
NEWTON’S SECOND LAW AND RELATIVISTIC HAMILTONIAN

 II. ATOMIC TERMS

The first part of this study reports the calculation of five expressions of relativ-

istic Hamiltonians of particles moving in the field of potential forces depending

on the notation of the Newton’s second law. The results obtained were used to

calculate terms of ground states of hydrogen-like atoms.

When studying the expression for the range of the proper (local) time Dt of

a moving particle invariant under Lorentz transformations, the first part of this

study [1] reports five types of relativistic Hamiltonians. Results are given in Ta-

ble 1.

Table 1

The expression of the Hamiltonian of the particle motion depending on the no-

tation of the Newton’s second law and characteristics of its path

Expression of the HamiltonianNotation of the New-

ton’s second law Fdr ≠ 0 (I) Fdr = 0 (II)
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The discussion of results

Second summands in equations (1-5) are expressions of the kinetic energy

of a particle in the field of potential forces at the value of its potential energy U.

On expanding in a power series b, these summands give the series in which

only the first members of the equation coincide (m0v
2/2). The difference in val-

ues of the kinetic energy, calculated for example by equations (1) and (5), at b =

0.1 equals 0.3 %, while at b = 0.5 it reaches 7.5 %.

The applicability of the considered formulas to calculate the Hamiltonian

can be assessed in the context of calculating the terms of hydrogen-like atoms.

Clearly, due to the fact that electrons in the atom have no trajectory, it is impos-

sible to accurately determine Fdr ≠ 0 or Fdr = 0 in their state. It can be only as-

sumed that for electrons with a high orbital quantum number (l), the second

condition Fdr = 0 (II) is more satisfied than the first one Fdr ≠ 0 (I). It can also

be affirmed that the terms of hydrogen-like atom will be within the range of

Hamiltonian values, corresponding to conditions (I) and (II) regardless of the

quantum numbers of the electron. To verify this provision, one can use the re-

sults of the study [2], where it was proved that regardless of the kind of the

electron kinetic energy, the atomic term takes on a minimum when the distance

from any electron to the nucleus ri is related to its principal quantum number ni

and nucleus charge Z, by the equation
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Unless otherwise noted, hereinafter atomic units will be used. Values of

fundamental constants ħ = 1, e = 1, me = 1, c = a-1 (a  is a fine structure con-

stant), energy is expressed in Rydberg.

Shall the quantum conditions of the state of an electron in an atom be satisfied,

one has the equation

2 2 2
r n=P r , (7)
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It follows that
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Wherefrom we find
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The term of a hydrogen-like electron Т is calculated as a sum of kinetic en-

ergies of an electron (Ee) under its motion relative to the nucleus, the potential

energy of their charges (U) and the kinetic energy of the relative motion of the

atom (E). Preliminary calculations showed that the kinetic energy E can be

taken into account classically:
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M – atomic mass in terms of the electronic mass.

Below are the formulas to calculate terms using all fives expressions of the

Hamiltonian (1-5) of the electron He in hydrogen atoms (M = 938.272 MeV [3]),

deuterium (M = 1875.613 MeV [3]) and tritium (M = 2808.921 MeV [3]).
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When calculating the limiting values of the terms of Н, D and Т, it should

be assumed that Z =1 and n =1, since this corresponds to the deepest state of 1S

electron.



4

The calculation results in comparison with the experimental data [4] are

shown in Table 2.

The listed data shows the discrepancy between the estimated and experi-

mental values of terms, thus it can be seen that the term with the use of the

Hamiltonian H1 gives the best agreements with the experiment. The estimated

faulty proportion in order of appearance corresponds to the amount of the Lamb

shift in the atom, however it exceeds its value.

Table 2

Estimated and experimental values of low-lying terms of hydrogen-like atoms

(are expressed in Rydberg)

Atom Hydrogen (Н) Deuterium (D) Tritium (Т)

Term Value Texp–T,10-6 Value Texp–T,10-6 Value Texp–T,10-6

– Texp 0.9994665084 - 0.9997384561 - 0.99982894 -

– T0 0.9995089279 42.4195 0.9997808790 42.42300.99987136 42.4216

– T1 0.9994689919   2.4835 0.9997409430   2.48690.99983143 2.4856

– T2 0.9994956161 29.1077 0.9997675673 29.11120.99985805 29.1098

– T3 0.9994556794  -10.8290 0.9997276305 -10.82560.99981811 -10.8269

– T3' 0.9994823041 15.7957 0.9997542552 15.79920.99984474 15.7978

Based on the above-mentioned considerations on the uncertainty of the

electron motion in an atom, we can assume that the observed state of an electron

is a superposition of states corresponding to the adherence to specifications (I)

and terms (II). Thus, the observed Hamiltonian of the electron in the atom

( )(I) 1 (II)th e eH H Hc c= + - , (16)

where c is the contribution of the state (I), while (1-c) is the contribution of

state (II) to the electron motion. It is obvious that it is impossible to use this
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state under the classical (1) and inverse relativistic (3) expressions of the New-

ton’s second law, as in these cases Hamiltonians I and II are degenerated.

