
The impossibility of quantum computing

Oscar Gras Garzón
Independent researcher

February 9, 2023

Abstract

This article analyzes the feasibility of implementing the mathematical model used in
quantum computing systems. The article questions whether certain mathematical prop-
erties of the qubit can be physically implemented, highlighting that quantum theory
may have been built by misinterpreting experimental evidence.

At the end of the article, it is justified mathematically that a feasible quantum-computing
mathematical model is equivalent to a classical-computing mathematical model without
states, so it can be concluded that quantum supremacy is unattainable.
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1 Introduction

Scientists have defined an alternative computing system to classical computing by mak-
ing use of their quantum theory. The mathematical model on which quantum computing
is based is believed to be possible because it takes advantage of the phenomena described
by this theory.

Mathematicians have compared the ability to solve mathematical problems of the two
models; that is, they have compared the mathematical model of classical computing with
the mathematical model of quantum computing. To compare both models, they use a
mathematical discipline called computational complexity theory, which studies how the
number of operations performed increases by an algorithm as the data required to solve
the problem increases. For example, adding a thousand numbers has lower computa-
tional complexity than sorting them because more operations are required to sort them.
Computational complexity depends on the algorithm used to solve the problem and the
algorithms, in turn, depend on the computational model. Thus, there may be a com-
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putational model in which ordering a thousand numbers requires the same number of
operations as those required to add them in the classical model.

Algorithms have been proposed to solve problems with the quantum computational
model whose number of operations necessary to find the solution is much lower than
those necessary with an algorithm that solves the same problem with the classical com-
putational model. This suggests that there are problems that are not feasible to solve
with the classical computing model, because they require too many operations, but are
feasible to solve them with the quantum computing model. Because of this discovery,
it is said that the organization that achieves quantum computing will achieve quantum
supremacy.

However, it is not possible to implement the mathematical model of quantum computing
with any physical system, so quantum supremacy is a chimera. Scientists believe in its
feasibility because they have taken several erroneous assumptions from quantum theory.
After a brief description of the mathematical model of quantum computation, I will
describe these assumptions. Once described, I will modify the model described to avoid
them, and I will show that the modified model is computationally equivalent to the
classical computational model.

2 Quantum computing’s mathematical model

The classical computing model has the bit as an elementary part, while the quantum
computing model has the qubit. The bit can take only two values, 0 and 1, while the
qubit can take infinite values. However, the reading of a qubit is a random phenomenon
between two possible values, 0 and 1, where the probability of obtaining either of the two
values depends on the value that the qubit has; moreover, after the reading, the value
of the qubit is overwritten with the value obtained from the reading, losing the value it
had before it. The two possible values of qubit reading are called primary values.

The possible qubit values are two-dimensional unit vectors whose components can take
values from the complex space. In this article, the components of the unit vector will be
restricted to values in real space. Since this model is more restricted, the justification for
the impossibility of an implementation of the quantum mathematical model will apply
to it as well, and it will be obvious to the reader how it applies to it.

Moreover, a description of the function that gives the probability distribution of the
primary values according to the value of the qubit is not needed in this paper, since we
only need to know two facts about it:

1. Each possible value of the qubit determines the probability distribution between
the two primary values of the random phenomena.

2. Any probability distribution between the two primary values is reached with at
least one two-dimensional vector value of the qubit with real-space components.
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Although the value of the qubit is erased when it is read, it is possible to write in
a qubit a value that depends on another qubit without erasing the qubit on which it
depends. If we perform consecutive writes to the first qubit whose results depend on the
second qubit, we will be able to determine the value stored in the second qubit with the
desired precision. This is because the first qubit may have one primary value or another
depending on whether any condition needed in the second qubit, to restrict the domain
of possible values, is met or not.

The recent description of the definition of the qubit is sufficient to highlight the erroneous
assumptions of the physical phenomena with which scientists hope to implement the
promising quantum computing mathematical model. Briefly, the erroneous assumptions
have to do with the random nature of the phenomenon and with the infinite number of
values that the qubit can have.

