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Abstract. Recently, using the concept of temporal coexistence, some arguments
were suggested saying that our universe should be considered as a three-dimensional

brane equipped with a Riemannian metric depending on the cosmological time. The
Lagrangian approach to this 3D-brane model of the universe shows that the number of

gravity equations in this model is less than it follows from Einstein’s equation written
in 3D+1 presentation thus making this 3D-brane model a separate non-Einsteinian

theory of gravitation. In the present paper we continue the research of this theory
developing a Hamiltonian approach to it.

1. Introduction.

In the 3D-brane paradigm suggested and argued in [1] (see also [2] and [3]) the
gravitational field is described by a time-dependent 3D metric with the components

gij = gij(x
0, x1, x2, x3), 1 6 i, j 6 3, (1.1)

where x0 = c t and c is the speed of light. This 3D paradigm is related to the
standard 4D paradigm through the metric

Gij =

∥

∥

∥

∥

∥

∥

∥

∥

∥

1 0 0 0
0 −g11 −g12 −g13

0 −g21 −g22 −g23

0 −g31 −g32 −g33

∥

∥

∥

∥

∥

∥

∥

∥

∥

, Gij =

∥

∥

∥

∥

∥

∥

∥

∥

∥

1 0 0 0
0 −g11 −g12 −g13

0 −g21 −g22 −g23

0 −g31 −g32 −g33

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (1.2)

In the standard paradigm t is interpreted as the cosmological time (see [4]), while
x1, x2, x3 are interpreted as comoving coordinates (see [5]).

In the standard four-dimensional paradigm of general relativity and cosmology
the four-dimensional metric should obey the standard Einstein’s equation

rij −
r

2
Gij − Λ Gij =

8 π γ

c4
Tij , (1.3)

(see § 2 in Chapter V of [6]). Here c is the speed of light, γ is Newton’s gravitational
constant (see [7]), and Λ is the cosmological constant (see [8]). The quantities Tij in
the right hand side of (1.3) are the components of the energy-momentum tensor (see
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[9]). The term rij in (1.3) corresponds to the components of the four-dimensional
Ricci tensor and r is the four-dimensional scalar curvature (see § 8 in Chapter IV
of [10]). By substituting (1.2) into (1.3) in [1] the following equations were derived:

∂bij

∂x0
−

3
∑

k=1

∂bk
k

∂x0
gij −

3
∑

k=1

(bki bk
j + bkj bk

i ) − gij

2

3
∑

k=1

3
∑

q=1

bk
q b

q

k −

− gij

2

3
∑

k=1

3
∑

q=1

bk
k bq

q +

3
∑

k=1

bk
k bij + Rij −

R

2
gij + Λ gij =

8 π γ

c4
Tij,

(1.4)

3
∑

k=1

∇k bk
j −

3
∑

k=1

∇j bk
k =

8 π γ

c4
T0j , (1.5)

−1

2

3
∑

k=1

3
∑

q=1

bk
q b

q

k +
1

2

3
∑

k=1

3
∑

q=1

bk
k bq

q +
R

2
− Λ =

8 π γ

c4
T00. (1.6)

Here Rij are the components of the three-dimensional Ricci tensor, R is the three-
dimensional scalar curvature, and bij are given by the formula

bij =
1

2

∂gij

∂x0
=

ġij

2 c
. (1.7)

Later on in [11] the Lagrangian approach to the 3D-brane model was applied.
For this purpose the standard 4D action integral was taken

Sgr = − c3

16πγ

∫

(r + 2 Λ)
√
− det G d4x (1.8)

(see § 2 in Chapter V of [6]) and then it was transformed to the 3D form

Sgr = − c3

16πγ

∫∫

(r + 2 Λ)
√

det g d3x dx0. (1.9)

The scalar curvature r in (1.8) and (1.9) is associated with the four-dimensional
metric (1.2). As is was shown in [1], it is expressed through the three-dimensional
scalar curvature R in the following way:

r = −2

3
∑

k=1

∂bk
k

∂x0
− R −

3
∑

k=1

3
∑

q=1

bk
q b

q
k −

3
∑

k=1

3
∑

q=1

bk
k bq

q . (1.10)

The action integral (1.9) with r given by the formula (1.10) was complemented with
the action integral responsible for matter:

Smat =

∫∫

Lmat

√

det g d3x dx0. (1.11)

Taking the total action in the form of the sum

S = Sgr + Smat (1.12)
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and applying the stationary-action principle (see [12]) to (1.12), in [11] the equation
(1.4) was rederived along with the following purely three-dimensional expression for
the components of the energy-momentum tensor in it:

Tij = −2 c
δLmat

δgij
. (1.13)

As for the equations (1.5) and (1.6), they were omitted since they cannot be derived
within the purely three-dimensional Lagrangian approach to the theory.

The main goal of the present paper is to develop a Hamiltonian approach to
deriving the equation (1.4).

2. Reducing the order of the action integral.

Most physical theories lead to differential equations of the second order with
respect to time derivatives. Their action integrals (if any) are of the first order in
time derivatives. However, looking at (1.9), we see that Sgr is different due to the
first term in the right hand side of (1.10). Indeed, due to (1.7) we have

−2

3
∑

k=1

∂bk
k

∂x0
= −

3
∑

k=1

∂

∂x0

( 3
∑

q=1

∂gkq

∂x0
gkq

)

, (2.1)

where x0 = c t. In order to reduce the order of time derivatives in (2.1) we apply
integration by parts in the action integral (1.9):

u
∫

v

(
∫

∂bk
k

∂x0

√

det g d3x

)

dx0 =

u

v

∫

bk
k

√

det g d3x −
u

∫

v

(
∫

bk
k

∂(
√

det g )

∂x0
d3x

)

dx0.

Non-integral terms usually do not affect differential equations derived from action
integrals. Therefore we can replace the action integral (1.9) with the following one:

Sgr = − c3

16πγ

∫∫

( ρ + 2 Λ)
√

det g d3x dx0, (2.2)

where

ρ = 2

3
∑

k=1

bk
k√

det g

∂(
√

det g )

∂x0
− R −

3
∑

k=1

3
∑

q=1

bk
q b

q

k −
3

∑

k=1

3
∑

q=1

bk
k bq

q . (2.3)

In order to transform (2.3) we use the formula

∂(
√

det g )

∂x0
=

1

2

3
∑

k=1

3
∑

q=1

gkq ∂gkq

∂x0

√

det g . (2.4)

This formula (2.4) is easily derived from the well-known Jacobi’s formula for dif-
ferentiating determinants (see [13]). Applying (1.7) to (2.4), we get

∂(
√

det g )

∂x0
=

3
∑

k=1

3
∑

q=1

gkq bkq

√

det g =

3
∑

q=1

bq
q

√

det g . (2.5)

Substituting (2.5) into (2.3), we find

ρ =

3
∑

k=1

3
∑

q=1

bk
k bq

q − R −
3

∑

k=1

3
∑

q=1

bk
q b

q
k. (2.6)
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By means of direct calculations it is easy to show that the action integral (2.2) with
the function ρ given by the formula (2.6) leads to the same differential equation
(1.4) as the action integral (1.9) with the function r given by the formula (1.10).
But unlike (1.10), the formula (2.6) has no derivatives of the tensor field b.

