
Preprint 05 March 2023 

xxxx-xxxx/xx/xxxxxx 1 © Ivo Draschkow 
 

Calculation of Masses Based on their Spacetime Curvature 

Ivo Draschkow1 

1 Independent researcher 
 

E-mail: ivo@draschkow.de 
 

Received xxxxxx 

Accepted for publication xxxxxx 

Published xxxxxx 

Abstract 

This paper introduces a method to calculate the gravitationally contributing mass based on 

gravitational relativistic contraction. The mass could be non-scalar and non-invariant. 
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1. Introduction 

The relativistic nature of gravity has long been known; to 

date, however, it has not affected the understanding of the 

supposedly invariant mass. My results show that the specific 

amount of gravitational relativistic contraction, which I denote 

by the symbol 𝑳, with respect to the radius of a gravity-

generating object is directly proportional to an object’s mass. 

The maximum value of 𝑳 is known as the Schwarzschild 

radius 𝒓𝑺. This paper proves that not only this extreme case, 

but every gravitationally conditioned relativistic contraction 

of an object shows the mentioned proportionality. 𝑳 produces 

a mass-specific relativistic spectrum between 𝒓𝑺 and a 

corresponding 𝑳𝒎𝒊𝒏 for which the mass volume is large 

enough for gravity to approach zero. 

2. Gravitational Relativistic Contraction 

The classic formula for the mass of a black hole 
 

𝑴𝑩 =
𝟏
𝟐

⋅
𝒓𝒔𝒄𝟐

𝑮
                              (1) 

 

uses the radius at which the event horion occurs. Not only does 

it represent a complete standstill of time, but also a complete 

relativistic contraction of the radius. Since gravitational time 

dilation must be caused by all objects, I researched how their 

corresponding radial contraction might be related to mass. 

Typically, to obtain the gravitational time dilation on a 

mass surface, the reciprocal Lorentz factor 𝛂 depending on the 

surface escape velocity 𝒗𝑬, which is expressed by the mean 

radius 𝒓 and surface gravity 𝒈, can be used to avoid 𝑮: 
 

𝛂 = √𝟏 −
𝒗𝑬

𝟐

𝒄𝟐 = √𝟏 −
𝟐𝒈𝒓

𝒄𝟐                   (2) 

 

For time dilation states below the surface of a uniformly 

dense mass, the Lorentz factor must be adjusted according to 

the gravitational potential to provide the correct data. At a 

corresponding radius, 𝒓𝒙 

𝛂(𝒓𝒙) = √𝟏 −
𝒈 (3𝒓𝟐−𝒓𝒙

𝟐)
𝒓𝒄𝟐                     (3) 

 

represents the locally valid gravitational Lorentz factor. This 

optimized function can be used to obtain the searched amount 

of contraction. To do this, we must integrate 𝟏 − 𝛂(𝒓𝒙)  from 

0 to 𝒓𝒎: 
 

        𝑳 = ∫ (𝟏 − 𝛂(𝒓𝒙))𝒅𝒓𝒙
𝒓

𝟎
              

= ∫ (𝟏 − √𝟏 −
𝒈 (3𝒓𝟐 − 𝒓𝒙

𝟐)

𝒓𝒄𝟐
) 𝒅𝒓𝒙

𝒓𝒎

𝟎
             (4) 

 

For a black hole 

𝑳𝒎𝒂𝒙 = (𝟏 − 𝟎) ⋅ 𝒓 = 𝒓𝑺                          (5) 
 

is completely contracted relativistically and becomes directly 

proportional to its mass. The formula  

 

 𝑴 = 𝒌 ⋅
𝑳𝒄

𝟐

𝑮 = 𝒌 ∫ (⋅ 𝟏 − √𝟏 −
𝒈 (3𝒓𝟐−𝒓𝒙

𝟐)

𝒓𝒄𝟐 ) 𝒅𝒓𝒙
𝒓

𝟎
⋅

𝒄𝟐

𝑮    (6)  

 

should be valid if that proportionality applies to every object. 
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To determine 𝒌 the classic formula 
 

𝑴 =  
𝒈𝒓𝟐

𝑮
                                  (7) 

 

is divided by the derived one, eliminating the relativistic 

influence:  

𝒌 = 𝐥𝐢𝐦
(𝒈,𝒓)→(𝟎,𝟎)

𝒈𝒓𝟐

𝑳𝒄
𝟐 = 𝟎. 𝟕𝟓                      (8)  

