Relations between e, π and golden ratios

Asutosh Kumar
P. G. Department of Physics, Gaya College, Magadh University, Rampur, Gaya 823001, India
Vaidic and Modern Physics Research Centre, Bhagal Bhim, Bhinmal, Jalore 343029, India
(asutoshk.phys@gmail.com)

Abstract

We write out relations between the base of natural logarithms (e), the ratio of the circumference of a circle to its diameter (π), and the golden ratios $\left(\Phi_{p}\right)$ of the additive p-sequences. An additive p-sequence is a natural extension of the Fibonacci sequence in which every term is the sum of p previous terms given $p \geq 1$ initial values called seeds.

1 Introduction

Euler's identity (or Euler's equation) is given as

$$
\begin{equation*}
e^{i \pi}+1=0, \tag{1}
\end{equation*}
$$

where $e=2.718 \cdots$ is the base of natural logarithms, $i:=\sqrt{-1}$ is the imaginary unit of complex numbers, and $\pi=3.1415 \cdots$ is the ratio of the circumference of a circle to its diameter. It is a special case of Euler's formula, $e^{i \theta}=\cos \theta+i \sin \theta$, for $\theta=\pi$. This expresses a deep mathematical beauty [1-3] as it involves three of the basic arithmetic operations: addition/subtraction, multiplication/division, and exponentiation/logarithm, and five fundamental mathematical constants: 0 (the additive identity), 1 (the multiplicative identity), e (Euler's number), i (the imaginary unit), and π (the fundamental circle constant).

As Euler's identity is an example of mathematical elegance, further generalizations of similar-type have been discovered.

- The $n^{\text {th }}$ roots of unity $(n>1)$ add up to zero.

$$
\begin{equation*}
\sum_{k=0}^{n-1} e^{2 i \pi \frac{k}{n}}=0 \tag{2}
\end{equation*}
$$

It yields Euler's identity (1) when $n=2$.

- For quaternions [4], with the basis elements $\{i, j, k\}$ and real numbers a_{n} such that $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=1$,

$$
\begin{equation*}
e^{\left(a_{1} i+a_{2} j+a_{3} k\right) \pi}+1=0 . \tag{3}
\end{equation*}
$$

- For octonions, with the basis elements $\left\{i_{1}, i_{2}, \cdots, i_{7}\right\}$ and real numbers a_{n} such that $a_{1}^{2}+a_{2}^{2}+\cdots+a_{7}^{2}=1$,

$$
\begin{equation*}
e^{\left(\sum_{k=1}^{7} a_{k} i_{k}\right) \pi}+1=0 . \tag{4}
\end{equation*}
$$

In this article, motivated by Euler's identity and its generalizations, we give relations between the base of natural logarithms (e), the ratio of the circumference of a circle to its diameter (π), and the golden ratios $\left(\Phi_{p}\right)$ of the additive p-sequences.

2 Additive p-sequences

An additive p-sequence [5] is a natural extension of the Fibonacci sequence [6-8] in which every term is the sum of p previous terms given $p \geq 1$ initial values called seeds $\left(s_{0}, s_{1}, \cdots, s_{p-1}\right)$ such that $t_{0}=s_{0}, t_{1}=s_{1}, \cdots, t_{p-1}=s_{p-1}$, and

$$
\begin{equation*}
t_{n}(p):=t_{n-1}(p)+t_{n-2}(p)+\cdots+t_{n-p}(p)=\sum_{k=n-p}^{n-1} t_{k}(p) . \tag{5}
\end{equation*}
$$

This can be equivalently rewritten as

$$
\begin{equation*}
t_{n+p}(p):=t_{n+p-1}(p)+t_{n+p-2}(p)+\cdots+t_{n}(p) . \tag{6}
\end{equation*}
$$

