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Abstract 

Any coherent mass formation, regardless of its density, is subject to a relativistic curvature, 

which, as proven here, accounts for a certain proportion of the Schwarzschild radius. General 

Relativity reveals a minimum state of this proportion for quantum-sized structures and thereby 

unveils a fundamental spectrum. 
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1. Introduction 

My results show that the object-specific amount of 

gravitationally caused spatiotemporal curvature, which I 

denote by the symbol 𝑳, is directly proportional to the mass of 

all objects that lie in the same region of a curvature spectrum. 

The maximum value of 𝑳 must be the Schwarzschild radius 

𝒓𝑺. This study proves that not only this extreme case shows 

the mentioned proportionality. 𝑳 produces a mass-specific 

spectrum between 𝒓𝑺 and a fundamental 𝑳𝒎𝒊𝒏 for which  size 

and density of a mass are small and low enough for gravity to 

tend to zero. 
 

2. Gravitational Relativistic Contraction 

Since all mass-based objects cause gravitational time 

dilation, I investigated how this relativistic curvature of 

spacetime, represented by a specific radial contraction 

according to the Schwarzschild metric, might be related to 

mass. 
 

Typically, to obtain the gravitational time dilation on a 

mass surface, the reciprocal Lorentz factor 𝛂 depending on the 

surface escape velocity 𝒗𝒆, which is expressed by the mean 

radius 𝒓 and surface gravity 𝒈, can be used to avoid 𝑴 and 𝑮: 
 

𝛂 = √𝟏 −
𝒗𝒆

𝟐

𝒄𝟐 = √𝟏 −
𝟐𝒈𝒓

𝒄𝟐                   (1) 

 

For time dilation states below the surface of a uniformly 

dense mass, the Lorentz factor must be adjusted according to  

the gravitational potential to provide the correct data. At the 

corresponding radius, 𝒓𝒙 
 

𝛂(𝒓𝒙) = √𝟏 −
𝒈 (3𝒓𝟐−𝒓𝒙

𝟐)
𝒓𝒄𝟐                     (2) 

 

represents the distance-dependent factor related to the center 

of mass. This optimized function can be used to obtain the 

searched amount of contraction. To do this, we must integrate 

𝟏 − 𝛂(𝒓𝒙)  from 0 to 𝒓: 

 

        𝑳 = ∫ (𝟏 − 𝛂(𝒓𝒙))𝒅𝒓𝒙
𝒓

𝟎
              

= ∫ (𝟏 − √𝟏 −
𝒈 (3𝒓𝟐 − 𝒓𝒙

𝟐)

𝒓𝒄𝟐
) 𝒅𝒓𝒙

𝒓

𝟎
              (3) 

 

With this formula, the radius of a uniform mass is evaluated 

over its entire distance according to the Lorentz contraction 

valid at each position, and all local contraction deltas are 

added together. 

 

For a black hole with 𝟐𝒈𝒓 = 𝒄𝟐 we get as expected 
 

𝑳𝒎𝒂𝒙 = (𝟏 − 𝟎) ⋅ 𝒓 = 𝒓𝑺                          (4) 
 

To determine the possible spectrum of 𝑳 we need to look for 

its minimum. If 𝒈 and 𝒓 tend to zero, 𝛂(𝒓𝒙) can be simplified 
 

𝛂(𝒓𝒙)
(𝒈,𝒓)→(𝟎,𝟎)

= 𝐥𝐢𝐦
(𝒈,𝒓)→(𝟎,𝟎)

√𝟏 −
𝒈 (𝟑𝒓𝟐−𝒓𝒙

𝟐)

𝒓𝒄𝟐 = 𝟏 −
𝒈 (𝟑𝒓𝟐−𝒓𝒙

𝟐)

𝟐𝒓𝒄𝟐   (5)  
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to ignore the relativistic progression of  𝑳. Excitingly, the 

resulting minimum contraction is a fixed fraction of the 

Schwarzschild radius: 
 

 𝑳𝒎𝒊𝒏 = ∫
𝒈 (𝟑𝒓𝟐−𝒓𝒙

𝟐)

𝟐𝒓𝒄𝟐

𝒓

𝟎
𝒅𝒓𝒙 =

𝟒𝒈𝒓𝟐

𝟑𝒄𝟐 =
𝟐

𝟑
𝒓𝑺         (6)  

  

𝒓𝑺  is exactly 1.5 times larger compared to 𝑳𝒎𝒊𝒏 and therefore 

perfectly follows the gravitational potential between the 

surface and the core of the object. The spectrum of 

spatiotemporal curvatures for any possible mass formation in 

our Universe is therefore  

 
𝟐

𝟑
𝒓𝑺 ≤ 𝑳 ≤ 𝒓𝑺                                     (7)  