3. Legendre transformation.

In classical mechanics the Legendre transformation is used for converting La-
grangian mechanics into Hamiltonian mechanics (see [14]). Below we develop field-
theoretic version of this transformation and apply it to the 3D-brane model of
gravity. Relying on (2.2), (2.6), (1.11), and (1.12), we define

L = − c3

16πγ

∫

( ρ + 2 Λ)
√

det g d3x +

∫

Lmat

√

det g d3x. (3.1)

Upon substituting (2.6) into (3.1) we transform (3.1) as follows:

L =
c3

16πγ

∫ 3
∑

i=1

3
∑

j=1

3
∑

k=1

3
∑

q=1

bij gik bkq gjq
√

det g d3x−

− c3

16πγ

∫ 3
∑

i=1

3
∑

j=1

3
∑

k=1

3
∑

q=1

bij gij bkq gkq
√

det g d3x−

− c3

16πγ

∫

(2 Λ− R)
√

det g d3x +

∫

Lmat

√

det g d3x.

(3.2)

The quantities bij are related to gij through the formula (1.7). However in this
section we treat them as independent dynamic variables. The same trick is used
in Lagrangian mechanics (see [15]) where generalized coordinates and their time
derivatives are considered as independent arguments of the Lagrange function

L = L(q1, . . . , qn, q̇1, . . . , q̇n). (3.3)

The function (3.2) below plays the same role as the Lagrange function (3.3) in
Lagrangian mechanics.

The function Lmat in (3.2) describes matter. It is different for different sorts of
matter. Typically it does not depend on bij. But it can depend on gij and on spatial
derivatives of gij. Apart from gij the function Lmat in (3.2) depends on dynamical
variables describing matter and on their time derivatives. We denote them through
Q1, . . . , Qn and introduce the following notations for their time derivatives:

Wi =
∂Qi

∂x0
=

Q̇i

c
, i = 1, . . . , n. (3.4)

The index i in (3.4) just enumerates the dynamical variables of matter. It does not
take into account their transformational behavior. They can be components of some
tensorial and/or spinor fields, they can be components of some sections in complex
vector bundles associated with electromagnetic, weak, and strong interactions (see
[16]). In the case of dark matter their structure is yet unknown.
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The formula (3.4) is similar to the formula (1.7). Using it, we write

Lmat = Lmat(Q1, . . . , Qn, W1, . . . , Wn,g). (3.5)

Writing Qi in the argument list of the function Lmat in (3.5) we assume that
Lmat depends not only on Qi, but on some finite number of spacial derivatives1

of the function Qi(x
0, x1, x2, x3). The same assumption applies to each argument

Wi = Wi(x
0, x1, x2, x3) and to each component (1.1) of the metric g in (3.5).

Remark. Generally speaking the function (3.5) can depend on the components
of the tensor field b too. However in most cases it does not.

Apart from Lmat, in (3.2) we have the function Lgr(g,b) responsible for gravity.
This function is given explicitly through the formula

Lgr =
c3

16πγ

( 3
∑

i=1

3
∑

j=1

3
∑

k=1

3
∑

q=1

(

bij gik bkq gjq − bij gij bkq gkq) + R − 2 Λ

)

. (3.6)

In terms of (3.5) and (3.6) the formula (3.2) is written as

L =

∫

L
√

det g d3x, where L = Lgr + Lmat. (3.7)

The arguments of the function L in (3.7) are written as follows:

L = L(Q1, . . . , Qn, W1, . . . , Wn,g,b). (3.8)

We need to define partial variational derivatives for functions like (3.5), (3.6),
and (3.8). Let’s introduce small variations to the arguments W1, . . . , Wn of them:

Ŵi = Wi(x
0, x1, x2, x3) + ε hi(x

0, x1, x2, x3) (3.9)

Here ε → 0 is a small parameter, while hi(x
0, x1, x2, x3) are smooth functions with

compact support (see [17]). Substituting (3.9) into the arguments of (3.8) and then
substituting (3.8) into the integral (3.7), we get

L̂ = L + ε

∫ n
∑

i=1

( δL
δWi

)

Q,g,b
hi

√

det g d3x + . . . . (3.10)

Here in (3.10) and in what follows below through dots we denote higher order terms
with respect to the small parameter ε. Similarly, we can introduce small variations
to the arguments Q1, . . . , Qn in (3.8):

Q̂i = Qi(x
0, x1, x2, x3) + ε hi(x

0, x1, x2, x3). (3.11)

Despite the relationships (3.4) the functions W1, . . . , Wn and Q1, . . . , Qn in (3.9)
and (3.11) are treated as independent functions. Substituting (3.11) into the argu-
ments of (3.8) and then substituting (3.8) into the integral (3.7), we get

L̂ = L + ε

∫ n
∑

i=1

( δL
δQi

)

W,g,b
hi

√

det g d3x + . . . . (3.12)

1 Spacial derivatives are derivatives with respect to the spacial coordinates x
1, x

2, x
3. The

variable x
0 = c t is associated with the time variable t.
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Small variations of the metric g are introduced through the formulas

ĝij = gij(x
0, x1, x2, x3) + ε hij(x

0, x1, x2, x3), (3.13)

Substituting (3.13) for the components of the metric g into (3.8) and then substi-
tuting (3.8) into the integral (3.7), we can write

L̂ = L + ε

∫ 3
∑

i=1

3
∑

j=1

( δL
δgij

)

Q,W,b
hij

√

det g d3x + . . . . (3.14)

And finally we introduce small variations to the components of the tensor field b:

b̂ij = bij(x
0, x1, x2, x3) + ε hij(x

0, x1, x2, x3), (3.15)

Substituting (3.15) for the components of the field b into (3.8) and then substituting
(3.8) into the integral (3.7), we can write

L̂ = L + ε

∫ 3
∑

i=1

3
∑

j=1

( δL
δbij

)

Q,W,g
hij

√

det g d3x + . . . . (3.16)

Thus we have introduced partial variational derivatives

( δL
δWi

)

