seems evident that if modified gravity
prevailed  the  early  universe,  while  GR  prevails  today,
longitudinal GWs from the primordial era could not survive
in  today's  cosmos,  but  instead  must  evolve  into  a  form
consistent  with  GR.  According  to  this  scenario,  the
evolution of a PLGW would coincide with the evolution of
gravity  itself.  For  example,  if  the  early  universe  were
governed  by  f(R) gravity,  then  PLGWs  would  evolve

synchronously  as  f(R)→R,  where  f(R)=R recovers  GR
exactly.

Since the end state of PLGW evolution must be consistent
with gravity today, this end state should emulate a solution
to EVFE, albeit  with properties  as yet undetermined. We
may  reasonably  imagine  the  end  state  would  have
longitudinal  rather  than transverse polarization,  would  be
periodic  and  plane-symmetric  like  the  original  PLGW,
would travel at the speed of light, and would be described
by a dynamic metric in the observer's coordinate frame. The
QIO metric possesses all of these properties. It is therefore
conceivable  that  QIOs might  arise  as  remnants  of  scalar
mode  GWs  generated  during  inflation.  If  QIOs  are
eventually observed by a future longitudinal GW detector
[146], they may provide evidence for primordial modified
gravity.

That  QIOs  are  consistent  with  the  end  state  of  PLGW
evolution  leads  to  the  postulate  that  PLGWs  mutate  or
decay into QIOs during their transit of the cosmos, losing
energy  and  curvature  until  they  become  energy-  and
curvature-free  in  the  present  era,  while  retaining  a  finite
wavelength redshifted by universal  expansion.  QIOs may
thus  arise  as  an  end-product  of  primordial  GWs.  This
postulate  does  not  rule  out  that  QIOs  may  have  other
astrophysical  or  cosmological  origins.  For  example,  it  is
predicted in [79] that standard transverse GWs can acquire
apparent longitudinal polarization after propagating across a

pointlike  gravitational  lens,  where  the  coupling  of  the
transverse modes with the background curvature of the lens
excites longitudinal modes. Such GWs might conceivably
decay  into  remnant  QIOs  in  asymptotic  regions.  Some
authors also suggest that scalar perturbations may originate
from quantum fluctuations of  fields during inflation  [2].
These  perturbations  could  theoretically  excite  QIOs  that
persist as relics in the universe today. A third hypothetical
source may arise from higher-dimensional gravity theories
such  as  the  braneworld  model,  in  which  longitudinal
modes  can  propagate  in  the  extra-dimensional  bulk
spacetime [4]. Additional origins of longitudinal modes are
proposed in [89].

More fundamentally, however, since QIOs are energy-free
exact solutions to EFVE, there is  nothing to obstruct the
generation of weak transient QIOs by accidentally aligned
motions of matter, and thus nothing to prevent the vacuum
from  being  filled  with  random  spacetime  fluctuations.
Physicists  have  long  predicted  spacetime  fluctuations  in
the  context  of  quantum  gravity.  For  example,  authors
Qingdi  Wang  and  William  G.  Unruh  [147]  (2020)
paraphrase  John  Archibald  Wheeler  (1955)  as  saying:
"[O]ver sufficiently small distances and sufficiently small
brief  intervals  of  time,  the  very  geometry  of  spacetime
fluctuates.  The  spacetime  would  have  a  foamy,  jittery
nature  and  would  consist  of  many  small  ever-changing
regions  [emphasis  mine]."  These  authors  of  course
attribute  spacetime  fluctuations  to  quantum  processes,
whereas QIOs would constitute a classical source of such
fluctuations.

With  regard  to  propagation,  the  idea  that  polarization
modes or other properties of GWs evolve during cosmic
transit  is  not  new [36,79,89].  However,  the evolution of
longitudinal  GWs  into  QIOs  has  not  previously  been
considered  in  the  literature.  Longitudinal  GWs,  such  as
PLGWs,  are  said  to  stretch  and contract  space,  exerting
unspecified or independent effects on time [43,80]. QIOs,
on the other hand, stretch and contract both space and time
with equal magnitude and phase.  As noted before, PLGWs
are expected to lose curvature as they transit the cosmos,
where curvature is defined by the Riemann tensor  Rμναβ.
Curvature  loss  would  coincide  with  a  mutation  of  the
PLGW  time  component  to  eventually  cancel  the  space
component  in  the  Riemann  tensor,  producing  Rμναβ=0.
Thus  PLGW  evolution  would  exhibit  polarization  that
rotates between space and time, somewhat akin to a space-
versus-time birefringence.

