Relations between e, π and golden ratios

Asutosh Kumar
P. G. Department of Physics, Gaya College, Magadh University, Rampur, Gaya 823001, India
Vaidic and Modern Physics Research Centre, Bhagal Bhim, Bhinmal, Jalore 343029, India
(asutoshk.phys@gmail.com)

Abstract

We write out relations between the base of natural logarithms (e), the ratio of the circumference of a circle to its diameter (π), and the golden ratios $\left(\Phi_{p}\right)$ of the additive p-sequences. An additive p-sequence is a natural extension of the Fibonacci sequence in which every term is the sum of p previous terms given $p \geq 1$ initial values called seeds.

1 Introduction

Euler's identity (or Euler's equation) is given as

$$
\begin{equation*}
e^{i \pi}+1=0, \tag{1}
\end{equation*}
$$

where $e=2.718 \cdots$ is the base of natural logarithms, $i:=\sqrt{-1}$ is the imaginary unit of complex numbers, and $\pi=3.1415 \cdots$ is the ratio of the circumference of a circle to its diameter. It is a special case of Euler's formula, $e^{i \theta}=\cos \theta+i \sin \theta$, for $\theta=\pi$. This expresses a deep mathematical beauty [1-3] as it involves three of the basic arithmetic operations: addition/subtraction, multiplication/division, and exponentiation/logarithm, and five fundamental mathematical constants: 0 (the additive identity), 1 (the multiplicative identity), e (Euler's number), i (the imaginary unit), and π (the fundamental circle constant).

As Euler's identity is an example of mathematical elegance, further generalizations of similar-type have been discovered.

- The $n^{\text {th }}$ roots of unity $(n>1)$ add up to zero.

$$
\begin{equation*}
\sum_{k=0}^{n-1} e^{2 i \pi \frac{k}{n}}=0 \tag{2}
\end{equation*}
$$

It yields Euler's identity (1) when $n=2$.

- For quaternions, with the basis elements $\{i, j, k\}$ and real numbers a_{n} such that $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=1$,

$$
\begin{equation*}
e^{\left(a_{1} i+a_{2} j+a_{3} k\right) \pi}+1=0 . \tag{3}
\end{equation*}
$$

- For octonians, with the basis elements $\left\{i_{1}, i_{2}, \cdots, i_{7}\right\}$ and real numbers a_{n} such that $a_{1}^{2}+a_{2}^{2}+\cdots+a_{7}^{2}=1$,

$$
\begin{equation*}
e^{\left(\sum_{k=1}^{7} a_{k} i_{k}\right) \pi}+1=0 . \tag{4}
\end{equation*}
$$

In this article, motivated by Euler's identity and its generalizations, we give relations between the base of natural logarithms (e), the ratio of the circumference of a circle to its diameter (π), and the golden ratios $\left(\Phi_{p}\right)$ of the additive p-sequences.

2 Additive p-sequences and golden ratios

An additive p-sequence [4] is a natural extension of the Fibonacci sequence [5-7] in which every term is the sum of p previous terms given $p \geq 1$ initial values called seeds $\left(s_{0}, s_{1}, \cdots, s_{p-1}\right)$ such that $t_{0}=s_{0}, t_{1}=s_{1}, \cdots, t_{p-1}=s_{p-1}$, and

$$
\begin{equation*}
t_{n}(p):=t_{n-1}(p)+t_{n-2}(p)+\cdots+t_{n-p}(p)=\sum_{k=n-p}^{n-1} t_{k}(p) . \tag{5}
\end{equation*}
$$

This can be equivalently rewritten as

$$
\begin{equation*}
t_{n+p}(p):=t_{n+p-1}(p)+t_{n+p-2}(p)+\cdots+t_{n}(p) . \tag{6}
\end{equation*}
$$

Varying the values of seeds, it is possible to construct an infinite number of p-sequences.
For an arbitrary additive p-sequence, the limiting ratio value (i.e., the ratio of successive numbers) of every p-sequence approaches a constant, say Φ_{p}. That is,

$$
\begin{equation*}
\Phi_{p}=\lim _{n \rightarrow \infty} \frac{t_{n+1}(p)}{t_{n}(p)} \tag{7}
\end{equation*}
$$

By definition of $t_{n}(p)$, we have $t_{n+1}(p)>t_{n}(p)$ and $t_{n+1}(p)=2 t_{n}(p)-t_{n-p}(p)<$ $2 t_{n}(p)$ [4]. Hence

$$
\begin{equation*}
1<\Phi_{p}<2 \tag{8}
\end{equation*}
$$

Suppose $a_{1}<a_{2}<\cdots<a_{p}$ are $p \geq 2$ positive real numbers. We define the p-golden ratio as [4]

$$
\begin{equation*}
\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\cdots=\frac{\sum_{k=1}^{p} a_{k}}{a_{p}}\left(=\Phi_{p}\right) . \tag{9}
\end{equation*}
$$

