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Abstract

This paper shows how an application of zeta function regularisation
to a physical model of quantum measurement yields a solution to
the problem of wavefunction collapse. A realistic measurement ontol-
ogy is introduced, an outcome function is introduced and an outcome
counting argument is presented. It is shown how regularisation of
this outcome function leads to apparent collapse of the wavefunction.
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1 Introduction

This paper begins with some definitions, gives a brief overview of the mea-
surement problem and briefly discusses the current literature relating to the
problem and some of the associated interpretations of quantum mechanics.
The paper then describes the measurement ontology suggested and then, using
a counting argument based on statistical mechanics, derives a solution of the
measurement problem through showing how the apparent wavefunction col-
lapse appears via regularisation of this function. A discussion section collects
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open questions and discussion points. An appendix is included which further
clarifies some of the key concepts.

Definitions

In this section we will define the key terms and objects that we will be using, in
the order they will introduced in the text. These can then act as a reference. In
the text, we may reiterate these definitions as we give them additional context.
In general, we move between quantum representations (wave or matrix) to
most simply express our ideas.

Definition 1 Ψ is an arbitrary total wavefunction of a system. ϕ is used to represent
an eigenfunction onto which the wavefunction can collapse, whereas ψ is used to
represent an uncollapsed wavefunction that could be in a superposition of the possible
ϕ’s.

Definition 2 λ is an eigenvalue.

Definition 3 m is the total number of interacting particles across the measurement
process.

Definition 4 H is a general Hilbert space. Hd,m is a truncated, or finite, Hilbert
space of m particles each with finite dimension, d. d = ∞ in the most general case.

Definition 5 F (H) is a general Fock space, while F ′(Hm) is a Fock space for a
given number of particles, m.

Definition 6 n is an index which counts the number of particles in each system
which interact in the measurement process. This index runs from 1 to k.

Definition 7 cn is the number of many particle systems of size n across the
measurement process.

Definition 8 d is the number of possible states following measurement of an isolated
quantum particle, or its dimension, or number of single-particle basis states. For the
most general Hilbert space, d = ∞.

Definition 9 maxO is the maximum number of outcomes following a measurement.

Definition 10 p and q are arbitrary numbers which respectively count a number,
q, of size p-particle system in an illustrative example.
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Definition 11 Ωc is number of micro-states available for the distribution of the
counting function, cn.

Definition 12 k is the size of the largest system involved in the measurement
process.

2 Brief Overview of Background

The reader may use [1] [2], or any other of a number of undergraduate or ele-
mentary texts, for a basic treatment of the quantum measurement problem.
However, for clarity, we will give a very brief overview of the measurement
problem in order to be clear about the problem this paper aims to approach.
In terms of [3]’s characterisation of the problem, this paper aims to tackle the
‘problem of definite outcomes’.

Quantum theory is meant to be a universal theory to explain all phys-
ical phenomenon. However, there appears to be two distinct time evolution
phenomenon in quantum mechanics. Firstly, evolution of the wavefunc-
tion between measurements, as governed by the time-dependent Schrodinger
equation.

iℏ
∂Ψ

∂t
= ĤΨ (1)

And secondly, quantum mechanics under quantum measurement. Under quan-
tum measurement, the wavefunction appears to evolve non-linearly; that is,
the total wavefunction will suddenly appear to collapse into a single eigenstate,
with corresponding eigenfunction ϕ. To take a simple example, a component
being measured is the action of an arbitrary Hermitian, linear operator Ô. The
eigenvalues associated with Ô are λa and λb, and respective eigenfunctions are
ϕa and ϕb. Take a quantum system, Ψ0, before measurement that is in the
state:

Ψ0 =
1√
2
(ϕa + ϕb) (2)

For clarity of exposition, we define the basic postulates and nomenclature
of our wavefunction formalism in appendix A. Notably, we rely on the fact
that Ψ is decomposed into a set of orthonormal eigenstates {λi |ϕi⟩} (with
observable λ) via the expansion postulate, and after measurement will be in
one of these eigenstates. Furthermore, the measuring system also implicates a
separate structure of Ψ as defined in section 9.1, which will involve a plethora
of superpositions of states with, for example, the system in equation 2 and the
measuring system.

In the example above in equation 2, after measurement, the quantum
system evolves and is projected (“jumps”) into either state ϕa or state ϕb
depending on whether the measurement yields the eigenvalue λa or λb. This
is known as the ‘collapse postulate’.
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These two time evolution phenomenon appear to be irreconcilable. The
distinction between time evolution dynamics of the two types described above
remains to be made out in quantum mechanical terms. In fact this difficulty in
reconciliation, the measurement problem, has been described as probably the
‘most difficult and controversial conceptual problem’ in quantum mechanics
[1].

A number of different “interpretations” have been proposed, which aim to
help explain this measurement problem, the first of which was the Copenhagen
Interpretation [4]. Other popular interpretations include the Many Worlds
interpretation [5], hidden variable interpretations [6] and objective collapse
interpretations [7] [8].