  

𝒌 is exactly 1.5 times larger than in the non-relativistic 

formula for black holes. The reason for that is the now 

considered spectrum of gravitational potential between the 

object’s surface and core. With the classic formula different 𝒈 

and 𝒓 always lead to identical masses as long as the product 

𝒈𝒓𝟐 is fixed. However, in my formula, they do not provide a 

constant 𝑳, but create an overhead. Dividing the limits of 𝑳 

yields 
 

𝑳𝒎𝒂𝒙 = 𝒓𝒔 

 𝑳𝒎𝒊𝒏 = ∫
𝒈 (3𝒓𝟐 − 𝒓𝒙

𝟐)

𝟐𝒓𝒄𝟐

𝒓

𝟎

𝒅𝒓𝒙  =
𝟒𝒈𝒓𝟐

𝟑𝒄𝟐  

𝑳𝒎𝒂𝒙

𝑳𝒎𝒊𝒏

=
𝟐𝒈𝒓𝟐

𝒄𝟐
⋅

𝟑𝒄𝟐

𝟒𝒈𝒓𝟐
=

𝟏. 𝟓

𝟏
                      (9) 

 

and that is why for an assumed weak point mass the result is 
 

𝑴 =
𝟑
𝟒

⋅
𝑳𝒄

𝟐

𝑮
                                                                       (10) 

 

Using this formula, the results agree with those from the 

NASA reference for every celestial body in our solar system, 

provided the correct mean values for 𝒈 and 𝒓 are populated. 

This is not surprising since the relativistic effect for planets 

and pre-supernova stars is almost negligible and there would 

be almost no relevant difference between the results of the two 

formulas. Evidently, the relativistic spectrum of 𝑳 closely 

follows the gravitational potential between the core and 

surface. This also means that if 𝒌 were constant, the mass and 

gravity of each object according to its classification in this 

spectrum would be higher than in the classical calculation. 

This is particularly noticeable for its upper limit, and thus, 

with black holes 
 

𝑴𝑩 =
𝟏
𝟐

⋅
𝒓𝒔𝒄𝟐

𝑮
⋅ 𝟏. 𝟓                        (11) 

 

From a scientific point of view, I see no reason why 𝒌 should 

be variable and compensate for relativity. If that were the case, 

moving objects would not have to experience a relativistic 

gain in energy and mass either. 

3. Exemplary Calculations on Celestial Bodies    

To prove the accuracy of my formula, I give the resulting 

masses of four celestial bodies in our solar system. 

 

                Moon:      𝒓 = 1737400 𝑚             𝒈 = 1.622
𝑚

𝑠2 

𝑴☾ =0.75*0.00007263531*299792458^2/(6.6742*10^-11) 

≈ 7.34 ⋅ 𝟏𝟎𝟐𝟐 𝑘𝑔 
 

                Venus:      𝒓 = 6051800 𝑚            𝒈 = 8.87
𝑚

𝑠2 

𝑴♀ =0.75*0.0048193679*299792458^2/(6.6742*10^-11) 

≈ 4.87 ⋅ 𝟏𝟎𝟐𝟒 𝑘𝑔 
 

                 Earth:      𝒓 = 6371000 𝑚             𝒈 = 9.807
𝑚

𝑠2 

𝑴⊕ =0.75*0.00590719828*299792458^2/(6.6742*10^-11) 

≈ 5.97 ⋅ 𝟏𝟎𝟐𝟒 𝑘𝑔 
 

                    Sun:      𝒓 = 695700000 𝑚       𝒈 = 274
𝑚

𝑠2 

𝑴☉ =0.75*1967.3993430*299792458^2/(6.6742*10^-11) 

≈ 1.99 ⋅ 𝟏𝟎𝟑𝟎 𝑘𝑔 
 

The calculated results agree with the NASA reference values. 

4. Conclusions 

As initially assumed, the gravitationally contributing mass 

of an object can be calculated by determining its gravitational 

relativistic contraction. The measured gravity must always be 

higher than it would be without the relativistic overhead. 𝑳 

ultimately yields the mass amounts by being a relativistic 

slider that forms them according to the parameters between the 

limits described. This is where my results differ from those of 

the classic computational methods. A 1.5 times greater mass 

of a black hole compared to its former mass inside a collapsing 

star would be something that science would have to observe 

astronomically to fully prove my approach.  
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