3 Erroneous assumptions of physical reality

Any random phenomenon, by definition, has the following restrictions on its determina-
tion:

1. It is impossible to know the probability distribution of random phenomena.

Let us imagine that a random event can result in only one of two possible values,
for example, on or off; we will say that there is equiprobability between the two
values if, in an infinite number of times of the repeating event, we have the same
number of results of one value as of the other. However, since it is not possible
to repeat the event an infinite number of times, we cannot perform the necessary
procedure, according to the definition, to be certain that the event is equiprobable.
Neither we can, according to the definition of a random phenomenon, know the
probability distribution of these phenomena, with a finite subset of their outcomes,
since that set of outcomes does not determine the rest of the outcomes; that is,
even if we have a million outcomes of the phenomenon with the same value and
none with the other, we cannot establish the frequency of those values in the rest of
the outcomes of the random phenomenon. Admitting that one streak determines
the subsequent ones implies admitting that the phenomenon is not really random,
but pseudo-random.

It is difficult for us to accept that a previous streak does not determine other
subsequent streaks because our intuitive processes have been developed to find the
determining rules followed by nature’s interactions. If we try to give an answer to
a problem about a random phenomenon, letting ourselves be guided by intuition
instead of reasoning, the answer will likely be incorrect, as happens to us with the
Monty Hall paradox.
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2. It is impossible to be certain that a phenomenon is genuinely random rather than
pseudo-random.

We can demonstrate the existence of details in our reality, but not their non-
existence, since the absence of observations of these details does not mean that
they do not exist. Therefore, we cannot be sure that all interactions of natural
phenomena follow rules that determine them, and we also cannot be sure that a
phenomenon does not follow determining rules that we do not yet know. Free will
is, by definition, a random phenomenon because the decisions made by the subject
are determined by his will and can be made independently of the surrounding
environment.

If an event is not random and has been assumed to be random, its use in the
implementation of computer systems can have dangerous implications for the se-
curity of the systems. If someone were to find partial rules that determine the
outcome, they could find ways to take advantage of the error that everyone makes
in assuming that the event is random. Proof of the existence of this possibility
are the experiences we have in classical computing with erroneous assumptions
of randomness. A multitude of security vulnerabilities in computer systems have
been revealed as a result of these erroneous assumptions. The following case is a
good example of this error:

Intel suffered this embarrassment when researchers found that its processors were
not secure. Processors have an internal memory, called a cache, which they have
much faster access than the access they have to the computer’s RAM. The cache,
thanks to algorithms, stores copies of the most frequently accessed information
in RAM memory; in this way, the most frequently used information is retrieved
more quickly than it would be if the cache did not exist. By assuming users
don’t know what information has been accessed previously, processor designers
considered the memory read response time to be random. However, researchers
found that, by measuring memory response times, they could tell whether the
access had been to the cache or not. With this information, they could propose
reads to a memory address that partially depended on the value stored at another
address, and, depending on how fast they got the response, the stored value was
partially revealed. This forced Intel to redesign its new processors and forced some
of Intel’s customers, who didn’t like to be at risk of being attacked by using this
vulnerability, to throw away their machines.

A rule that is only true in random phenomena and that we assume when we suppose
that the phenomenon is random is that the concatenation of two phenomena is a
random phenomenon, even if we can determine one of them.

3. It is impossible to modify the probability distribution of a random phenomenon.

Precisely, to be able to modify the probabilities of the results of a phenomenon,
we need to interact with it. If we can determine the results of this interaction,
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it is because we know a rule that determines these results. As the probability
distribution of a random phenomenon cannot be known, it is even less possible
to modify its probability distribution because a random phenomenon cannot be
affected by its environment. To postulate that there are rules that serve to modify
the probability distribution of a random phenomenon makes no sense because there
is no intermediate point between random and determined phenomenon; either the
phenomenon is deterministic or it is not; a factor that partially determines the
non-determinism of a phenomenon sounds contradictory.

We have many millions of pseudo-random phenomena so, if it turned out that the
value read from the qubit was not random, all the work that has been done to
develop quantum computation would have been useless; unless the motivations for
the development quantum computing systems were not in the existence of random
phenomena.

On the other hand, if the mathematical model of quantum computing enables us
to compute far superior to the present one, we should try to implement it with
pseudo-random systems. After all, if such a mathematical model were only possible
with genuinely random systems, it would mean that there is a mathematical pro-
cedure to distinguish between genuinely random and pseudo-random procedures.
Believing in the existence of a mathematical procedure that can only be performed
with genuinely random phenomena implies the belief that there are characteristics
of reality that can be determined without being observed by using mathematics.
To implement the mathematical model of quantum computation there are infinite
pseudo-random systems that we can use as a substitute for qubits, so we do not
have to wait to achieve quantum computation with quantum phenomena.