3 Discussion of the literature

This paper will not offer an exhaustive review of the literature. There are a
number of thorough overviews of the various interpretations, for example see
[9] [10] for recent overviews of the most popular attempts for solving the mea-
surement problem. [11] gives an up-to-date overview of the problem with a
particular focus on collapse model interpretations. Despite the number of exist-
ing interpretations, this paper proceeds with the understanding that ‘there is
no interpretation of (QM) that does not have serious flaws’, a view given by
[12].
Identifying which broad category of solution this paper describes might be use-
ful, however. Bearing this in mind, this paper outlines an objective collapse
theory. Unlike objective collapse theories such as GRW [7] and the CSL model
[8], the Schrodinger equation is not explicitly altered. For the quantum formal-
ism used in this paper, please refer to [13] [14] [15] or any of the many other
suitable standard texts.

4 Measurement Ontology and Collapse

The measurement ontology, described as a mechanism, is as follows: through
measurement, a quantum system interacts with a large number of other quan-
tum systems, of varying sizes and complexity, from the very small and simple,
to the large and complex. As these quantum systems interact, the number of
possible outcomes from that measurement increases, as the number of superpo-
sitions increase. Taking a statistical mechanical model of the number of likely
outcomes; as the complexity and size of the interactions increase towards the
macro-scale, we approach an infinite number of possible outcomes from a mea-
surement. We also take into account how the particles may be described as
distinguishable, since the measurement process spans quantum and classical
physics. However, regularisation mediates the divergent infinity of outcomes
and, in effect, ‘produces’ the wave-function collapse phenomenon by reduc-
ing the maximum number of possible outcome states to just one. This agrees
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with apparent real-world observations of physics in the classical and quan-
tum regimes. In Appendix B we provide some diagrams which help clarify the
conceptual, mechanistic basis of the proposed measurement model.

4.1 Two Models Approach

In this paper we use a single mathematical framework, and mechanism out-
lined above, but have two different models to help explain the collapse. These
two models involve introducing different ways of thinking about some of the
mathematical objects that we will work with. We will briefly expand on these
two models and clarify how the assumptions in these models lead to the rel-
evant theory described, and will reiterate this in the relevant section below.
We describe these models because even if the mathematical framework and
derivation is similar across both models, either model can help us understand
the physical assumptions we are using at each stage of the derivation, and in
particular, the choice of statistical assumptions. This requires clarity around
the distinguishable or indistinguishable nature of the particles, which is why
these two models have been proposed. The following two sub-sections might
be skipped by readers more interested in the mathematical content, and they
might proceed directly to section 5.

4.1.1 Distinguishable Particles Model

In this particular model, we take the principle that classical mechanics requires
distinguishable particles. With this principle, and with the understanding
that the measurement problem spans both quantum and classical regimes, we
examine a measurement process through the standard quantum mechanical
formalism but with the principle that particles can be distinguishable. Due to
this, we use general Hilbert spaces. In other words, the classical world imposes
the principle of distinguishable particles onto the mathematical structure of
quantum mechanics, and we show how this leads to apparent collapse.

4.1.2 Size of Spaces Model

In this alternative model, we work on the principle that physically measurable
spaces are the most important feature of the theory, and so work with these
physical spaces as the primary object. We also assume that spaces and sub-
spaces are physically dependent. We deal with this principle below in section
5.1.4, assuming that these spaces might impose themselves on one another.
That is, that the most general space, the space with its dimension counted
by the outcome counting function, maxO, imposes restrictions on the Hilbert
sub-space, which then imposes restrictions on the Fock states sub-space. In
particular, we suppose that these more general spaces, when they have their
dimensionality reduced, reduce the dimensionality of their associated sub-
spaces. It is important to note that according to our derivation, in this model
there is still an element of the classical regime ingressing upon the quantum
world, and this is apparent in the additional number of outcomes accounted
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for by the ways in which particles in an n-particle system may interact with
each other. This is made clear in the relevant section, 5.7. However, in this
model, particles can be considered indistinguishable and so obey physical laws
relating to this.

5 Derivation of the Collapse

In this section we will build up our idea of the outcome function that is critical
to our theory. We first examine the relevant Hilbert spaces necessary for our
calculations. We then briefly cover the relevant Fock spaces. While examination
of the Fock space might not be required for the approach described in this
paper, we detail these spaces so that some illustrative physical examples can
be developed. We will first examine the function quantum mechanically for the
most simple case of just one particle. We will then examine the more complex
case of multiple, interacting particles. We then, finally, introduce a realistic
outcome function based on a counting argument, which counts the number of
interacting systems of particles of varying complexity which includes a classical
component.

5.1 An Outcome Counting Function and Dimensionality
of Hilbert Space and Fock Spaces and a Principle of
their Relative Sizes

5.1.1 maxO

We define a function, maxO which counts the maximum number of mea-
surement outcomes following a quantum experiment. Quantum mechanically,
this function is related to the dimension, or number of basis functions, of a
many-body system. Since the measurement process is across the quantum and
classical regimes, this outcome function also has a classical component. This
classical component is due to the additional number of outcomes due to being
able to label individual particles.

5.1.2 Hilbert Space

We interpret the dimension of the Hilbert space, dimH, of a system as the total
possible number of basis states of a system. In principle, quantum mechanics
allows experiment to distinguish between these states. Possible outcomes, in
other words. For a basic composite system the Hilbert space is defined as:

HAB = HA ⊗HB (3)

and:
dim(HAB) = dim(HA)× dim(HB) (4)
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For a many body system of m particles the Hilbert space is as follows:

H⊗m (5)

with dimension:
dim(H⊗m) = dm (6)

We mostly consider the most general Hilbert space, which is required to have
infinite dimension, d = ∞; but also consider finite, or truncated Hilbert spaces,
for illustrative purposes. This most general, infinite dimensional Hilbert space
is defined for a given number of particles, H∞,m. See Appendix D for a brief
discussion.