Q,g,b
,

( δL
δQi

)

W,g,b
,

( δL
δgij

)

W,Q,b
,

( δL
δbij

)

W,Q,g
. (3.17)

The relationships (3.10), (3.12), (3.14), and (3.16) serve as definitions of the deriva-
tives (3.17). The corresponding derivatives for the functions (3.5) and (3.6)

(δLmat

δWi

)

Q,g,b
,

(δLmat

δQi

)

W,g,b
,

(δLmat

δgij

)

Q,W,b
,

(δLmat

δbij

)

Q,W,g
, (3.18)

(δLgr

δWi

)

Q,g,b
,

(δLgr

δQi

)

W,g,b
,

(δLgr

δgij

)

Q,W,b
,

(δLgr

δbij

)

Q,W,g
. (3.19)

are defined similarly (compare (3.18) and (3.19) with (3.17).
Generally speaking the variational derivative in (1.13) is different from those

defined in (3.18). However it can be expressed through them:

δLmat

δgij

= − 1

2

∂

∂x0

(δLmat

δbij

)

W,Q,g
−

− 1

2

(δLmat

δbij

)

W,Q,g

3
∑

q=1

bq
q +

(δLmat

δgij

)

W,Q,b
,

(3.20)

δLmat

δgij
= −

3
∑

k=1

3
∑

q=1

δLmat

δgkq

gik gqj . (3.21)

If we recall the remark on page 5 and look at (3.5), we see that Lmat does not
depend on bij. In this special case

(δLmat

δbij

)

W,Q,g
= 0. (3.22)
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Applying (3.22) to (3.20), in this special case we reduce (3.20) to

δLmat

δgij

=
(δLmat

δgij

)

W,Q,b
. (3.23)

In classical mechanics the Legendre transformation consists in replacing gener-
alized velocities q̇1, . . . , q̇n by the generalized momenta:

pi =
∂L

∂q̇i

, i = 1, . . . , n. (3.24)

Here L is the Lagrange function from (3.3). In our present case the Lagrange
function is given by the formula (3.8). By analogy to (3.24) here we define the
Legendre transformation through the formulas

βij =
( δL

δbij

)

W,Q,g
, P i =

( δL
δWi

)

Q,g,b
. (3.25)

The momenta βij are used in order to replace the quantities bij and the momenta
P i are used in order to replace the quantities Wi.

4. The energy function and the Hamiltonian.

In classical mechanics the energy function is defined through the formula

H =

n
∑

i=1

pi q̇i − L, (4.1)

where L is the Lagrange function (3.3) and p1, . . . , pn are the generalized momenta
given by the formula (3.24).

Definition 4.1. The Hamiltonian or the Hamilton function in classical mechanics
is the energy function (4.1) expressed through the variables q1, . . . , qn, p1, . . . , pn.

By analogy to (4.1) we define the energy function through the formula

H =

∫
( 3

∑

i=1

3
∑

j=1

βij bij +

n
∑

i=1

P i Wi

)

√

det g d3x − L. (4.2)

Here L is given by the formula (3.7), while βij and P i are defined through the
formulas (3.25). We write the formula (4.2) as

H =

∫

H
√

det g d3x, (4.3)

where

H =

3
∑

i=1

3
∑

j=1

βij bij +

n
∑

i=1

P i Wi − L. (4.4)

Assuming that the Legendre transformation (3.25) is invertible, we consider the
function (4.4) as a function with the following arguments

H = H(Q1, . . . , Qn, P 1, . . . , P n,g, β). (4.5)

Each argument Qi in the argument list of the function (4.5) represents the function
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Qi(x
0, x1, x2, x3) and some finite number of its spacial1 derivatives. The same is

true for each argument P i = P i(x0, x1, x2, x3) in (4.5), for each component of the
metric g, and for each component of the tensor field β in (4.5).

Definition 4.2. The function (4.4) written in the form of (4.5) is called the Hamil-
ton function or the Hamiltonian of gravity and matter in the 3D-brane model.

For the function (4.5) the following partial variational derivatives are defined:

( δH
δP i

)

Q,g,β
,

( δH
δQi

)

P,g,β
,

( δH
δgij

)

Q,P,β
,

( δH
δβij

)

Q,P,g
. (4.6)

The derivatives (4.6) are introduced through formulas similar to the formulas (3.10),
(3.12), (3.14), and (3.16).

Theorem 4.1. If the Legendre transformation (3.25) is invertible, then the inverse

transformation is given by the formulas

bij =
( δH

δβij

)

Q,P,g
, Wi =

( δH
δP i

)

Q,g,β
. (4.7)

Proof. Keeping Pi, Qi, and gij unchanged, we introduce small variations to βij :

β̂ij = βij(x0, x1, x2, x3) + ε hij(x0, x1, x2, x3). (4.8)

Invertibility of the Legendre transformation (3.25) means that the variations (4.8)
induce small variations of bij and small variations of the variables W1, . . . , Wn:

b̂ij = bij(x
0, x1, x2, x3) + ε h̃ij(x

0, x1, x2, x3), (4.9)

Ŵi = Wi(x
0, x1, x2, x3) + ε h̃i(x

0, x1, x2, x3). (4.10)

The functions h̃ij(x
0, x1, x2, x3) and h̃i(x

0, x1, x2, x3) in (4.9) and (4.10) are deter-
mined by the functions hij(x0, x1, x2, x3) in (4.8). Applying (4.8) to the integral
(4.3) with the function H written as (4.5), we get

Ĥ = H + ε

∫ 3
∑

i=1

3
∑

j=1

( δH
δβij

)

Q,P,g
hij

√

det g d3x + . . . . (4.11)

Applying (4.8), (4.9), and (4.10) to the same integral (4.3) with the function H
written as (4.4) and taking into account (3.7) and (3.8), we derive

Ĥ = H + ε

∫
( 3

∑

i=1

3
∑

j=1

(

hij bij + βij h̃ij

)

+

n
∑

i=1

P i h̃i

)

√

det g d3x−

− ε

∫
( 3

∑

i=1

3
∑

j=1

( δL
δbij

)

W,Q,g
h̃ij +

n
∑

i=1

( δL
δWi

)

Q,g,b
h̃i

)

√

det g d3x + . . . .

(4.12)

1 Spacial derivatives are derivatives with respect to the spacial coordinates x
1, x

2, x
3. The

variable x
0 = c t is associated with the time variable t.
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If we take into account the relationships (3.25), then the formula (4.12) reduces to

Ĥ = H + ε

∫ 3
∑

i=1

3
∑

j=1

bij hij
√

det g d3x + . . . . (4.13)

Now, comparing (4.13) with (4.11) as ε → 0, we find that the first of the two
formulas (4.7) is proved.