 

The classic formula for the mass of a black hole 

 

𝑴𝒃 =
𝟏
𝟐

⋅
𝒓𝒔𝒄𝟐

𝑮
                                (8) 

 

becomes the basis of the object-unspecific version: 

 

𝑴 = 𝒌 ⋅
𝑳𝒄

𝟐

𝑮
                                 (9) 

 

𝒌 hast to be adjusted to the respective spectral value of 𝑳: 

 

 𝒌 =
𝟏
𝟐

⋅
𝒓𝒔
𝑳

 =
𝟑
𝟒

⋅
𝑳𝒎𝒊𝒏

𝑳
                       (10) 

 

For quantum particles or small structures with very low 

densities, the mass can therefore be expressed as 

 

𝑴𝒒 =
𝟑
𝟒

⋅
𝑳𝒎𝒊𝒏𝒄

𝟐

𝑮
                                                           (11) 

 

By using the object-specific 𝑳 instead of 𝑳𝒎𝒊𝒏 in this formula, 

even the calculated masses of most celestial bodies correspond 

almost exactly to the values from the NASA reference. This is 

not surprising because the effect of time dilation on planets 

and many stars is practically negligible and there is hardly any 

relevant difference between their specific 𝑳 and 𝑳𝒎𝒊𝒏:  

 

                Moon:      𝒓 = 1737400 𝑚             𝒈 = 1.622
𝑚

𝑠2 

𝑳 = 0.000072635313444758 𝑚    𝑳𝒎𝒊𝒏 = 0.000072635313443221 𝑚 
 

𝑴☾ ≈0.75*0.00007263531 m*c^2/G 

  ≈ 7.34 ⋅ 𝟏𝟎𝟐𝟐 𝑘𝑔 

 

                Venus:      𝒓 = 6051800 𝑚            𝒈 = 8.87
𝑚

𝑠2 

𝑳 = 0.004819367945878921 𝑚    𝑳𝒎𝒊𝒏 = 0.004819367943935975 𝑚 
 

𝑴♀ ≈0.75*0.00481936794 m*c^2/G 

   ≈ 4.87 ⋅ 𝟏𝟎𝟐𝟒 𝑘𝑔 

                 Earth:      𝒓 = 6371000 𝑚             𝒈 = 9.81
𝑚

𝑠2 

𝑳 = 0.005907198279239902 𝑚     𝑳𝒎𝒊𝒏 = 0.005907198276467089 𝑚 
 

𝑴⊕ ≈0.75*0.00590719827 m*c^2/G 

≈ 5.97 ⋅ 𝟏𝟎𝟐𝟒 𝑘𝑔 

 

                    Sun:      𝒓 = 695700000 𝑚       𝒈 = 274
𝑚

𝑠2 

𝑳 = 1967.399343096 𝑚     𝑳𝒎𝒊𝒏 = 1967.396526477 𝑚 
 

𝑴☉ ≈0.75*1967.39 m*c^2/G 

≈ 1.99 ⋅ 𝟏𝟎𝟑𝟎 𝑘𝑔 

 

The digits marked in red show the deviation of the object-

specific 𝑳 compared to the mass-specific 𝑳𝒎𝒊𝒏. For neutron 

stars, however, an adjustment of 𝒌 according to (10) would be 

necessary due to their significant spatiotemporal curvature: 

 

       Typical neutron star:      𝒓 = 11000 𝑚       𝒈 = 2 ⋅ 1012 𝑚

𝑠2 

𝑳 = 4552.266474936 𝑚     𝑳𝒎𝒊𝒏 = 3590.150847533 𝑚 
 

𝑴𝐧 ≈0.591*4552.27 m*c^2/G 

≈ 3.62 ⋅ 𝟏𝟎𝟑𝟎 𝑘𝑔 
 

3. Conclusions 

A given mass may of course occupy different volumes 

depending on its substantial matrix and the forces acting on it, 

but regardless of its actual volume, it produces at least a fixed 

minimum in terms of its spatiotemporal curvature. 𝑳 can be 

seen as a spatiotemporal spectrum of effects for any mass 

states in our universe. The presence of a fix 𝑳𝒎𝒊𝒏 bound to 𝒓𝑺 

is a discovery that represents a fundamental value in our 

universe. It could depict the crucial bulge resulting from a 

primary excitation state that brought mass out of spacetime.  
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