5.1.3 Fock Space

Fock spaces, F (H) are Hilbert spaces restricted to fermionic and bosonic
allowed states across a number of particles. That is, the states that the relevant
symmetry laws allow.

F (H) =

∞⊕
n=0

SγH⊗n (7)

with Sγ as the operator which symmetrizes or antisymmetrizes a tensor
depending on if the Hilbert space is bosonic or fermionic and n counts the
number of particles. We, again, interpret the dimension of this Fock space as
states which can, in principle, be distinguished between.
For the purposes of this paper we will use a related idea, which accounts for
the symmetry of bosons and fermions but is defined only for a given number of
particles. That is, there is no sum through the zero, one, two, three etc. particle
states, but is defined for m particles. This Fock state is defined as follows:

F ′(Hm) = S+H⊗p ⊕ S−H⊗q (8)

with the S+ the symmetrizer operator acting on a bosonic space, and S− the
antisymmetrizer operator acting on the fermonic space, and p+ q = m.
The relationship between the more general Hilbert space and the Fock space
is clear. The Hilbert decomposes into two subspaces, this Fock space F ′(Hm)
and an additional subspace containing states that do not posses any symmetry.
This Fock state its-self decomposes into symmetric and anti-symmetric states.

5.1.4 Dimension of Spaces Principle

Given that symmetry restrictions reduce the dimensionality of a Hilbert space
to a Fock state, and given that our outcome counting function includes both
quantum and a classical component in addition to the quantum Hilbert con-
tributions, we may state the following as a principle, for a given d and
m:

maxO ≥ dim(H∞,m) ≥ dim(Hd,m) ≥ dim(F ′(Hd,m)) (9)
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This is because in general:

dim(A⊕B) = dimA+ dimB (10)

and for bosonic spaces

dim(S+H⊗m) =
(m+ d− 1)!

m!(d− 1)!
(11)

and for fermionic spaces

dim(S−H⊗m) =
d!

m!(d−m)!
(12)

See footnote 1 for a proof of inequality (9).
Our outcome counting function for a general quantum system ofm particles

is larger than or equal to the dimensionality of the (infinite and finite) Hilbert
spaces for that same system, which itself is larger than or equal to the Fock
state for that same system.

5.2 The Maximum Number of Outcomes for a Single
Particle

The maximum number of outcomes for a single particles is simple. As a
reminder, d is the maximum number of states that may follow a measurement
of an isolated single-particle, and we assume this is equal to the number of
basis states of the particle. We restrict d to describing fundamental particles.

We briefly look at the dimensionality of the truncated Hilbert space (and
also in this case the Fock space), since this determines maxO for quantum
systems.
For a fermionic (spin= 1

2 ) particle (such as an isolated electron), there will be
two degenerate states due to the fermion’s intrinsic angular momentum, also
refered to as spin (s).

maxO = dim(F ′(H2,1)) = 2s+ 1 = 21 = dim(H2,1) (15)

1

The latter part of the inequality in this principle can easily be seen. Firstly, by inspection, for a
given d:

(m + d − 1)!

m!(d − 1)!
≥

d!

m!(d − m)!
(13)

So to maximize dim(S+H⊗p⊕S−H⊗q) we only look at the S+ contribution. That is, with p+q =
m, then p = m.
Then, by inspection,

d
m ≥

(m + d − 1)!

m!(d − 1)!
(14)

So it is clear that dim(H) ≥ dim(F ′(Hm)) Since we know that ∞ ≥ d, then dim(H∞,m) ≥
dim(Hd,m) follows.
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A physical example of this is a Stern-Gerlach like setup, where the instrinsic
spin is measured as the magnetic spin projection on a single cartesian axis,
by lifting the degeneracy of the two states via the application of an external
magnetic field.

5.3 The Maximum Number of Outcomes for m-particle
Systems

For many systems, the maximum number of outcomes is determined by both
the maximum value of d for a particle (max d) and by the number of particles
that many-particle system comprises. For m-particle systems, it is clear that
the maximum number of outcomes is:

maxO = (max d)m (16)

To expand on our initial example, a finite, d = 2 Hilbert space of 2 particles,

dim(H2,2) = 22 = 4 (17)

5.4 Example: The Maximum Number of Outcomes for
Many Systems, of Varying Complexity

In a realistic model of measurement, a quantum system will interact with
objects of varying complexity, themselves which will have already interacted
with quantum systems. Thus, take for example a complex system comprising
a number, q, of size p-particle systems. In this case, it is clear that:

maxO = (max d)pq (18)

since m = pq, with max d = ∞ in the most general case.

The arbitrary variables p and q (different from the ones in section 5.3) are
affixed via a process of maximum likelihood in the next section.

For a physical example, take the example of ten uncharged Helium
molecules interacting in a vacuum, with each Helium molecule itself made up
of six particles (two neutrons, two protons and two electrons). In this example,
q = 10 and p = 6.

5.5 A Realistic Outcome Function

We introduce the idea of a counting function, cn, which will count the expected
number of complex systems of size n, all of which interact through the mea-
surement process. We will then multiply through these expected values in order
to find the total number of outcomes. Since each system of size n particles
contributes towards the multiplicity of the number of outcomes according to
d, we may therefore state:
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maxO =

k∏
n=1

dncn (19)

with k as the largest n size system involved in the measurement process.