In order to prove the second formula (4.7) we keep βij, gij, and Qi unchanged
and introduce small variations to the variables P 1, . . . , P n:

P̂ i = P i(x0, x1, x2, x3) + ε hi(x0, x1, x2, x3). (4.14)

Invertibility of the Legendre transformation (3.25) again means that the varia-
tions (4.14) induce small variations of bij and small variations of the variables
W1, . . . , Wn. They can be expressed by the formulas (4.9) and (4.10), though

the functions h̃ij(x
0, x1, x2, x3) and h̃i(x

0, x1, x2, x3) now are determined by the
functions hi(x0, x1, x2, x3) in (4.14). Applying (4.14) to the integral (4.3) with the
function H written as (4.5), we get

Ĥ = H + ε

∫ 3
∑

i=1

3
∑

j=1

( δH
δP i

)

Q,g,β
hi

√

det g d3x + . . . . (4.15)

Applying (4.14), (4.9), and (4.10) to the same integral (4.3) with the function H
written as (4.4) and taking into account (3.7) and (3.8), we derive

Ĥ = H + ε

∫
( 3

∑

i=1

3
∑

j=1

βij h̃ij +

n
∑

i=1

(

Wi hi + P i h̃i

)

√

det g d3x−

− ε

∫
( 3

∑

i=1

3
∑

j=1

( δL
δbij

)

W,Q,g
h̃ij +

n
∑

i=1

( δL
δWi

)

Q,g,b
h̃i

)

√

det g d3x + . . . .

(4.16)

If we take into account the relationships (3.25), then the formula (4.16) reduces to

Ĥ = H + ε

∫ 3
∑

j=n

Wi hi
√

det g d3x + . . . . (4.17)

Comparing (4.17) with (4.15) as ε → 0, we find that the second formula (4.7) is
proved. Thus Theorem 4.1 is completely proved. �

5. Euler-Lagrange equations and Hamilton equations.

Let’s return back to the formula (3.7). It is a short presentation of the formula
(3.2). Therefore the action integral (1.12) now can be written as

S =

∫∫

L
√

det g d3x dx0. (5.1)

The arguments of the function L in (5.1) are shown in (3.8). When applying the
stationary-action principle to the integral (5.1) the functions bij(x

0, x1, x2, x3) and
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gij(x
0, x1, x2, x3) are not treated as independent parameters any more. They are

related to each other through the formula (1.7). The same is true for the functions
Wi(x

0, x1, x2, x3) and Qi(x
0, x1, x2, x3). They are related to each other through

the formula (3.4). Nevertheless the partial variational derivatives (3.17) are defined
and the formulas (3.10), (3.12), (3.14), and (3.16) defining them can be used.

In order to apply the stationary-action principle with respect to the dynamical
variables of matter Q1, . . . , Qn we introduce small variations to them:

Q̂i = Qi(x
0, x1, x2, x3) + ε hi(x

0, x1, x2, x3). (5.2)

The formula (5.2) is similar to (3.11). However, unlike (3.11), now we take into
account small variations of W1, . . . , Wn induced by (5.2) due to the formula (3.4):

Ŵi = Wi(x
0, x1, x2, x3) + ε

∂hi(x
0, x1, x2, x3)

∂x0
. (5.3)

Applying (5.2) and (5.3) to (5.1) and using (3.10) and (3.12), we derive

Ŝ = S + ε

∫∫ n
∑

i=1

( δL
δWi

)

Q,g,b

∂hi

∂x0

√

det g d3x +

+ ε

∫ n
∑

i=1

( δL
δQi

)

W,g,b
hi

√

det g d3x + . . . .

(5.4)

Integrating by parts in the first integral, we transform (5.4) as

Ŝ = S − ε

∫∫ n
∑

i=1

∂

∂x0

( δL
δWi

)

Q,g,b
hi

√

det g d3x−

− ε

∫∫ n
∑

i=1

3
∑

q=1

( δL
δWi

)

Q,g,b
bq
q hi

√

det g d3x +

+ ε

∫ n
∑

i=1

( δL
δQi

)

W,g,b
hi

√

det g d3x + . . . .

(5.5)

Since hi(x
0, x1, x2, x3) are arbitrary smooth functions with compact support, from

(5.5) we derive the following differential equation:

− ∂

∂x0

( δL
δWi

)

Q,g,b
−

( δL
δWi

)

Q,g,b

3
∑

q=1

bq
q +

( δL
δQi

)

W,g,b
= 0, (5.6)

where i = 1, . . . , n. Note that L = Lgr + Lmat, where Lgr does not depend on Qi

and Wi (see (3.7) and (3.6)). Therefore the equations (5.6) are rewritten as

− ∂

∂x0

(δLmat

δWi

)

Q,g,b
−

(δLmat

δWi

)

Q,g,b

3
∑

q=1

bq
q +

(δLmat

δQi

)

W,g,b
= 0. (5.7)
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Definition 5.1. The equations (5.7) are known as the Euler-Lagrange equations
with respect to the dynamical variables Q1, . . . , Qn of matter.

Now let’s apply the stationary-action principle with respect to the dynamical
variables gij of the gravitational field. For this purpose we introduce small varia-
tions to the metric components gij:

ĝij = gij(x
0, x1, x2, x3) + ε hij(x

0, x1, x2, x3). (5.8)

The formula (5.8) is similar to (3.13). But unlike (3.13), now we take into account
small variations of bij induced by (5.8) due to the formula (1.7):

b̂ij = bij(x
0, x1, x2, x3) +

ε

2

∂hij(x
0, x1, x2, x3)

∂x0
. (5.9)

Applying (5.8) and (5.9) to (5.1) and using (3.14) and (3.16), we derive

Ŝ = S +
ε

2

∫∫ 3
∑

i=1

3
∑

j=1

( δL
δbij

)

W,Q,g

∂hij

∂x0

√

det g d3x +

+ ε

∫ 3
∑

i=1

3
∑

j=1

( δL
δgij

)

W,Q,b
hij

√

det g d3x + . . . .

(5.10)

Integrating by parts in the first integral, we transform (5.10) as

Ŝ = S − ε

2

∫∫ 3
∑

i=1

3
∑

j=1

∂

∂x0

( δL
δbij

)

W,Q,g
hij

√

det g d3x−

− ε

2

∫∫ 3
∑

i=1

3
∑

j=1

3
∑

q=1

( δL
δbij

)

W,Q,g
bq
q hij

√

det g d3x +

+ ε

∫ 3
∑

i=1

3
∑

j=1

( δL
δgij

)

W,Q,b
hij

√

det g d3x + . . . .

