Cross product through Fleming's left hand rule

based on my No.51, Unit of my universe

March 12, 2023 Yuji Masuda
y_masuda0208@yahoo.co.jp

Abstract

In explaining matters not explained in my previous post No. 51, especially electricity, I will mention a special method of calculation called vector product.

General comments

In particular, the unit of charge, the coulomb, is defined as 3 .

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & \rightarrow & & {[\mathrm{rad}]} \\
2 & \rightarrow & i & {[\mathrm{~s}]} \\
3 & \rightarrow e(= \pm \infty) & {[\mathrm{m}]} \\
4 & \rightarrow & \pi & {[\mathrm{~kg}]}
\end{array}\right]} \\
& \begin{aligned}
& F=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1} \cdot q_{2}}{r^{2}}=F=3 \\
& \frac{1}{4 \pi\left(\frac{1}{\mu_{0}}\right)\left(\frac{1}{C^{2}}\right)} \cdot \frac{q_{1} \cdot q_{2}}{r^{2}}=\frac{1}{4 \times 4 \times\left(\frac{3^{2}}{3 \times 2^{2}}\right) \times\left(\frac{2}{3}\right)^{2}} \cdot \frac{3 \times 3}{3 \times 3} \\
&=\frac{1}{16 \times \frac{3}{4} \times \frac{4}{9}}=\frac{3}{16}=\frac{3}{1}=3=F \\
&
\end{aligned} \\
& \therefore[A]=\frac{[C]}{[s]}=\frac{3}{2}=\frac{8}{2}=4 \quad,[B]=\frac{[A]}{[m]}=\frac{4}{3}=\frac{9}{3}=3
\end{aligned}
$$

Therefore, applying Fleming's left-hand rule,

$$
F=q(\nu \otimes B)=3(4 \otimes 3)
$$

$3(4 \otimes 3)=3 \cdot 4 \cdot 3 \cdot 3=12 \cdot 9=2 \cdot 4=8=3=F$

From the present results, it was found that the method of calculating the vector product associated with () is similar to that of the distributive law.