5.6 A n-particle System Counting Function

In order to derive a more accurate representation of cn, we use some principles
from statistical mechanics.

5.6.1 The Approach for Deriving cn

For an example of the mathematical approach we will use, see [16] or a number
of other elementary statistical mechanics texts, in which distributions which
count occupancy of particles based on a number of physical assumptions and
constraints are derived. The following derivation aims to help us to understand
the number of n-particle systems, for each n, which all interact during the
proposed measurement process. Figure 2 helps to clarify this proposed physical
model of additional outcomes. In terms of Figure 2, we are aiming to further
understand the expected number of n-particle systems in each bracket for each
n.
The goal of this subsection can be simply summarised by being an attempt to
find the probability distribution for cn which best represents the current state
of knowledge about a system, which is the distribution with the maximum
entropy.

5.6.2 Derivation of cn

In general, we are interested in systems of n-particles that can be thought of
as distinguishable and we assume a fixed number of n-particle systems. We
consider n-particle systems from n = 1 through to n being very large. We
define cn as the number of of n-particle systems for each n. Similar to a sta-
tistical mechanical derivation of an expected occupancy distribution, we want
to maximise the entropy of this distribution in question within the constraints
given. We do this by maximising the number of micro-states available (there-
fore maximising the entropy) to find the most likely distribution. We see the
total number of micro-states, is as follows:

Ωc =

k∏
n=1

cn (20)

where Ωc (given similarities to statistical mechanical Ω) is the number of
micro-states available for the distribution of the counting function, cn. Phys-
ically, Ωc is the number of possible arrangements of n-particle systems across
n layers with a defined cn. We also note that:
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k∑
n=1

cn = C (21)

which is the total number of n-particle systems, since this is constant. We
then need to maximize Ωc with the above constraint that there are a fixed
number of many-particle systems, C. In order to achieve this, we use the
arithmetic-geometric inequality, as applied to equations 20 and 21:∑

xi
i

≥ i

√∏
xi (22)

Since in the above inequality, equality only holds if and only if xi are equal,
we therefore know that to maximise Ωc, the number of many particle systems
for each n must be the same:

c1 = c2 = cn = c (23)

where c is the number of n-particle systems for each n which interact in the
proposed measurement model.
For a simple, but less instructive, proof of this, observe that the maximum
entropy distribution with no other constraints is this uniform distribution
(cn = c). See, for example, [17]. See footnotes 2 3 for a brief discussion of c.

2In order to better understand this quantity c, we also know that the total number of particles,
m, is the number of n-particle systems, c, multiplied by n, as in equation (18).

k∑
n=1

nc = m (24)

where k is the number of particles of the largest n-particle system. Using the sum of natural
numbers:

k2 + k

2
c = m (25)

So therefore,

c =
2m

k2 + k
(26)

3There is also a natural argument for the uniform cn distribution. In nature there are generally
a fairly constant number of particles that constitute a composite particle. For example, we see
that 12 nucleons constitute 12C, yet also it is highly common to observe around the same number
of atoms in a molecule, and furthermore the same number of molecules that constitute lipids
and proteins and a similar number of these that constitute a small speck of dust. Matter gathers
together in a generally consistent way. Although the cn may vary vastly between scale changes,
it may also be seen to reduce back to the uniform pattern periodically and therefore average at a
fairly constant value.



Pre-Print LATEX template

12 Zeta Function Regularisation of the Measurement Problem

5.7 Number of Outcomes: Contributions From the
Number of Ways for Particles to Interact With the
Total System

We may now therefore state the number of outcomes, with our counting
function better understood:

maxO =

k∏
n=1

dnc (27)

We almost have an accurate description of the number of possible outcomes,
but must first account for the additional number of ways that each n-particle
system can interact with each other, and the total system , Ψ. We must account
for the ways these particles interact in a way that might be thought of as clas-
sically.
The classical world ingresses into the (otherwise quantum) measurement pro-
cess. This is a key feature of the measurement process since it spans both
classical and quantum physics. This has a direct impact on the outcome count-
ing function.
Quite simply, we can see that there are n ways for each n-particle system to
interact with the other systems. Figure 3 helps to clarify the proposed model
of multiplicities of outcomes due to the additional outcomes. This is because
since there are n particles, only one of which must interact before that n-
particle system interacts with the wider system. We must therefore also count
these when counting the number of possible outcomes. We can therefore say:

maxO =

k∏
n=1

dncn =

k∏
n=1

dn
2c (28)

In physical terms we are accounting for the fact that, in principle, there is
a difference between each of the n particles of an n-particle system interact-
ing with the total system, Ψ. Concretely, a physical example is that given the
classical mechanics imposed by the measurement process, it should be possi-
ble to determine which of the six fundamental particles (two electrons, two
neutrons and two protons) that make up an uncharged helium atom should
be the particle to interact with the total system of the measurement process,
Ψ. Furthermore, with regards to exchange of particles, one cannot interchange
particles on a different scale (for example, a proton is not interchangable with a
large molecule) and so distinguishability across scales is trivial. This supports
our argument of the ingressing of the classical property of distinguishability
into the collapse mechanism.
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6 Regularisation of the Outcome function