Having described the erroneous assumptions about the random nature of quantum
physics, I will now describe those that have to do with its capacity to store informa-
tion.

1. The incommensurability of the qubit.

The qubit capability to store any value of an infinite number of them is its greatest
advantage over the bit. In fact, we would need an infinite number of bits to store
the stored value in the qubit. Therefore, the information that a qubit can store is
unmanageable for a binary system; we could digitize all the books and images in the
world; concatenate all the digitization files to form a single string of zeros and ones;
transform that very long string of zeros and ones into a gigantic integer; and then
store it in a single qubit. Once stored, we could retrieve the stored information,
using an auxiliary qubit, through repeating writes operations, conditioned by this
gigantic integer, resulting in1,if the gigantic integer meets a condition, or 0, if it
does not. As the auxiliary qubit can be read, each new write will bring us closer
to the value to be retrieved, since the new conditions can be chosen according to
that read.
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If the reader begins to think that the capability of the qubit sounds fanciful, it
is precisely because our intuition finds it implausible, anything comparable in our
experience cannot be found. If the reader needs some more help, imagine that you
want to store in a single qubit the boolean representation of an irrational number,
which is an infinite string of boolean digits; you would be storing in a single qubit
the information of something that is completely impossible to obtain because it
takes infinite time; how could we write in the qubit something that is impossible
to obtain?

2. The impossibility of obtaining exactly what is desired.

We have arrived at the absurdity of the incommensurability of the qubit because
we have assumed that we can write in the qubit any desired value exactly. If this
were really the case, we would be facing a milestone in technology, there isn’t any
precedent of such capability in any other technology; for example, we can imagine
a perfect circle, but no one can draw it. To this milestone’s promise in quantum
technology, we must add that the chosen value is used to establish the probability
distribution of a random phenomenon; so, it is not only assumed that we can
modify it with perfect precision, but that we will achieve this modification on a
non-deterministic phenomenon.

Once it is accepted that we cannot write with perfect precision the desired value
in a qubit, we need to consider that the value written could be any one unknown
inside a finite interval. If we want a coincidence between what we write and what
we later recover, we must divide the range of values that a qubit can store into a
finite number of non overlapping intervals; each of them maps to one and only one
value to avoid ambiguity. Since the number of intervals is finite, the values that
can be stored in the qubit will be any of a finite number of possible values.

Physically, qubits store unitary two-dimensional vectors, so we each vector in the
set of possible values represent a value of the finite domain set of the operands
in the algorithm. Even with the vector’s components in the complex space, the
number of possible vectors that can be stored in the qubit is finite.

4 Non-existence of quantum supremacy technology

With a commensurable qubit, we can conclude that computation, using this restricted
quantum model, is computationally equivalent to classical computation. I will demon-
strate this claim in this section.

Having the set of possible values stored in a qubit, we can define a set of boolean digit
strings, each one with the same number of digits, that meets the following condition:
the number of strings of the defined set equals the number of possible values stored in
a qubit. With this defined set, we can define a bijective function between the two sets,
where each element in one set will have its element in the other set assigned to it and
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vice versa. This bijection allows us to represent any value of the qubit in a binary system
with a finite number of bits. In this binary system, the number of bits needed for each
quantum-system’s qubit is the logarithm in base two of the number of elements in the
set of possible values of the qubit rounded to the closet greater integer.

When the quantum computing system performs an elementary operation, both the ar-
guments and the results of the operation must be stored in qubits. Since the system
has finite number of qubits; the number of elements of the set of all possible arguments’
values is finite, as well as the number of elements of the set of all possible results’ values.
Furthermore, to represent an elementary operation, a surjective function can be drawn
between the two sets, the arguments’ values set and the results’ values set; since a useful
computation meets that results must be determined by the operation’s arguments, un-
less a random number is needed. This surjective function is transferable to the classical
computation model, since there is a bijective function to maps quantum values to clas-
sical values. Classical computing can implement any surjective function, and quantum
random values can be substituted by a result from a classical algorithm of psedorandom
numbers.

