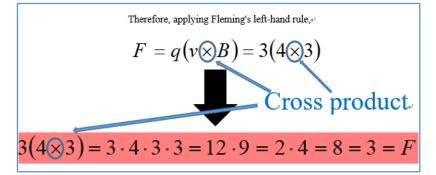
Simple proof that this earth is a 4-dimensional space-time


March 13, 2023 Yuji Masuda y_masuda0208@yahoo.co.jp

Abstract

In the previous number, I defined the unit of charge as 3 and showed that Coulomb's law holds. In this number, I will explain this earth dimension from the detailed explanation of Fleming's left-hand law in the previous number.

General comments

Begin by showing the previous number again.

Transform the above equation

$$3 \cdot 4 \cdot 3 \cdot 3 = 3^2 (4 \times 3) \quad \cdots (1)$$

In my definition series, all numbers represent scalar values, so all matrices adopt determinant values.

Here are two examples.

$ \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{vmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} \begin{vmatrix} 2 & 0 \end{vmatrix} \begin{pmatrix} 2 & 0 \end{vmatrix} \begin{pmatrix} 7 & 3 \end{vmatrix} $	\Leftrightarrow	$2^{x} \left(\begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} \times \begin{vmatrix} 3 & 1 \\ 1 & 1 \end{vmatrix}$	$) \boxed{ \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 3 & 1 & 1 \\ 2 & 1 & 4 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 2 & 2 & 1 \\ 3 & 2 & 1 \\ 1 & 4 & 3 \end{pmatrix} } \iff 3^{x} \begin{pmatrix} 3 & 1 & 1 \\ 2 & 1 & 4 \\ 1 & 2 & 3 \end{pmatrix} 2^{x} 2^{x} 2^{x} 1 \\ 2^{x} 3^{x} 2^{x} 2^{x} 1 \\ 2^{x} 3^{x} 2^{x} 2^{x} 1 \\ 3^{x} 2^{x} 2^{x} 2^{x} 1 \\ 3^{x} 2^{x} 2^{x} 2^{x} 2^{x} 1 \\ 3^{x} 2^{x} $
$= \left(\begin{array}{cc} 0 & 2 \end{array} \right) \left(\begin{array}{cc} 4 & 2 \end{array} \right)$	\Leftrightarrow	$= 2^x \times (1 \times 2)$	$= \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 11 & 22 & 15 \end{bmatrix} \implies \Rightarrow = 3^{x} \times ((-14) \times (-2))$
$= \begin{vmatrix} 14 & 6 \\ 8 & 4 \end{vmatrix} = 8$	\Leftrightarrow	$=2^{x+1}$	$ \begin{vmatrix} 0 & 0 & 3 \\ 30 & 36 & 21 \end{vmatrix} $
$\therefore x = 2$			$ = \begin{vmatrix} 33 & 66 & 45 \\ 33 & 54 & 36 \end{vmatrix} = 756 \qquad \Leftrightarrow = 3^{x} \times 28 $
			$\therefore x = 3$

In other words, equation (1) is valid when the matrix from which the scalar values are derived is a quadratic square matrix.

Therefore, since a quadratic square matrix consists of four factors, the space governed by this Fleming left-hand rule turns out to be a four-dimensional space-time (three-dimensional space and one dimension of time).