Using the counting function from equation 28 we can then examine what we
would expect to happen under conditions of measurement. Under these condi-
tions, we want to increase k such that the size of the objects are large enough
to be perceptible by measuring apparatus and scientists, and perhaps wider,
with the environment and universe itself. In the scale dealt with in quantum
mechanics this can be represented as k → ∞. We therefore have the following
for the maximum number of possible outcomes following measurement:

max
k→∞

O =

k→∞∏
n=1

dn
2c (29)

Taking logarithms of both sides:

log max
k→∞

O = c log d

∞∑
n=1

n2 (30)

Using Zeta function regularization to assign a value to the divergent sum,∑∞
n=1 n

2 = 0 [18], we find that:

log max
k→∞

O = 0 (31)

and so

max
k→∞

O = 1 (32)

Therefore the maximum number of possible outcomes from a quantum
measurement following interaction with the environment is one. This is a
model of wavefunction collapse as it shows how the non-linear projection into
a measured, and single, state might occur. This will be further examined
below in terms of measurement operators.

6.1 Interpretation Using the ‘Sizes of Spaces’ Model

In order to map this back onto more familiar, less general, quantum spaces,
we can, recalling our principle:

maxO ≥ dim(H∞,m) ≥ dim(Hd,m) ≥ dim(F ′(Hd,m)) (33)

see that the reduction in this largest of dimensions, the dimension of our
outcome function, maxO (counting quantum outcomes of the most general
Hilbert and classical contributions) could be seen to leading to a ‘squashing’
of the smaller dimensions of the general Hilbert, truncated Hilbert and Fock
state spaces.

maxO = 1 ≥ dim(H) ≥ dim(F (H)) (34)

The smaller dimension objects have their dimensions consequently reduced.



Pre-Print LATEX template

14 Zeta Function Regularisation of the Measurement Problem

7 Measurement Operators and Selection
Criteria

7.1 Single Eigenstate Selection

Finally, it may prove useful to examine this process using the measurement
operator approach. We have an arbitrary linear Hermitian measurement oper-
ator, Ô acting on our total system, Ψ. Since, by definition, the eigenstates of
the operator acting on the system form a complete set of basis states of the
system, it is clear that

Ô |Ψ⟩ =
dim(H)∑

i

ai(Ô |ϕi⟩) =
dim(H)∑

i

ai(λi |ϕi⟩) (35)

with H the Hilbert space of the system that operator is acting upon.

Upon collapse, however, the cardinality of the set of possible eigenstates
must also reduce to

card({λi |ϕi⟩}) = dimH = 1 (36)

So clearly upon collapse there is only one eigenfunction and eigenvalue.
A brief note around the simultaneity of what we propose: we interpret this

measurement operator acting upon the Hilbert space as being simultaneous
with k → ∞. That is the number of eigenstates the Hilbert space is projected
into increases as the total system interacts with more objects through the
measurement process. However, as the dimensions of the spaces are reduced
through regularisation, as we have shown above, then dimH = 1. The collapse
occurs as described above and a single eigenstate is selected.

7.2 Born Rule

This single eigenstate is selected from the possible set of eigenstates and this
outcome is selected with a probability defined by the Born rule. In bra-ket
notation, using our completeness relation defined in appendix A, the proba-
bility of measuring an eigenvalue, λi, that corresponds to an outcome relating
to an isolated system is:

|⟨ϕi|Ψ⟩|2 = |ai|2 (37)

The laws of quantum physics dictate the probabilities associated with the
outcomes, and the possible eigenstates, and so the selection process, through
the Born rule and the measurement operators, is physically realistic.

8 Approaches to Experiments

[19] gives an overview of some possible experimental tests of some popular
collapse models. These experimental methods may be suitably altered to allow
for test of the approach described here.
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8.1 Emission Experiments: the Dioso-Penrose Approach
and Direct Validation

A recent experimental test has ruled out a parameter-free version of the
gravity-collapse, Diosi-Penrose model [20] [21] [22] [23], testing for emissions
based on a proposed random diffusion process [24]. This emission process has
been derived from the fluctuations the Dioso-Penrose model would predict. The
model suggested in this paper does not explicitly involve a random emission
process (although we do recognise that neither did the Dioso-Penrose model).
It would be interesting to understand how the theorem described in [25] should
apply to our model. This theorem proves that given certain assumptions, all
collapse theories should induce a diffusion. Understanding the specifics of this
theorem, and its application to the regularisation model presented in this
paper, might provide a direct route to validation of this approach. Performing
the calculations involved in determining the diffusion radiation that might be
observed at collapse based on this model, given the complexity of the process
described, is beyond the scope of this paper.

8.2 Differentiating Tests Against the GRW Model

An approach to potentially differentially validate this model of measurement
against other proposed collapse models would be to highlight key differences
between models, that would or would not predict collapse, where these dif-
ferences might be experimentally testable. The GRW model is a well known
collapse model and is a suitable model for this differential validation.
The GRW model has two parameters: the collapse strength, τcollapse, and the
spatial correlation collapse function, rc.
Fist, let us look at the τcollapse parameter. τcollapse gives the collapse
rate and is measured in collapses per second. Numerically, GRW sug-
gested τcollapse,GRW = 10−16s−1, [7], while Adler later suggested a value of
τcollapse,Adler = 10−8s−1 [26]. The model proposed in this paper does not
explicitly have any time parameters associated with the principle theory, and
so a differentiating test for our model against the GRW model might be to test
for whether collapse is associated with time, or whether, as our model sug-
gests, it is determined solely by the sequence of interacting particle systems,
and complexity of those systems. For example, this model would suggest that
a small number of particles, kept sufficiently isolated, will not undergo collapse
without further interaction. The GRW approach suggests otherwise, however.
Another potential route for differential validation is to look at the spatial cor-
relation function rc parameter. A proposed value for rc, according to GRW
was rc = 10−7m [7]. This is the scale at which collapses become apparent. For
< rc collapses are not apparent, for > rc are apparent. This paper does not
explicitly suggest that collapse should be dependent on length scales. Collapses
would be apparent over all length scales, so long as the criteria for complexity
of systems interacting and sequence of interactions are met.
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9 Overview of Results