From Eq. (9) follows naturally the p-degree algebraic equation whose positive solution gives the value of Φ_{p} [4]:

$$
\begin{equation*}
X_{p}(x) \equiv x^{p}-\sum_{k=1}^{p-1} x^{k}-1=0 \tag{10}
\end{equation*}
$$

Note that $X_{p}(0)=-1$ for all p and $X_{p}(1)=-(p-1)$. Eq. (10) is the characteristic equation for Φ_{p}. Actually, $\Phi_{p}=\lim _{n \rightarrow \infty} \frac{t_{n+1}(p)}{t_{n}(p)}$ is the p-golden ratio.

The golden ratio is regarded a divine number [8, 9], and it allegedly appears everywhere: in geometry, math, science, art, architecture, nature, human body, music, painting.

3 Relations between e, π and Φ_{p}

In this section, firstly we present the relations between e, π and the 2 -golden ratio. The Fibonacci sequence $\{0,1,1,2,3,5,8,13,21,34,55, \cdots\}$ is a 2 -sequence because it is generated by the sum of two previous terms. The positive real solution of the characteristic equation $x^{2}-x-1=0$ yields the 2 -golden ratio,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{t_{n+1}(2)}{t_{n}(2)}=\Phi_{2}=\frac{\sqrt{5}+1}{2}=1.618 \tag{11}
\end{equation*}
$$

Following relations hold between e, π and $\Phi_{2} \equiv \Phi$.

$$
\begin{align*}
& 10 e=10 \Phi^{2}+1 \tag{12}\\
& \Phi=2 \cos 36^{\circ}=e^{i \pi / 5}+e^{-i \pi / 5} \tag{13}\\
& \Phi(\Phi-1)=e^{i 2 \pi}=-i e^{i \pi / 2} \tag{14}\\
& \Phi^{2}+e^{i \pi}=\Phi \tag{15}\\
& \Phi\left(e^{i \pi}+\Phi\right)=1 \tag{16}\\
& i \pi=\ln (-1)=\ln \left(\frac{1}{\Phi}-\Phi\right) \tag{17}
\end{align*}
$$

Because Φ_{p} is a solution of Eq. (10), we have

$$
\begin{align*}
\Phi_{p}^{p} & =\Phi_{p}^{p-1}+\Phi_{p}^{p-2}+\cdots+\Phi_{p}+1=\sum_{k=0}^{p-1} \Phi_{p}^{k}, \tag{18}\\
\Phi_{p}^{p+1} & =\Phi_{p}^{p}+\Phi_{p}^{p-1}+\cdots+\Phi_{p}^{2}+\Phi_{p}, \\
& =2 \Phi_{p}^{p}-1 . \tag{19}
\end{align*}
$$

Using these equations, we have the following relations between e, π and $\Phi_{p}(p \geq 3)$.

$$
\begin{align*}
& e^{i \pi}+\Phi_{p}^{p}-\sum_{k=1}^{p-1} \Phi_{p}^{k}=0 \tag{20}\\
& e^{i 2 \pi}+\Phi_{p}^{p+1}-2 \Phi_{p}^{p}=0 . \tag{21}
\end{align*}
$$

4 Conclusion

In summary, inspired by Euler's identity, we have provided several relations between the base of natural logarithms (e), the ratio of the circumference of a circle to its diameter (π), and the golden ratios (Φ_{p}) of the additive p-sequences.

References

[1] P. Nahin, Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills, Princeton University Press, 2011.
[2] D. Stipp, A Most Elegant Equation: Euler's formula and the beauty of mathematics, Basic Books, 2017.
[3] R. Wilson, Euler's Pioneering Equation: The most beautiful theorem in mathematics, Oxford University Press, 2018.
[4] A. Kumar, Additive Sequences, Sums, Golden Ratios and Determinantal Identities, arXiv:2109.09501 (2021).
[5] N. N. Vorobyov, The Fibonacci Numbers, D. C. Health and company, Boston, 1963.
[6] V. E. Hoggatt, Fibonacci and Lucas Numbers, Houghton-Mifflin Company, Boston, 1969.
[7] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, New York, 2001.
[8] H. E. Huntley, The Divine Proportion: A Study in Mathematical Beauty, Dover Publications, Inc., 1970.
[9] M. Livio, The Golden Ratio: The Story of Phi, Broadway Books, New York, 2002.