(5.11)

Since hij(x
0, x1, x2, x3) are arbitrary smooth functions with compact support, from

(5.11) we derive the following differential equation:

−1

2

∂

∂x0

( δL
δbij

)

W,Q,g
− 1

2

( δL
δbij

)

W,Q,g

3
∑

q=1

bq
q +

( δL
δgij

)

W,Q,b
= 0. (5.12)

Since L = Lgr +Lmat, if we recall the formula (3.20), then we can rewrite (5.12) as

−1

2

∂

∂x0

(δLgr

δbij

)

W,Q,g
−1

2

(δLgr

δbij

)

W,Q,g

3
∑

q=1

bq
q +

(δLgr

δgij

)

W,Q,b
= −δLmat

δgij

. (5.13)



12 RUSLAN SHARIPOV

Definition 5.2. The equations (5.13) are known as the Euler-Lagrange equations
with respect to the dynamical variables gij of the gravitational field.

Let’s recall the energy function (4.2) and write it as follows:

H =

∫
( 3

∑

i=1

3
∑

j=1

βij bij +

n
∑

i=1

P i Wi − L
)

√

det g d3x. (5.14)

The integral (4.3) with the function (4.5) is another presentation of (5.14). Keeping
βij and P i unchanged, we introduce small variations to gij and Qi:

ĝij = gij(x
0, x1, x2, x3) + ε hij(x

0, x1, x2, x3), (5.15)

Q̂i = Qi(x
0, x1, x2, x3) + ε hi(x

0, x1, x2, x3). (5.16)

Invertibility of the Legendre transformation (3.25) means that the variations (5.15)
and (5.16) induce small variations of bij and small variations of the variables
W1, . . . , Wn. They can be expressed by the formulas (4.9) and (4.10) where the

functions h̃ij(x
0, x1, x2, x3) and h̃i(x

0, x1, x2, x3) are determined by the functions
hij(x

0, x1, x2, x3) and hi(x
0, x1, x2, x3) from (5.15) and (5.16). Applying (5.15) and

(5.16) to the integral (4.3) with the function H written as (4.5), we derive

Ĥ = H + ε

∫ 3
∑

i=1

3
∑

j=1

( δH
δgij

)

Q,P,β
hij

√

det g d3x +

+ ε

∫ n
∑

i=1

( δH
δQi

)

P,g,β
hi

√

det g d3x + . . . .

(5.17)

Similarly, applying (5.15) and (5.16) along with (4.9) and (4.10) to (5.14), we get

Ĥ = H + ε

∫
( 3

∑

i=1

3
∑

j=1

βij h̃ij +

n
∑

i=1

P i h̃i

)

√

det g d3x +

+ ε

∫ 3
∑

i=1

3
∑

j=1

( 3
∑

k=1

3
∑

q=1

βkq bkq +

n
∑

k=1

P k Wk

)

gij hij

2

√

det g d3x−

− ε

∫
( 3

∑

i=1

3
∑

j=1

( δL
δbij

)

W,Q,g
h̃ij +

n
∑

i=1

( δL
δWi

)

Q,g,b
h̃i

)

√

det g d3x−

− ε

∫
( 3

∑

i=1

3
∑

j=1

( δL
δgij

)

W,Q,b
hij +

n
∑

i=1

( δL
δQi

)

W,g,b
hi

)

√

det g d3x + . . . .

(5.18)

Taking into account the formulas (3.25), we can reduce (5.18) to

Ĥ = H − ε

∫

( δL
δQi

)

W,g,b
hi

√

det g d3x + ε

∫ 3
∑

i=1

3
∑

j=1

( n
∑

k=1

P k Wk

2
gij +

+

3
∑

k=1

3
∑

q=1

βkq bkq

2
gij −

( δL
δgij

)

W,Q,b

)

hij

√

det g d3x + . . . .

(5.19)
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Now we can compare (5.17) and (5.19) as ε → 0. As a result we derive

( δH
δgij

)

Q,P,β
=

3
∑

k=1

3
∑

q=1

βkq bkq

2
gij +

n
∑

k=1

P k Wk

2
gij −

( δL
δgij

)

W,Q,b
,

( δH
δQi

)

P,g,β
= −

( δL
δQi

)

W,g,b
.

(5.20)

The relationships (5.20) are complementary to (3.25). Applying (3.25), (5.20),
and (4.7) to (5.12) and (5.6), we derive the following pair of differential equations:

1

2

∂βij

∂x0
= −

( δH
δgij

)

Q,P,β
− 1

2

3
∑

k=1

3
∑

q=1

gkq
( δH

δβkq

)

Q,P,g
βij+

+
1

2

3
∑

k=1

3
∑

q=1

βkq
( δH

δβkq

)

Q,P,g
gij +

1

2

n
∑

k=1

P k
( δH

δP k

)

Q,g,β
gij ,

∂P i

∂x0
= −

( δH
δQi

)

P,g,β
−

3
∑

k=1

3
∑

q=1

gkq
( δH

δβkq

)

Q,P,g
P i.

(5.21)

Another pair of differential equations are derived from (4.7). Indeed, applying (1.7)
and (3.4) to the left hand sides of the relationships (4.7), we get

1

2

∂gij

∂x0
=

( δH
δβij

)

Q,P,g
,

∂Qi

∂x0
=

( δH
δP i

)

Q,g,β
. (5.22)

Definition 5.3. The equations (5.21) and (5.22) constitute the system of Hamilton
equations for the gravitational field and for matter.

The Hamilton equations (5.21) and (5.22) are equivalent to the Euler-Lagrange
equations (5.6) and (5.12), though they are written with respect to a different set
of dynamic variables.

6. Some explicit calculations.

Let’s begin with the Euler-Lagrange equation (5.13). Its left hand side is de-
termined by the function (3.6). We substitute this function for L into the integral
(3.7) and then apply the small variation of b from (3.15) to this integral:

L̂gr = Lgr +
c3

16πγ

∫ 3
∑

i=1

3
∑

j=1

3
∑

k=1

3
∑

q=1

(

hij gik bkq gjq + bij gik hkq gjq −

−hij gij bkq gkq − bij gij hkq gkq
)
√

det g d3x + . . . .