The theory in this paper show how a quantum system, under measurement,
is projected into a single state at measurement and “collapses”. As a quan-
tum system undergoes interaction with larger and more complex systems, and
as these system approach the classical scales, the total number of possible
outcomes from an experiment increases. This increase in number of possil-
ble outcomes is due to the increasing dimensionality of the spaces which
describes the whole system, and greater number of possible particles which
may interact. The number of outcomes from an experiment can be described
as maxO =

∏k
n=1 d

n2c. However, as k → ∞, which is, at the quantum scale,
as k approaches classic size, and as this system takes some classical proper-
ties, zeta-function regularisation makes collapse apparent. Rather than have
an infinite number of outcomes from measurement, this regularisation shows
how we observe just one outcome, which is the result of the measurement,
selected by the Born rule.

9.1 A Toy Measurement Process

In this section we briefly sketch the the proposed process of measurement using
a toy model, which should illustrate the general approach. We examine this
toy process at three points in time.
We take a simple example of a Stern-Gerlach type experiment: a single elec-
tron is having its spin measured in the z axis. As the electron is accelerated
through the magnetic field, the electron interacts with a number of similar
sized quantum objects. These quantum objects are n-particle systems and
might be environmental photons, electrons and single nuclei. As we saw due
to the principle of maximum entropy in subsection 5.6, it is likely there will
be a constant number, c, of each of these n-particle systems.
At this point in time (t = 1), the electron has not undergone wavefunction
collapse, and the wavefunction of the total system would be something similar
to:

Ψ = ψ⊗c
1 ⊗ ψ⊗c

2 ⊗ ψ⊗c
3 ⊗ ψ⊗c

4 ...⊗ ψ⊗c
k (38)

where the ψ subscript counts the size of the n-particle system.
The total wavefunction then will interact with motes of dust and more complex
atmospheric molecules and droplets of larger sizes as it begins to interact with
the high complexity of the laboratory environment. The wavefunction, Ψ, is as
just described, but with k at t = 2 much larger than at t = 1. Similar to t = 1,
there are c of each of these n-particle systems of dust motes, and atmospheric
molceules and droplets.
Finally, at t = 3 the total wavefunction then interacts with macroscopic objects
and k → ∞. Particles become distinguishable and the process described in
this paper leads to apparent wavefucntion collapse according to the framework
above. Ψ is projected into a single eigenfunction associated with the relevant
measurement operator acting on that Ψ.
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10 Discussion

In this section we highlight some open questions and points of interest.

10.1 Avoiding Problems of Other Interpretations

The approach described, does not create any obvious conflicts with the
existing mathematical framework, or require a conscious observer. This new
interpretation of quantum mechanical measurement therefore avoids some of
the problems associated with other interpretations, which have been widely
discussed.

10.2 No Clear Line is Drawn

An important thing to note is that this formulation suggests that it is unclear
where the line between quantum and classical worlds may lie, exactly. We have
found that it is in the limit, k → ∞, where k is the size of the largest k-particle
system involved in measurement, that this formulation produces a physically
interesting result. However, it is unclear how to interpret this when trying
to understand how large objects might be before they collapse. Perhaps this
suggests that so long as there are a finite number of quantum particles in a
system then wave-function collapse will not occur? It is also unclear how large
k is for k → ∞ in the context outlined in this theory. We are assuming that
k → ∞ when larger than an atomic nucleus, but smaller than the universe.
We have assumed that k → ∞ on the scale of a human person.

10.3 Quantum and Classical Physics Are Mixed

10.3.1 Classical Collapse

Another thing to note is that this formulation includes both quantum (count-
ing the dimensionality of a many-body Hilbert space and resulting outcomes),
statistical-mechanical (counting the number of ways for systems of particles to
interact with other systems of particles) claims and classical claims, all of which
are needed for the regularisation to take place. This approach suggests that
the number of quantum outcomes, at measurement, collapses to just one, but
also that the number of ways that the classical system of particles can inter-
act collapses to just one. Although this is not unphysical, and it should not be
controversial that in a deterministic universe there should only be one possible
outcome for the number of ways that systems of classical particles interact,
this is a mixing quantum and classical regimes. This mixing of regimes subtly
alters the traditional scope of the quantum measurement problem. One inter-
pretation of this might be that this zeta-function regularisation mediated wave
function ‘collapse’ of the number of classical mechanical possibilities is actu-
ally a useful thing, since it shows how a deterministic world might appear from
a more fundamental quantum, statistical and classical mechanical description.
We will not explore the impacts on the classical reduction further but believe
this to be an area of interest for further research.
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10.3.2 Distinguishable and Indistinguishable Particles

Our argument relies on distinguishable particle statistics. We have worked
on the assumption that since the measurement process spans classical and
quantum worlds, then this distinguishable property is imposed, and so relevant
in calculations. It is possible that this might be seen as a controversial claim,
and acknowledge that more work can be done to examine the distisnguishable
property in physical terms.