Since  a  QIO is  a  vacuum solution,  it  would disperse in
unknown ways upon entering non-vacuum regions of the
universe. To penetrate our galaxy and retain coherence, a
QIO  must  have  a  wavelength  small  enough  that  the
background  appears  as  an  effective  vacuum.  Locally
detectable  QIOs  should  thus  have  wavelengths  smaller
than the typical distance between stars and other galactic
objects.  Coincidentally,  the  wavelengths  detected  by



current  PTAs  and  the  planned  space-based  Laser
Interferometer Space Antenna (LISA) lie roughly between
one  astronomical  unit  (AU)  and  one  parsec  [79],  well
within the expected longer range of local QIO wavelengths.

It  is  also  proposed  here  that  QIOs with  sufficiently  high
frequencies could pierce solid matter, transiting the empty
space  between  elementary  particles.  Given  an  adequate
presence of QIOs, such transmissions could cause random
fluctuations in the positions of lighter particles in the atom
such as electrons.

Regarding detection, it was shown in Section III that QIOs
are in principle observable by any space-based non-freely-
falling platform carrying suitably designed detectors.  The
platform  must  be  rigid  on  a  scale  larger  than  the  QIO
wavelength to ensure the detectors are not freely oscillating
in the field,  as  required  by the proof  of  observability.  A
skeletal  design  for  a  detection  apparatus  might  be  as
follows: Suspended in free space, at a distance greater than
a QIO wavelength from the observation platform, a row of
test clocks is allowed to float freely in the oscillating field
of a QIO. The test clocks emit periodic low-energy photons
both toward and away from the platform to prevent recoil.
Due to the high frequencies of detectable QIOs, the photon
emission rate could be some fraction of the expected QIO
frequency. Detectors spaced along the rigid platfom would
monitor photon reception, looking for in-phase correlations
between length dilation-contraction of test clock positions,
and  time  dilation-contraction  of  photon  frequency  and
emission rate. Whether detection is possible using different
designs is a future topic.

The detection apparatus must of course measure extremely
minute effects, since QIOs are presumed to have amplitudes
lower than those of  standard GWs. Noise due to  sources
such as recoil of test clocks during emission are expected to
make  detection  difficult,  necessitating  extraordinary
sensitivity  and  precision.  The  range  of  detectable
wavelengths is also highly constrained, being on the order
of  centimeters  to  100  meters,  corresponding  roughly  to
ultrahigh frequencies in the range 106 to 1010 Hz. Standard
GW detectors in this range are only now being proposed
[25,140].

As an alternative, PTAs may offer a means of detection for
QIOs with wavelengths on the order of AUs to parsecs. In
fact, there is a possibility QIOs have already been detected
by PTAs. Researchers at NANOGrav reported in December
2020 strong evidence for a SGWB detection using PTAs,
but added that the data lacks the spatial correlations given
by the Hellings-and-Downs curve, whose functional form is
a consequence of the quadrupole nature of standard GWs
[21,141-144]. Some authors explain the lack of correlations
by  suggesting  the  observed  GWs  carry  non-Einsteinian
polarizations  [100],  possibly  including  the  longitudinal
mode [15], a distinct signature of QIOs. Others assume this
lack is due to an unknown background [30], which might

imaginably contain QIOs. Whether QIOs could in principle
be detected by PTAs is a topic for further investigation.

VI. DISCUSSION AND CONCLUSION: TIME
VERSUS SPACE 

The physical meaning of wave solutions to Einstein's field
equations  was  widely  debated  in  the  1950s  and  1960s
[59,77,145].  A  consensus,  largely  influenced  by  Taub,
McVittie and Weber, emerged based on assumptions about
the type of GWs these authors were seeking, namely GWs
capable of forming gravitons. Since gravitons, if they exist,
would be expected to persist as particles, it seems logical
that  the  associated  GWs  could  not be  removed  by  a
coordinate  transformation.  Hence  the  waves  sought  by
these authors should be expected to possess curvature, as
dictated by Taub's rule. However even this logic may be
questionable, in that the particle concept poses ambiguities
in curved Riemann space [62] and may appear ambiguous
even in Minkowski space [124].

Nevertheless, subsequent authors assumed, without further
debate [118], that Taub's rule applied to exact longitudinal
plane  waves,  and  consequently,  that  such  plane  waves
possess no detectable effects.  For example,  Eardley,  Lee
and Lightman (ELL) claim, without explicit proof, that the
Riemann  tensor  is  the  only  measurable  field for
determining test particle acceleration and GW polarization
modes [109],3 a claim also put forth in [119]. However the
ELL claim is in conflict with the result shown in Section
III that exact longitudinal plane waves such a QIOs do in
fact  cause test  particle  acceleration. The ELL claim also
implies  a  conflict  with  the  Unruh effect,  believed  to  be
detectable in Rindler frames and rotating frames, both of
which are Riemann flat.