(6.1)

Due to the symmetry of gij and bij the formula (6.1) reduces to

L̂gr = Lgr +
c3

8πγ

∫ 3
∑

i=1

3
∑

j=1

(

bij −
3

∑

k=1

bk
k gij

)

hij

√

det g d3x + . . . . (6.2)
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Comparing (6.2) with (3.16), we find

(δLgr

δbij

)

Q,W,g
=

c3

8πγ

(

bij −
3

∑

k=1

bk
k gij

)

. (6.3)

The second partial variational derivative in (5.13) is more complicated. In order
to calculate it we need to substitute (3.6) for L into the integral (3.7) and then we
need to apply the small variation (3.13) of the metric g to it. Upon substituting
(3.6) into the integral (3.7) we subdivide this integral into three parts:

Lgr = L1 + L2 + L3, (6.4)
where

L1 =
c3

16πγ

∫ 3
∑

i=1

3
∑

j=1

3
∑

k=1

3
∑

q=1

bij gik bkq gjq
√

det g d3x, (6.5)

L2 = − c3

16πγ

∫ 3
∑

i=1

3
∑

j=1

3
∑

k=1

3
∑

q=1

bij gij bkq gkq
√

det g d3x, (6.6)

L3 =
c3

16πγ

∫

(R − 2 Λ)
√

det g d3x. (6.7)

From (3.13) we derive the following relationships:

√

det ĝ =
√

det g

(

1 + ε

3
∑

i=1

3
∑

j=1

gij hij

2

)

+ . . . , (6.8)

ĝij = gij − ε

3
∑

p=1

3
∑

q=1

gip hpq gqj + . . . . (6.9)

Applying the relationships (6.8) and (6.9) to (6.5) and (6.6), we obtain

L̂1 = L1 −
ε c3

16πγ

∫ 3
∑

i=1

3
∑

j=1

( 3
∑

k=1

3
∑

q=1

2 bi
k bk

q gqj −

−
3

∑

k=1

3
∑

q=1

1

2
bk
q b

q

k gij

)

hij

√

det g d3x + . . . .

(6.10)

L̂2 = L2 +
ε c3

16πγ

∫ 3
∑

i=1

3
∑

j=1

( 3
∑

k=1

2 bk
k bij −

−
3

∑

k=1

3
∑

q=1

1

2
bk
k bq

q gij

)

hij

√

det g d3x + . . . .

(6.11)

In the case of the relationship (6.7) we have

L̂3 = L3 −
ε c3

16πγ

∫ 3
∑

i=1

3
∑

j=1

(

Rij − R

2
gij + Λ gij

)

·

· hij

√

det g d3x dx0 + . . . .

(6.12)
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The arguments and calculations supporting the formula (6.12) are the same as in
deriving Einstein’s gravity equation in § 2 of Chapter V in [6].

Now we substitute (6.10), (6.11), and (6.12) for L1, L2, and L3 into the formula
(6.4). As a result we derive the formula

L̂gr = Lgr +
ε c3

16πγ

∫ 3
∑

i=1

3
∑

j=1

( 3
∑

k=1

3
∑

q=1

1

2
bk
q b

q

k gij −
3

∑

k=1

3
∑

q=1

2 bi
k bk

q gqj +

+
3

∑

k=1

2 bk
k bij −

3
∑

k=1

3
∑

q=1

1

2
bk
k bq

q gij − Rij +
R

2
gij − Λ gij

)

hij

√

det g d3x + . . .

that should be compared with the formula (3.14). This comparison yields

(δLgr

δgij

)

W,Q,b
=

c3

16πγ

( 3
∑

k=1

3
∑

q=1

1

2
bk
q b

q
k gij −

3
∑

k=1

3
∑

q=1

2 bi
k bk

q gqj +

+

3
∑

k=1

2 bk
k bij −

3
∑

k=1

3
∑

q=1

1

2
bk
k bq

q gij − Rij +
R

2
gij − Λ gij

)

.

(6.13)

The next step is to substitute (6.3) and (6.13) into the differential equation (5.13).
Substituting (6.3) into (5.13), we get

− 1

2

∂

∂x0

(δLgr

δbij

)

W,Q,g
=

c3

16πγ

(

−∂bij

∂x0
+

3
∑

k=1

∂bk
k

∂x0
gij −

3
∑

k=1

2 bk
k bij

)

, (6.14)

− 1

2

(δLgr

δbij

)

W,Q,g

3
∑

q=1

bq
q =

c3

16πγ

( 3
∑

k=1

3
∑

q=1

bk
k bq

q gij −
3

∑

k=1

bk
k bij

)

. (6.15)

The expressions in the left hand sides of (6.13), (6.14), and (6.15) constitute the left
hand side of the equation (5.13). Its right hand side is determined by the derivative
(3.20). Applying (6.13), (6.14), and (6.15) to (5.13), we get

−∂bij

∂x0
+

3
∑

k=1

∂bk
k

∂x0
gij +

3
∑

k=1

3
∑

q=1

1

2
bk
q b

q

k gij −
3

∑

k=1

3
∑

q=1

2 bi
k bk

q gqj −

−
3

∑

k=1

bk
k bij +

3
∑

k=1

3
∑

q=1

1

2
bk
k bq

q gij − Rij +
R

2
gij − Λ gij = −16πγ

c3

δLmat

δgij

.

(6.16)

The equation (6.16) is similar to (1.4). In order to make these equations more sim-
ilar we need to lower indices i and j in (6.16). Taking into account the relationship
(3.21) and using symmetry of gij and bij, we derive

−∂bij

∂x0
+

3
∑

k=1

∂bk
k

∂x0
gij +

3
∑

k=1

3
∑

q=1

1

2
bk
q b

q

k gij +

3
∑

k=1

3
∑

q=1

(bki bk
j + bkj bk

i )−

−
3

∑

k=1

bk
k bij +

3
∑

k=1

3
∑

q=1

1

2
bk
k bq

q gij − Rij +
R

2
gij − Λ gij =

16πγ

c3

δLmat

δgij
.

(6.17)
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Now, comparing (6.17) and (1.4), we see that these two equations do coincide
provided the relationship (1.13) is fulfilled. The relationship (1.13) was derived in
[11]. Therefore we conclude that the formula (6.17) proves the following theorem.

Theorem 6.1. The 3D Euler-Lagrange equation (5.13) is equivalent to the equation

(1.4) that was derived from the four-dimensional Einstein’s gravity equation (1.3).