10.4 Controversy of Regularisation

This work might also highlight the importance of regularisation, and help us
better understand the physical intuition to regularisation in physics, which
has historically been controversial. For example, Dirac famously found the
(related) renormalization approach to dealing with infinities ‘illogical’ and
claimed its empirical success a ‘fluke’ [27]. Putting regularisation at the centre
of a quantum theory of measurement might help highlight its importance and
confirm its centrality to physics. On the other hand, it might be argued that
the approach described in this paper simply hides the mystery of the measure-
ment problem inside the mystery of regularisation, and reveals nothing about
either.

10.5 Investigations at Other Scales

Finally, it would be interesting to investigate the theory of the scale changes in
physical terms at different scales. For example, taking a simplified but realistic
physical model at the quantum, atomic and larger levels, then examining these
through the lens of the theory discussed.

10.6 What Particles Are Fundamental in this Approach?

We have not been clear on what constitutes a fundamental particle in the
context of example given above. A concrete example, we have talked about
neutrons as fundamental particles. We are not clear whether we should consider
neutrons or quarks as the fundamental particles relevant for this approach.
Whether this theory describes a quark or a neutron as fundamental is still an
open question but do not consider this particularly important for the general
theory. What is clear is that a fundamental particle in this approach is one
which is both indivisible, and can exist on its own; the latter a property not
exhibited by quarks.

10.7 Further Work: Experiment

In future, we would like to further develop this work to be able to validate or
invalidate its theory, whether through direct experiment or through examina-
tion to understand if this theory is incompatible with existing quantum theory
and experiments. It would be interesting to calculate the radiation emissions
from random diffusion, which is predicted by [25] to directly test the model
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proposed here. It would also be interested to validate this model against the
GRW model by looking at differences in predictions in regards to wavefunction
collapse, with time components and length components being particularly of
interest.

10.8 Further Work: Theory

We would also like to understand how this theory might work in the broader
context of quantum field-theory, which has only been touched upon. In terms
of theoretical validation, it would also be useful to understand the role that
quantum decoherence might play, given its important role in the foundations
of quantum physics. It would also be interesting to examine whether some
of the ideas presented in this paper, such as the measurement ontology; out-
come counting argument and regularisation approach to mediate wave-function
collapse, might be usefully deployed in the frameworks outlined by other inter-
pretations. For example, might the regularisation approach be useful as a
potential mechanism in other objective collapse interpretations?

A Appendix: Formalism Used to Represent the
Collapsed and Uncollapsed Wavefunctions

Below we note some key points on the formalism used to describe collapsed
and uncollapsed wavefunctions, the information is condensed from [15], [1] and
[13].

• We use a central postulate of Dirac’s interpretation of QM: A ket space
contains all physical information about a state. Due to this we can affirm:
|Ψ⟩ =

∑
i ai |ϕi⟩. That is, all the information contained in the uncollapsed

wavefunction is the sum of the information physically defined in the possible
collapsed wavefunctions.
This necessitates a completeness relation:

∑
i|ai|2= 1.

• Superpositions occur before and during the measurement process, but not
after. The set of eigenstates that are possible after measurement {|ϕi⟩} are
not in a superposition and do not contain superpositions in the set. As such,
the total wavefunction is seen to be normalised via the completeness relation
above, involving only collapsed eigenstates.

• The number of eigenstates is equal to the number of eigenvalues. The
eigenstate contains all the information (following collapse) about a physical
measurement: λi |ϕi⟩ is a collapsed eigenstate with eigenvalue λi and eigen-
function ϕi. To sustain the completeness we say that |Ψ⟩ contains a set of
possible |ϕ⟩ represented as {|ϕ⟩}. Note that |ai|2 represents the probability of
observing an eigenvalue, yet does not yield any information about the eigen-
value itself, as this would depend on the operator and physical basis used to
formulate the eigenfunction. We avoid a physical formulation of ϕ through-
out this text as this would distract from the objectives and outcome of the
work itself, yet we maintain the standard rigour of QM in its representation.
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• A bra space is used to represent the complex conjugate of a ket space,
when complex and/or hermitian operators are used. Since we do not define
the structure of operators, only the number of outcomes (represented as
the number of eigenstates), we only need to define eigenstates in this text:
λ |ϕ⟩, except to complement our completeness relation with a closure rule:
ai = ⟨ϕi|Ψ⟩. This definition is central to the Born rule used in section 7.2.

B Appendix: Clarification of the Conceptual
Basis of the Measurement Model

In this section we further clarify the conceptual basis of the measurement
mechanism of the proposed solution.
In Figure 1, we clarify the measurement process by examining the scale of the
objects involved. Our conception of quantum measurement is the interaction
of quantum objects with larger objects, until those objects are of the scale that
they might be thought of as classical. To the left of the diagram are micro-
scopic objects comprised of a small number of n particles. These are quantum
objects. To the right are macroscopic objects comprised of a large number of
distinguishable particles. These are classical objects. Measurement is simply
the interaction of small, simple objects with increasingly complex objects.
In Figure 2, we clarify the ways in which objects of similar complexities inter-
act, and how these interact across ‘layers’ with those objects of increasing
complexity. The number of objects in each n-layer is a constant, c, according
to the calculations above. While for illustrative purposes the n-particle objects
are represented as being structured and with each particle joined, in reality
these particles may be unstructured with the particles dispersed over space.
In Figure 3, we clarify the added number of outcomes due to the n possible
ways that an n size object might be able to interact with another object, or
in this case the total system, Ψ.