To resolve these conflicts, the conjecture proposed here is
that  the  Riemann  tensor,  while  a  valid  measure  for
determining viable metrics in Riemannian geometry, is not
a valid measure in  pseudo-Riemannian geometry in cases
where  4D Riemann  flatness  results  from cancellation  of
space versus time components. In other words, if a pseudo-
Riemannian metric has nonvanishing 3D spatial curvature,
the  metric  is  nontrivial  and  potentially  observable.  This
conjecture may not  be new,  as  it  possibly relates  to  the
underlying concepts of what is called  spatially covariant
gravity,  a  type  of  modified  gravity  in  which  spatial
curvature,  rather  than  spacetime  curvature,  plays  the
fundamental role [149,150].

It is the assumption that space and time are dimensions on
an  equal  footing  that  supposedly  justifies  mutual
cancellation of time and space components in the Riemann
tensor,  thus  allowing  the  notion  that  Riemann  curvature
defines the reality of a wave. Yet we have seen that metrics
describing  QIDs,  Milne  universes,  Rindler  frames  and
rotating frames possess a reality independent of Riemann
curvature.  Therefore  the  cancellation  of  space  and  time
components  in  the  Riemann  tensor  may  not  always  be



observationally meaningful. This in turn suggests that time
is  not  just  an extra  dimension,  but  differs  from space  in
categorical ways that transcend Riemannian geometry.

As  a  further  point,  the  fact  that  QIDs  have  vanishing
Riemann  curvature  does  not  mean  they  are  a  priori
undetectable  to  human  observers,  any  more  than  the
vanishing  in  Kruskal  coordinates  [134]  of  the
Schwarzschild  event  horizon  renders  it  undetectable  to
human observers. Indeed, the Schwarzschild horizon may
be quite real to human observers, who perceive space in a
manner very different from time. (See [135] for methods of
observing event horizons.) The underpinning of this idea is
that  physical  space  and  physical  time  are  not  merely
separate  dimensions  in  4D pseudo-Riemannian  spacetime
(the geometric interpretation), but that space and time differ
in substantial ways that cannot be removed by geometrical
operations.

Moreover, the geometric interpretation, while often tacitly
assumed in the GR literature, is incompatible with theories
of  quantum  gravity,  where  time  is  modeled  completely
differently  from  space  [136,137].  Indeed,  that  time  and
space play distinct roles in quantum systems has posed an
obstacle  to  the  development  of  a  complete  theory  of
quantum gravity compatible with GR. An understanding of
the  distinctions  between  space  and  time  may  therefore
reveal  clues  for  reconciling  the  ELL  claim  with  QIO
observability, as well as for reconciling GR with quantum
gravity.

Hence  there  arises  the  question:  If  time  and  space  are
categorically  different,  what  exactly  is  different  about
them?  To  address  this  question,  recall  that  in  special
relativity,  the  time  and  space  axes  undergo  hyperbolic
rotation due to the observer's velocity. Spacetime intervals,
here  to  be  called  vectors,  thus  fall  into  three  classes:
timelike, spacelike, or null. To distinguish the properties of
time and space,  we are  therefore  tasked  with  identifying
differences  between  timelike  (or  null)  and  spacelike
vectors.

Causality  marks  one  difference.  Timelike  or  null  vectors
can  carry  information,  meaning  the  endpoints  of  such
vectors  are  causally  connected  [136].  Spacelike  vectors
cannot  carry  information  and  are  causally  disconnected.
Causality further dictates that a diagonal metric expressed
in spacelike and timelike coordinates has but one timelike
component. The uniqueness of the time component means
time acts more like a parameter of change than a dimension.
Furthermore,  time  is  irreversible  and  has  an  arrow  or
unambiguous  ordering,  while  space  does  not.  This
distinction transcends the principles of pseudo-Riemannian
geometry,  to  which  time's  arrow  must  be  added  as  an
independent postulate [136].

More  concretely,  electric  charge,  baryon  number,  lepton
number and other quantum properties are conserved along
timelike  vectors  but  not  along  spacelike  vectors.  Due  to

these conservation laws,  our universe is  filled with very
thin  timelike  fibers  or  threads  of  matter  that  extend
indefinitely in time (elementary particles), while analogous
spacelike  fibers  or  threads  (tachyons)  have  never  been
proven to exist, a profound manifestation of the uniqueness
of time4.

In a broader vein, the present moment of time defines a
spacelike hypersheet that divides the 4D universe into past
and future  [138,139],  where  past  events  are  determined,
while  future  events  are  undeterminable  due  to  quantum
effects  [136].  There  is  no  such  division  of  space.  From
these considerations, it is maintained here that, due to the
distinct natures of space and time, Riemann flatness does
not  necessarily  rule  out  the  detectability  of  longitudinal
metric plane waves, and furthermore that Taub's rule does
not restrict quasi-inertial phenomena such as QIOs. 