Varying the values of seeds, it is possible to construct an infinite number of p-sequences.
By definition of $t_{n}(p)$, we have $t_{n+1}(p)>t_{n}(p)$ and $t_{n+1}(p)=2 t_{n}(p)-t_{n-p}(p)<$ $2 t_{n}(p)$ [5]. Hence

$$
\begin{equation*}
1<\Phi_{p}<2 . \tag{7}
\end{equation*}
$$

The limiting ratio value $\left(\lim _{n \rightarrow \infty} \frac{t_{n+1}(p)}{t_{n}(p)}\right)$ of different p-sequences are different, say Φ_{p}, and tends toward 2 for p tending toward infinity. That is,

$$
\begin{equation*}
\Phi_{p}=\lim _{n \rightarrow \infty} \frac{t_{n+1}(p)}{t_{n}(p)} \xrightarrow{p \rightarrow \infty} 2 . \tag{8}
\end{equation*}
$$

$\stackrel{A}{4} \quad \mathbf{P} \quad \mathbf{b} \xrightarrow{B}$

Figure 1: Division of a line into 2 segments.

$3 p$-golden ratio

The golden ratio $[9,10]$ arises when we consider division of a line segment $A B$ with a point P such that $\frac{B P}{A P}=\frac{A B}{B P}$, where $B P>A P$ (see Fig. 1). Given $A P=a$ and $B P=b$ are two positive numbers, the above problem translates as

$$
\begin{equation*}
\frac{b}{a}=\frac{a+b}{b} . \tag{9}
\end{equation*}
$$

Taking $\frac{b}{a}=x$, the above equation can be rewritten as $x=1+\frac{1}{x}$. This reduces to the characteristic equation

$$
\begin{equation*}
X(x)=x^{2}-x-1=0, \tag{10}
\end{equation*}
$$

whose positive solution is

$$
\begin{equation*}
\Phi=\frac{\sqrt{5}+1}{2}=1.618 \cdots . \tag{11}
\end{equation*}
$$

The golden ratio allegedly appears everywhere: in geometry, math, science, art, architecture, nature, human body, music, painting. However, many hold skeptical views about this [11-15].

We wish to generalize the above case. That is, we consider division of a line segment $A B$ into $p>2$ segments (see Fig. 2) such that $A P_{1}\left(=a_{1}\right)<P_{1} P_{2}\left(=a_{2}\right)<\cdots<$ $B P_{p-1}\left(=a_{p}\right)$ are p positive real numbers. We now demand that

$$
\begin{align*}
& \frac{P_{1} P_{2}}{A P_{1}}=\frac{P_{2} P_{3}}{P_{1} P_{2}}=\cdots=\frac{A B}{P_{p-1} B} \tag{12}\\
& \Leftrightarrow \frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\cdots=\frac{\sum_{k=1}^{p} a_{k}}{a_{p}} .
\end{align*}
$$

If a unique positive value, say Φ_{p}, exists for the above ratio, we call it the p-golden ratio.
From Eq. (12) follows naturally the p-degree algebraic equation whose positive solution gives the value of Φ_{p} [5]:

$$
\begin{equation*}
X_{p}(x) \equiv x^{p}-\sum_{k=1}^{p-1} x^{k}-1=0 \tag{13}
\end{equation*}
$$

Note that $X_{p}(0)=-1$ for all p and $X_{p}(1)=-(p-1)$. Eq. (13) is the characteristic equation for Φ_{p}. Interestingly, Φ_{p} coincides with the limiting ratio value of the p-sequence [5].

Figure 2: Division of a line into p segments.