Fig. 1 Diagram showing the scale of interaction in the proposed measurement model



Pre-Print LATEX template

Zeta Function Regularisation of the Measurement Problem 21

Fig. 2 Diagram showing the proposed number of outcomes due to superpositions across
n-layers and inside n-layers

Fig. 3 Diagram showing the additional outcomes due to the additional classical component
equal to n

C Appendix: Alternative Assumptions: Other
Constraints on the Counting Function

We note that alternative constraints on the counting function will lead to
differing results, which would have an impact on the following theory. For
example, assuming that instead of the number of n-particle systems being
constant, we want to keep the number of particles constant:

k∑
n=1

ncn = m (39)

wherem is the total number of particles. This would lead to a case where, max-
imising Ωc under this constraint, and using the standard method of Lagrangian
multipliers, then the counting function, cn would be:

cn =
m

kn
(40)

As we can see from the above theory, the calculations that follow would be
different given these assumptions. It is an interesting question to ask whether
it is more sensible to assume that the number of particles or the number of
n-particle systems should be kept constrained, or whether there should be
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any constraints at all! It is clear that under even carefully controlled mea-
surement, it is likely that particles might ingress or exit. However, it is less
clear that larger n-particle systems, possibly such as atoms, or even as large
as cats, should ingress or exit, hence our assumption for fixing C. Therefore,
the derivation above continues with the assumption that it is cn that should
be constant. It is possible that the assumptions that underlie this theory are,
in principle, testable and so offer a route to falsification of the theory.

C.1 Appendix: Are We Counting Unphysical Basis
States?

In this section we briefly discuss an interpretation of the outcome count-
ing function in the context of Hilbert and Fock spaces, which might prove
instructive. In particular, we show how the redundancy of the Hilbert space
with respect to the Fock subspace impacts our counting argument. The key
argument of note is that the probabilities of measuring certain outcomes may
be 0, however, these outcomes are still counted as outcomes in our outcome
counting function, even if they are unphysical.

C.1.1 Example: Pauli Exclusion Principle

Take for example, the case of an electron, ψA, that might be measured with
eignvalue λa,1 or λa,2 and so d = 2. Introducing another electron, ψB , which
might be measured with eignvalue λb,1 or λa,2, and following interaction of
ψA and ψB , according to our counting function we should have in principle,
dm = 22 = 4 outcomes. However, due to the Pauli exclusion principle, it is
clear that if these electrons were to share other quantum numbers, and also
were confined to a distance comparable to their deBroglie (wave)length, then
the antisymetric (fermionic) state would be disallowed, and so the number of
possible outcomes should be only those which are symmetric

dim(S+H⊗2) =
(m+ d− 1)!

m!(d− 1)!
=

(2 + 2− 1)!

2!(2− 1)!
= 3 (41)

However, below we will show how the number of outcomes is solely deter-
mined by d and m, even if the probabilities associated with some of those
outcomes might be very close to 0. We also count unphysical states which
have probability 0 in larger systems than the one considered in this example,
i.e. states that are not in the Fock space, but are in the Hilbert space, are still
counted.

C.1.2 Spin Statistics Theorem and Outcome Counting

According to the Spin Statistics Theorem (see [28] for example), which derives
the Pauli Exclusion principle, we see that it is the antisymmetric nature of
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fermions which disallow shared states. The two particle wavefunctions are
described by a bosonic (symmetric) two-particle wavefunction :

Ψ(A,B) = ψAψB (42)

According to the Spin Statistics Theorem, for fermions for identical
particles, with α as a normalisation factor, we have

Ψ(A,B) = α
(
ψAψB − ψAψB

)
= 0 (43)

So according to the Born rule selection process above, in bra-ket notation, we
have the probability of finding a wavefunction in a Pauli excluded state as:

|⟨ϕi|Ψ(A,B)⟩|2 = 0 (44)

We interpret these Pauli excluded states not as outcomes that cannot be
counted and included into our counting argument, but we interpret the iden-
tical particle fermion excluded states as reduced probability states due to a
cancelling action. To reiterate, these low probability wavefunctions represent,
in principle, the possibility of outcomes of experiment, and so a contribution
towards our counting argument: it just happens that these have probability of
occurrence of close to 0 due to the laws of physics. In actual fact the antisym-
metric states, for this particular example, will never have exactly 0 probability
since we can never have the full physical extent of two wavepackets in exactly
the same place, they will repel each other before this can happen.

D Appendix: Infinite Hilbert Spaces

We now briefly discuss the most general infinite dimension Hilbert space for a
given number of particles, H∞,m. In some cases it is clear that for calculations
we can define d, such as in the case of magnetic spin directly measured on
a single cartesian axis, where d = 2. This is a truncated, or finite, Hilbert
space. However, Hilbert spaces of infinite dimension are necessary in quantum
mechanics [14] [13]. We treat the finite dimensional Hilbert space as good
approximations to the calculations for the more general, infinite, case. We
use these finite example to help illustrate the theory. However, as above, the
infinite dimension of the more general Hilbert space is the quantity used in
deriving our counting arguments.
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