Strictly  speaking,  Taub's  rule  would  introduce  an  added
constraint  on  Einstein's  law  of  gravity  Rμν=0 for  the
vacuum, implying Einstein's law is incomplete as it stands,
and should instead read:

Rμν= 0,    Rμναβ ≠ 0.

Yet  Einstein's  law  is  presented  as  complete  in  many
contexts. This suggests that Taub's rule may not be fully
integrated into the common understanding of GR. In view
of  the  questions  surrounding  Taub's  rule,  it  has  been
essential in this paper to reconsider the implications of a
vanishing Riemann tensor for observations in real physical
scenarios.

NOTES 

1. (Section I) Steven Weinberg [125] assumes GWs should
behave  like  the  wave  equations  for  elementary  particles
and photons, which carry energy  E=hν.  This assumption
arguably  defies  logic.  Elementary  particles  and  photons,
along  with  their  attendant  energy,  are  not  intrinsic
properties  of  spacetime,  but  are  added  to  spacetime  as
extrinsic entities and reside locally within it.  In contrast,
the  metric  defines spacetime. It  is  not  a  localized entity
residing within spacetime to which energy can be assigned.
Thus the metric cannot be associated with energy, in turn
implying  energy  is  absent  in  the  gravitational  field  and
hence in gravitational waves. 

2. (Section III) To first order, a test particle in the field of a
QIO  is  subject  to  an  effective  periodic  force  in  the  x
direction and will oscillate. For charged particles such as
intergalactic electrons, the oscillation will cause emission
of  electromagnetic  waves  in  directions  y and  z.  This
radiation can in principle be detected by a distant observer,
as  long  as  the  observer’s  frame  does  not  follow  the
geodesic of the oscillating charge. (Were the observer to
follow the same geodesic, no relative oscillation and hence
no  observed  emission  would  occur.)  It  should  be
emphasized  that  QIO-induced  photon  emission  has  been
derived  here  from  an  exact  solution  to  EVFE,  utilizing



only the particle Lagrangian, with no added assumptions.
Indeed, photon emission induced by zero-energy waves is
fully consistent with GR, given a proper understanding of
gravitational field energy. That the gravitational field does
not  contribute  to  the  energy-momentum  tensor  Tμν is
confirmed by many authors,  including McVittie  [58]  and
Dirac [114].

To  visualize  motion  induced  by  an  energy-free  field,
consider  the  Schwarzschild  metric,  an  exact  solution  to
Einstein’s  field  equations  for  the  vacuum.  Despite  the
vanishing of the energy-momentum tensor, the field causes
effective acceleration of freely falling bodies as measured
in a laboratory frame. This effective acceleration does not
imply potential energy is stored in the field, since no real
force acts on a freely falling body. The observed gain in
kinetic energy is actually due to a  pseudo-force caused by
the observer's own deviation from a geodesic. The fact that
the Schwarzschild metric is static while the QIO metric is
dynamic does not disturb the analogy.

3. (Section VI) According to Eardley et al. [86,109], whose
calculations employ a linearized Riemann tensor and so are
not  exact,  the  Riemann  tensor  is  all  we  can  measure
because, as the authors claim, forces are proportional to the
Riemann  tensor  for  freely  falling  reference  frames.
However, in the case of QIO detection, the reference frame
is not freely falling, but remains rigid in the oscillating field
of the QIO. Hence, the effective force is not proportional to
the  Riemann  tensor,  but  is  determined  by  the  particle
Lagrangian.  Moreover,  it  is  not  clear  which  “forces”
Eardley et al. are referring to, since gravitational forces do
not play a formal role in GR, although effective forces can
be calculated in  a Hamiltonian framework via  the Euler-
Lagrange equation.

4. (Section VI) From this viewpoint, the universe is filled
with  timelike  filaments  or  threads  known  as  particles.
Filaments such as protons and electrons,  although having
minute extent in space, may be infinitely extended in time,
representing  a  profound  asymmetry  between  space  and
time. Now quantum mechanics requires the universe to be
divided  into  past  and  future,  where  the  past  has  been
determined, but the future is undetermined due to quantum
uncertainty. Hence a filament such as an electron forms a
more or less localized thread in the past, but smears out into
an  unlocalized  swath  in  the  future.  As  the  spacelike
hypersheet  of  the  present  moment  progresses  forward  in
time,  it  essentially  combs  the  electron's  swath  into  a
localized  thread.  Thus,  the  present  hypersheet  may  be
envisioned as a comb that turns the swaths of unlocalized
particles from the future universe into threads of localized
particles  filling  the  past  universe.  The  roles  of  time  and
space are entirely asymmetric in this picture, leading to the
question of how spacetime symmetry can even appear at all
in well-proven theories such as special relativity.
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