Proceeding to the Hamilton equations (5.21) and (5.22), we choose the special
case determined by the condition (3.22), see also remark on page 5 and (3.5). In this
case special case the relationship (3.20) reduces to (3.23). Note that L = Lgr+Lmat.
The function Lgr is given by the explicit formula (3.6). It does not depend on
W1, . . . , Wn and Q1, . . . , Qn. Therefore apart from (3.22) we have

(δLgr

δWi

)

Q,g,b
= 0,

(δLgr

δQi

)

W,g,b
= 0. (6.18)

Applying (3.22) and (6.18) to (3.25), we obtain

βij =
(δLgr

δbij

)

g
, P i =

(δLmat

δWi

)

Q,g
. (6.19)

Substituting (6.19) into (4.2) and taking into account L = Lgr + Lmat, we derive

H = Hgr + Hmat, (6.20)

i. e. the energy function H is subdivided into two parts responsible for the gravita-
tional field and for matter. The functions Hgr and Hmat are given by the formulas

Hgr =

∫
( 3

∑

i=1

3
∑

j=1

βij bij −Lgr

)

√

det g d3x, (6.21)

Hmat =

∫
( n

∑

i=1

P i Wi − Lmat

)

√

det g d3x, (6.22)

The partial variational derivative in the first formula (6.19) is already calculated in
(6.3). Therefore we can write the following explicit formula:

βij =
c3

8πγ

(

bij −
3

∑

k=1

bk
k gij

)

. (6.23)

The relationship (6.23) is invertible. Its inverse is written as

bij =
8πγ

c3

(

βij − 1

2

3
∑

k=1

βk
k gij

)

. (6.24)

We have no explicit presentation for the second formula (6.19). Therefore we
shall just assume that it is invertible in the sense of Theorem 4.1. Applying this
theorem to (6.21) and (6.22), we obtain the following two functions in (6.20):

Hgr = Hgr(g, β), (6.25)

Hmat = Hmat(Q1, . . . , Qn, P 1, . . . , P n,g). (6.26)
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Substituting (6.25) and (6.26) into (6.20) and then substituting (6.20) into the
equations (5.21) and (5.22), we derive the following Hamilton equations for matter:

∂Qi

∂x0
=

(δHmat

δP i

)

Q,g
, (6.27)

∂P i

∂x0
= −

(δHmat

δQi

)

P,g,
−

3
∑

k=1

3
∑

q=1

gkq
(δHgr

δβkq

)

g
P i. (6.28)

Similarly we derive the Hamilton equations for the gravitational field:

1

2

∂gij

∂x0
=

(δHgr

δβij

)

g
, (6.29)

1

2

∂βij

∂x0
= −

(δHgr

δgij

)

β
− 1

2

3
∑

k=1

3
∑

q=1

gkq
(δHgr

δβkq

)

g
βij +

+
1

2

3
∑

k=1

3
∑

q=1

βkq
(δHgr

δβkq

)

g
gij −

(δHmat

δgij

)

Q,P
+

1

2

n
∑

k=1

P k
(δHmat

δP k

)

Q,g
gij.

(6.30)

The last term in (6.28) and two last terms in (6.30) are directly responsible for
matter to gravity interaction.

We shall not try to make more explicit the equations (6.27) and (6.28) because
in this paper we do not specify the sorts of matter and the nature of the dynamic
variables Q1, . . . , Qn of matter as well as their associated momenta P1, . . . , Pn.
The equations (6.29) and (6.30) are different. In this case we can make explicit
all terms except for the last two terms in (6.30). Let’s begin with the Hamilton
function (6.25). According to Definition 4.2 the Hamilton function is the density of
the energy function expressed through the dynamic variables and their associated
momenta. The energy function of the gravitational field is given by (6.21). Hence

Hgr =

3
∑

i=1

3
∑

j=1

βij bij −Lgr, (6.31)

where Lgr is given by the formula (3.6). In order to replace the components of the
tensor field b by the components of the tensor field β in (6.31) we use (6.24):

Hgr =
8πγ

c3

3
∑

k=1

3
∑

q=1

(

βkq βkq −
1

2
βk

k βq
q

)

− Lgr. (6.32)

The function Lgr also comprises the entries of b. As a result of applying (6.24) to
Lgr in (3.6) we transform it as follows:

Lgr =
4πγ

c3

3
∑

k=1

3
∑

q=1

(

βkq βkq −
1

2
βk

k βq
q

)

+
c3

16πγ
(R − 2 Λ). (6.33)

Substituting (6.33) into (6.32) yields

Hgr =
4πγ

c3

3
∑

k=1

3
∑

q=1

(

βkq βkq −
1

2
βk

k βq
q

)

− c3

16πγ
(R − 2 Λ). (6.34)
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The energy function Hgr is produced from (6.34) by integration:

Hgr =
4πγ

c3

∫ 3
∑

k=1

3
∑

q=1

(

βkq βkq −
1

2
βk

k βq
q

)

√

det g d3x−

− c3

16πγ

∫

(R − 2 Λ)
√

det g d3x.

(6.35)

The integrals in (6.35) can be used in order to calculate partial variational deriva-
tives of the function Hgr in (6.34). The procedure is similar to that of (6.1) and
(6.4), (6.5), (6.6), (6.7) with subsequent calculations. It yields

(δHgr

δβij

)

g
=

8πγ

c3

(

βij −
1

2

3
∑

k=1

βk
k gij

)

, (6.36)

(δHgr

δgij

)

β
=

4πγ

c3

( 3
∑

k=1

2 βi
k βkj −

3
∑

k=1

βk
k βij +

3
∑

k=1

3
∑

q=1

1

2
βk

q β
q

k gij −

−
3

∑

k=1

3
∑

q=1

1

4
βk

k βq
q gij

)

+
c3

16πγ

(

Rij − R

2
gij + Λ gij

)

.
(6.37)

Applying (6.36) to the second and third terms in the right hand side of (6.30) yields

−1

2

3
∑

k=1

3
∑

q=1

gkq
(δHgr

δβkq

)

g
βij =

2πγ

c3

3
∑

k=1

βk
k βij ,

1

2

3
∑

k=1

3
∑

q=1

βkq
(δHgr

δβkq

)

g
gij =

4πγ

c3

( 3
∑

k=1

3
∑

q=1

βk
q β

q
k gij −

3
∑

k=1

3
∑

q=1

1

2
βk

k βq
q gij

)

.

(6.38)

Now we substitute (6.36), (6.37), and (6.38) into the equations (6.29) and (6.30).
As a result we obtain the explicit form of the Hamilton equations for gravity:

1

2

∂gij

∂x0
=

8πγ

c3

(

βij −
1

2

3
∑

k=1

βk
k gij

)

, (6.39)

1

2

∂βij

∂x0
=

4πγ

c3

( 3
∑

k=1

3

2
βk

k βij −
3

∑

k=1

2 βi
k βkj +

3
∑

k=1

3
∑

q=1

1

2
βk

q β
q

k gij −

−
3

∑

k=1

3
∑

q=1

1

4
βk

k βq
q gij

)

− c3

16πγ

(

Rij − R

2
gij + Λ gij

)

−

−
(δHmat

δgij

)

Q,P
+

1

2

n
∑

k=1

P k
(δHmat

δP k

)

Q,g
gij.