4 Relations between e, π and Φ_{p}

In this section, firstly we present the relations between e, π and the 2 -golden ratio. The Fibonacci sequence $\{0,1,1,2,3,5,8,13,21,34,55, \cdots\}$ is a 2 -sequence because it is generated by the sum of two previous terms. The positive real solution of the characteristic equation $x^{2}-x-1=0$ yields the 2 -golden ratio,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{t_{n+1}(2)}{t_{n}(2)}=\Phi_{2}=\frac{\sqrt{5}+1}{2} \tag{14}
\end{equation*}
$$

Following relations hold between e, π and $\Phi_{2} \equiv \Phi$.

$$
\begin{align*}
& e \approx \Phi^{2}+0.1=2.7180339887, \tag{15}\\
& e \approx \Phi^{2}+\frac{50000}{308253} \frac{1}{\Phi}=2.7182818353, \tag{16}\\
& \Phi=2 \cos 36^{\circ}=e^{i \pi / 5}+e^{-i \pi / 5} \tag{17}\\
& \Phi(\Phi-1)=e^{i 2 \pi}=-e^{i \pi}=-i e^{i \pi / 2} \tag{18}\\
& \Phi\left(e^{i \pi}+\Phi\right)=1 \tag{19}
\end{align*}
$$

A transcendental expression cannot be equated with an algebraic expression. Eq. (15) and Eq. (16), however, give the polynomial approximations of e in terms of Φ. Because Φ_{p} is a solution of Eq. (13), we have

$$
\begin{align*}
\Phi_{p}^{p} & =\Phi_{p}^{p-1}+\Phi_{p}^{p-2}+\cdots+\Phi_{p}+1=\sum_{k=0}^{p-1} \Phi_{p}^{k}, \tag{20}\\
\Phi_{p}^{p+1} & =\Phi_{p}^{p}+\Phi_{p}^{p-1}+\cdots+\Phi_{p}^{2}+\Phi_{p}, \\
& =2 \Phi_{p}^{p}-1 . \tag{21}
\end{align*}
$$

Using these equations, we have the following relations between e, π and $\Phi_{p}(p \geq 3)$.

$$
\begin{equation*}
e^{i \pi}+\Phi_{p}^{p}-\sum_{k=1}^{p-1} \Phi_{p}^{k}=0 \tag{22}
\end{equation*}
$$

Eq. (22) has been obtained using the Euler's identity.

5 Conclusion

In summary, inspired by Euler's identity, we have provided several relations between the base of natural logarithms (e), the ratio of the circumference of a circle to its diameter (π), and the golden ratios (Φ_{p}) of the additive p-sequences.

Acknowledgements

AK would like to thank all the reviewers for their useful comments which helped to improve the manuscript.

References

[1] P. Nahin, Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills, Princeton University Press, 2011.
[2] D. Stipp, A Most Elegant Equation: Euler's formula and the beauty of mathematics, Basic Books, 2017.
[3] R. Wilson, Euler's Pioneering Equation: The most beautiful theorem in mathematics, Oxford University Press, 2018.
[4] Y.-B. Jia, Quaternions, 2022. https://faculty.sites.iastate.edu/jia/files/inline-files/quaternion.pdf
[5] A. Kumar, Additive Sequences, Sums, Golden Ratios and Determinantal Identities, arXiv:2109.09501 (2021).
[6] N. N. Vorobyov, The Fibonacci Numbers, D. C. Health and company, Boston, 1963.
[7] V. E. Hoggatt, Fibonacci and Lucas Numbers, Houghton-Mifflin Company, Boston, 1969.
[8] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, New York, 2001.
[9] H. E. Huntley, The Divine Proportion: A Study in Mathematical Beauty, Dover Publications, Inc., 1970.
[10] M. Livio, The Golden Ratio: The Story of Phi, Broadway Books, New York, 2002.
[11] K. Devlin, Good stories, pity they're not true.
[12] C. Falbo, The golden ratio: a contrary viewpoint.
[13] S. J. Gould, The Mismeasure of Man, W. W. Norton \& Company, 1981.
[14] G. O. Markowsky, Misconceptions about the golden ratio, The College Mathematics Journal 23 (1992), 2-19.
[15] M. Spira, On the golden ratio, 12th International Congress on Mathematical Education, COEX, Seoul, Korea, 2012.