Algorithms are successions or concatenations of elementary operations, and elementary
operations are surjections between the set of possible values of the arguments and the set
of possible values of the results. If the elementary operations of quantum computation
are transferable to classical computation, the algorithms will also be transferable, con-
cluding that both models are computationally equivalent. Since classical and quantum
computing are equivalent, quantum supremacy is a chimera.

5 Conclusion

The above demonstration was made without using any fact of physical phenomenons,
the reasoning questions the certainty of the assumptions made in the mathematical
model and the feasibility of a technology that meets those assumptions. Thus, quan-
tum supremacy will not be achieved even by discovering new phenomena in which the
technology is based to implement the model.

The reasons that have led us to make these erroneous assumptions are outside the scope
of this short article. Briefly, the current scientific method is wrong and needs to be
replaced by a new one that I am describing in a new book I am writing. Many current
theories will not meet this method’s requisites. My motivation to write this article is to
reveal the wrongness of the current scientific method.

I understand the necessity of the scientific community to ignore the facts stated in this
article due to these facts drive them to doubt the current knowledge they have. An
appendix attached to this paper discusses the current scientific method.
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Appendix: Fundaments of the current scientific method

In the current scientific method, there are two types of reasoning:

• Deduction.

• Inference.

The deduction is a type of reasoning that parts from a general statement and concludes
on a specific one. This type of reasoning can be made using logic and if the starting
statement is true, then we can be sure that the specific statement is also true. Deduction
always needs a statement to start, which is named premise.

Inference is a type of reasoning that goes in the reverse way, parts from a specific
statement and concludes on a general one. This type of reasoning cannot be made using
logic and even if the starting statement is true, the conclusion could be false because
multiple general statements can be the result of this type of reasoning.

It is effortless to find an example of two general statements that conclude, using logic, in
the same specific statement. For example, the following two general statements: the set
of all even numbers greater than zero, and the set of all prime numbers, can be used two
prove through logic that 2 is the first element of the set when the elements are ordered
from least to greatest.

We name a hypothesis to a conclusion of an inference reasoning because there isn’t a
unique inference reasoning that can be made from a specific statement. Hypotheses
are needed because general statements are impossible to check with observations or
experiments. If a general statement is a rule, each observation or experiment can only
check for a specific set of conditions of that rule, to check another set of conditions we
require another observation or experiment. As one rule may have an infinite number of
sets of conditions, an infinite number of observations or experiments are needed to check
it.

If two scientists propose two different hypotheses, we can try to find two specific different
statements that meet the following:

• Each of the two follows from only one of the two hypotheses, and both statements
follows from a different hypothesis.

• Both statements cannot be true at the same time.

• Each one can be verified with one observation or one experiment.

If each statement has been deduced with a different hypothesis, the one that is false will
serve to demonstrate the falsity of its hypothesis.

There are currently theories that include statements that are not observable or able to
be checked by experiments. These theories are the ones where scientific objectivity is
questionable, since these aspects of the theory are not testable. The hypotheses of these
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theories are proposed based on the principle of parsimony, which means that the simplest
explanation is chosen based on the observed evidence.

The use of the principle of parsimony expands the area of knowledge treatable by sci-
ence. Immanuel Kant knew how to separate human knowledge into two categories: the
observable and the non-observable. The first category would correspond to scientific
knowledge properly meant, and the second category for transcendental knowledge prop-
erly meant, that is, the existence of God and the ultimate purpose of our existence. By
accepting the principle of parsimony, the categorical separation disappears, and science
begins to discuss issues in which our certainty is drastically reduced.

Schrödinger’s equation was inferred from the spectroscopy lines observed in different
atoms. Its interpretation was difficult to accept even for Erwin Schrödinger, who is also
the author of a thought experiment known as Schrödinger’s cat. His intention with his
experiment’s proposition is to reflect an absurd conclusion that follows from accepting his
equation’s interpretation. Despite the absurd conclusion, today the scientific community
believes in facts from the inferred reasoning that justify Schrödinger’s equation, even
though these facts are not observable.

The mathematical properties of the qubit are deduced from Schrödinger’s equation and
its interpretation, that is, the randomness phenomena’s determination and the superpo-
sition’s states of the qubit are predicted with the interpretation of Schrödinger’s equa-
tion.

Quantum computing is an attempt to get a technical application of the interpretation
of Schrödinger’s equation. As is shown in the article, the uncertainty of the facts in a
hypothesis will keep on its applications, unless the facts are observable.
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