(6.40)

Due to (1.7) the equation (6.39) is equivalent to (6.24). In order to compare (6.40)
with (6.16) and (1.4) we need to rewrite it in terms of the components of the tensor
field b. For this purpose we use (6.23). Differentiating (6.23), we get

1

2

∂βij

∂x0
=

c3

16πγ

(

∂bij

∂x0
−

3
∑

k=1

∂bk
k

∂x0
gij +

3
∑

k=1

2 bk
k bij

)

. (6.41)
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Now, applying (6.41) and (6.23) to (6.40), we derive

∂bij

∂x0
−

3
∑

k=1

∂bk
k

∂x0
gij −

3
∑

k=1

3
∑

q=1

1

2
bk
q b

q

k gij +

3
∑

k=1

2 bi
k bkj +

+

3
∑

k=1

bk
k bij −

3
∑

k=1

3
∑

q=1

1

2
bk
k bq

q gij + Rij − R

2
gij + Λ gij =

=
16πγ

c3

(

−
(δHmat

δgij

)

Q,P
+

1

2

n
∑

k=1

P k
(δHmat

δP k

)

Q,g
gij

)

.

(6.42)

Comparing (6.42) with (6.16), we see that these two equations are equivalent to
each other provided the following equality is fulfilled:

−
(δHmat

δgij

)

Q,P
+

1

2

n
∑

k=1

P k
(δHmat

δP k

)

Q,g
gij =

δLmat

δgij

(6.43)

The right hand side of the equality (6.43) is given by the formula (3.20). Let’s
recall that we have derived the equation (6.42) from the equation (6.40), while
the equations (6.39) and (6.40) were derived under the assumption that the rela-
tionships (3.22) and (6.18) are fulfilled. In this case the formula (3.20) reduces to
(3.23), while the Legendre transformation (3.25) is written as (6.19). Applying the
formula (3.23) to (6.43), we transform the relationship (6.43) as

−
(δHmat

δgij

)

Q,P
+

1

2

n
∑

k=1

P k
(δHmat

δP k

)

Q,g
gij =

(δLmat

δgij

)

W,Q
. (6.44)

The relationship (6.44) is similar to (5.20). It is derived in a way similar to that of
(5.20). Let’s recall the formula (6.22) and complement it with the formula

Hmat =

∫

Hmat

√

det g d3x, (6.45)

Keeping the variables Q1, . . . , Qn and P 1, . . . , P n unchanged, we introduce small
variations to the components of metric gij:

ĝij = gij(x
0, x1, x2, x3) + ε hij(x

0, x1, x2, x3), (6.46)

The variations (6.46) induce small variations of the variables W1, . . . , Wn:

Ŵi = Wi(x
0, x1, x2, x3) + ε h̃i(x

0, x1, x2, x3). (6.47)

Applying both (6.46) and (6.47) to (6.22), we derive

Ĥmat = Hmat + ε

∫ n
∑

k=1

(

P k h̃k +

3
∑

i=1

3
∑

j=1

P k Wk

gij hij

2

)

√

det g d3x−

− ε

∫
( 3

∑

i=1

3
∑

j=1

(δLmat

δgij

)

W,Q
hij +

n
∑

k=1

(δLmat

δWk

)

Q,g
h̃k

)

√

det g d3x + . . . .

(6.48)
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Similarly, applying (6.46) to the integral (6.45), we obtain

Ĥmat = Hmat + ε

∫ 3
∑

i=1

3
∑

j=1

(δHmat

δgij

)

P,Q
hij

√

det g d3x + . . . . (6.49)

Due to the second relationship in (6.19) the formula (6.48) simplifies as follows:

Ĥmat = Hmat + ε

∫ 3
∑

i=1

3
∑

j=1

(

1

2

n
∑

k=1

P k Wk gij

)

hij

√

det g d3x−

− ε

∫ 3
∑

i=1

3
∑

j=1

(δLmat

δgij

)

W,Q
hij

√

det g d3x + . . . .

(6.50)

The inversion of the Legendre transformation given by the relationships (6.19) is
determined by Theorem 4.1 and the relationships (4.7) therein. Due to (6.20) and
since Hgr in (6.34) does not depend on P 1, . . . , P n and Q1, . . . , Qn, while Hmat

does not depend on βij , the relationships (4.7) in our present case are written as

bij =
(δHgr

δβij

)

g
, Wi =

(δHmat

δP i

)

Q,g
. (6.51)

Now the formula (6.44) is derived by substituting the second relationship (6.51)
into (6.50) and comparing the formulas (6.49) and (6.50) as ε → 0.

Having proved (6.44) and hence having proved the relationship (6.43), we con-
clude that the equation (6.40) is equivalent to the equations (6.16) and (6.17). The
equation (6.17) coincides with the equation (1.4) due to (1.13). This means that
we have proved the following theorem.

Theorem 6.2. In the special case determined by the relationship (3.22) the Hamil-

ton equations (6.29) and (6.30) are equivalent to the equations (1.7) and (1.4)
through the direct and inverse Legendre transformations given by (6.19) and (6.51).

7. Concluding remarks.

The main result of the present paper is the Hamiltonian approach applied to
describing the dynamics of the gravitational field and matter within the paradigm
of a 3D-brane universe from [1]. In general case this result is expressed by the
Hamilton equations (5.21) and (5.22) which are equivalent to the Euler-Lagrange
equations (5.6) and (5.12). Due to the subdivision L = Lgr + Lmat the equations
(5.6) and (5.12) are written as (5.7) and (5.13). It turns out that the Euler-Lagrange
equation of the gravitational field (5.13) is equivalent to the equation (1.4) that was
previously derived in [1] and [11].

The subdivision L = Lgr + Lmat leads to the subdivision H = Hgr + Hmat of
the function (4.4) through the formulas (6.21) and (6.22). However in general case
this subdivision does not imply separation of dynamic variables, i. e. the dynamic
variables of matter can enter the function Hgr. Therefore the special case given
by the condition (3.22) was considered. In this special case the function Hgr does
not comprise the dynamic variables of matter and is given by the explicit formula
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(6.34). It turns out that the Hamilton equations (6.29) and (6.30) written with the
use of this function are equivalent to the equations (1.7) and (1.4).

Although the Hamiltonian approach developed above in this paper does not lead
to equations other than those previously derived in [1] and [11], it is important from
the conceptual point of view. It can be helpful for quantization of the gravitational
field within the framework of our 3D-brane paradigm.

8. Dedicatory.

This paper is dedicated to my sister Svetlana Abdulovna Sharipova.
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