A Novel Quantum Belief Entropy for Uncertainty Measure in Complex Evidence Theory

Keming Wu, Fuyuan Xiao

School of Big Data and Software Engineering, Chongqing University, Chongqing 401331, China

Abstract

In this paper, a new quantum representation of CBBA is proposed. In addition, a novel quantum belief entropy is proposed to measure the uncertainty of CBBA in complex evidence theory.

Keywords: Complex Evidence Theory, Uncertainty Measurement, Quantum Interference, Quantum Belief Entropy.

1. The proposed QB entropy

Definition 1. The quantum form of P_k in M is represented as

$$|P_i⟩ = \sum_{e \in P_i} z_e |e⟩,$$

(1)

A FOD can be represented through an associated density matrix $ρ = \sum_i p_i ρ_i$ where $ρ_i = |P_i⟩ ⟨P_i|.$

Definition 2. QB entropy of CBBA is defined as follows:

$$E_Q(M) = S(ρ) + \sum_{i \neq j} QI_{ij},$$

(2)

$$S(ρ) = \sum_{θ_k \in Θ} |P(θ_k) log_2 P(θ_k)|.$$

(3)
where $P(\theta_k) = \text{Tr}(\mathcal{M}_{\theta_k}^+ \mathcal{M}_{\theta_k} \rho)$.

Specifically, QI_{ij} in QB entropy is defined by the following formula:

$$QI_{ij} = 2 |P(\theta_i)||P(\theta_j)| \cos \alpha,$$

(4)

Specifically, QB entropy can be used to deal with decision making problems with multiple sources of complex evidence, etc.

References