H0(I) = H0(II), H2(I) = H2(II) = H12 (see Table 1).

A pair of states (I) and (II) cannot serve this purpose when using the New-

ton’s second law (2) in the forms, suggested by Lorentz because of the differ-

ence between H1(I) and H1(II) with experimental values of the same operator

(see Table 2).

Only a pair of Hamiltonians H3 and H3' can provide the full correspondence

of Hth, calculated by the formula (16) to experimental values. Assuming

1
ex thT H

M
= + , (17)

one can get values c for 1S electrons in considered atoms.

Hc1S = 0.59327212

Dc1S = 0.59340203

Tc1S = 0.59335098

By similar considerations, one can seek the Lamb shift in atoms. Under that

logic, one can assume that for Р-electrons the contribution of the state (II) to the

motion is higher than that for S-electrons. Consequently, the inequation cS  > cР

will be fulfilled at one value for the principal quantum number n. The conclu-

sion matches up with the observed facts. Shall all other conditions (quantum

numbers) be equal, the kinetic energy of S-electrons will be slightly higher than

that of Р-electrons. In particular, it will result in splitting of the terms of hydro-

gen-like atoms with electron 2S and 2Р at the same value of j – total angular

momentum of the electron in the atom.

Formulas to calculate the atomic terms in the indicated states are (14) and

(15), where Z=1, n = 2:
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The observed value of the term of the state of an atom with the principal

quantum number n = 2 is found according to equations (16) and (17) using the

formula:

( )3 31exT T Tc c ¢= + - . (20)
However, a comparison of the precision experimental values of the terms of

hydrogen and deuterium atoms [5] in the state with n = 2, l = 1, j = ½ and in the

state with n = 2, l = 0, j = ½ revealed the following (l is an orbital quantum

number). All these values turned out to be outside the range of the energy val-

ues [Т3, Т3'], determined by formulas (18) and (19). Nevertheless, the experi-

mental values of terms of hydrogen and deuterium atoms in the state with n = 2,

l = 1, j = 3/2 turned out to be almost surely in the middle of the range [Т3, Т3'].

The comparison of estimated results and experimental data [5] are shown in

Table 3. Values Hc2P and Dc2P, determined by the formula (20) for hydrogen and

deuterium atoms in the state with n = 2, l = 1, j = 3/2, almost coincided up to the

sixth significant figure:

Hc2P = 0.50228819

Dc2P = 0.50227691

In the same place, Table 3 shows the values of the terms, calculated using

the equation (12) (Lorentz formula), in which it is assumed: Z=1 and n = 2. The

value of the Rydberg constant R∞·с = 3,2898419602508·1015 Hz [6].

Noteworthy is the rather low error in calculating the atomic terms in the

state with n = 2, l = 1, j = 3/2 using the Lorentz formula (12). However the indi-

cated error for the hydrogen atom (12531 kHz) exceeds the error of the experi-

mental determination (5,5 kHz) [5] by several orders of magnitude. The indi-

cated error of the deuterium atom (12469 kHz) also exceeds the error of the ex-

perimental determination (5,5 kHz) [5].
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Therefore, the final answer to the question concerning the applicability of

the Hamiltonians in the form (2) or (4) and (5) to solve the problem of atomic

terms is possible only after solving the problem of calculating the Lamb shift

for states with j = ½.

Table 3

Estimated and experimental values of terms of hydrogen-like atoms in states

with n = 2, l = 1, j = 3/2

Atom Hydrogen (Н) Deuterium (D)

Term Value Texp–T Value Texp–T

– Texp, kHz 82201553274.3 - 822239201737.3 -

– Texp, Ryd 0.2498647481 - 0.2499327359 -

– T1, Ryd 0.2498647519 -3.8089·10-9 0.9997409430 -3.7902·10-9

– T3, Ryd 0.2498639199 8.2824·10-7 0.9997276305 8.2826·10-7

– T3', Ryd 0.249865584 -8.3585·10-7 0.9997542552 -8.3583·10-7

The Appendix contains two programs in the MATHCAD 11 package [7] to cal-

culate atomic terms. Results are shown in Tables 2 and 3.
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