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Abstract. We write out relations between the base of natural logarithms (e), the
ratio of the circumference of a circle to its diameter (π), and the golden ratios (Φp) of
the additive p-sequences. An additive p-sequence is a natural extension of the Fibonacci
sequence in which every term is the sum of p previous terms given p ≥ 1 initial values
called seeds.

1 Introduction
Euler’s identity (or Euler’s equation) is given as

eiπ + 1 = 0, (1)

where e = 2.718 · · · is the base of natural logarithms, i :=
√
−1 is the imaginary unit

of complex numbers, and π = 3.1415 · · · is the ratio of the circumference of a circle to
its diameter. It is a special case of Euler’s formula, eiθ = cos θ+ i sin θ, for θ = π. This
expresses a deep mathematical beauty [1–3] as it involves three of the basic arithmetic
operations: addition/subtraction, multiplication/division, and exponentiation/logarithm,
and five fundamental mathematical constants: 0 (the additive identity), 1 (the multi-
plicative identity), e (Euler’s number), i (the imaginary unit), and π (the fundamental
circle constant).

As Euler’s identity is an example of mathematical elegance, further generalizations
of similar-type have been discovered.

• The nth roots of unity (n > 1) add up to zero.

n−1∑
k=0

e2iπ
k
n = 0. (2)

It yields Euler’s identity (1) when n = 2.
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• For quaternions, with the basis elements {i, j, k} and real numbers an such that
a21 + a22 + a23 = 1,

e(a1i+a2j+a3k)π + 1 = 0. (3)

• For octonians, with the basis elements {i1, i2, · · · , i7} and real numbers an such
that a21 + a22 + · · ·+ a27 = 1,

e(
∑7

k=1 akik)π + 1 = 0. (4)

In this article, motivated by Euler’s identity and its generalizations, we give relations
between the base of natural logarithms (e), the ratio of the circumference of a circle to
its diameter (π), and the golden ratios (Φp) of the additive p-sequences.

2 Additive p-sequences and golden ratios
An additive p-sequence [4] is a natural extension of the Fibonacci sequence [5–7] in
which every term is the sum of p previous terms given p ≥ 1 initial values called seeds
(s0, s1, · · · , sp−1) such that t0 = s0, t1 = s1, · · · , tp−1 = sp−1, and

tn(p) := tn−1(p) + tn−2(p) + · · ·+ tn−p(p) =
n−1∑

k=n−p

tk(p). (5)

This can be equivalently rewritten as

tn+p(p) := tn+p−1(p) + tn+p−2(p) + · · ·+ tn(p). (6)

Varying the values of seeds, it is possible to construct an infinite number of p-sequences.
For an arbitrary additive p-sequence, the limiting ratio value (i.e., the ratio of suc-

cessive numbers) of every p-sequence approaches a constant, say Φp. That is,

Φp = lim
n→∞

tn+1(p)

tn(p)
. (7)

By definition of tn(p), we have tn+1(p) > tn(p) and tn+1(p) = 2tn(p)− tn−p(p) <
2tn(p) [4]. Hence

1 < Φp < 2. (8)

Suppose a1 < a2 < · · · < ap are p ≥ 2 positive real numbers. We define the
p-golden ratio as [4]

a2
a1

=
a3
a2

= · · · =
∑p

k=1 ak
ap

(= Φp). (9)
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From Eq. (9) follows naturally the p-degree algebraic equation whose positive solu-
tion gives the value of Φp [4]:

Xp(x) ≡ xp −
p−1∑
k=1

xk − 1 = 0. (10)

Note that Xp(0) = −1 for all p and Xp(1) = −(p − 1). Eq. (10) is the characteristic
equation for Φp. Actually, Φp = limn→∞

tn+1(p)
tn(p)

is the p-golden ratio.
The golden ratio is regarded a divine number [8, 9], and it allegedly appears ev-

erywhere: in geometry, math, science, art, architecture, nature, human body, music,
painting.

3 Relations between e, π and Φp

In this section, firstly we present the relations between e, π and the 2-golden ratio.
The Fibonacci sequence {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, · · · } is a 2-sequence because
it is generated by the sum of two previous terms. The positive real solution of the
characteristic equation x2 − x− 1 = 0 yields the 2-golden ratio,

lim
n→∞

tn+1(2)

tn(2)
= Φ2 =

√
5 + 1

2
= 1.618. (11)

Following relations hold between e, π and Φ2 ≡ Φ.

10e = 10Φ2 + 1, (12)
Φ = 2 cos 36◦ = eiπ/5 + e−iπ/5, (13)
Φ(Φ− 1) = ei2π = −ieiπ/2, (14)
Φ2 + eiπ = Φ, (15)
Φ(eiπ + Φ) = 1, (16)

iπ = ln(−1) = ln

(
1

Φ
− Φ

)
. (17)

Because Φp is a solution of Eq. (10), we have

Φp
p = Φp−1

p + Φp−2
p + · · ·+ Φp + 1 =

p−1∑
k=0

Φk
p, (18)

Φp+1
p = Φp

p + Φp−1
p + · · ·+ Φ2

p + Φp,

= 2Φp
p − 1. (19)
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Using these equations, we have the following relations between e, π and Φp (p ≥ 3).

eiπ + Φp
p −

p−1∑
k=1

Φk
p = 0, (20)

ei2π + Φp+1
p − 2Φp

p = 0. (21)

4 Conclusion
In summary, inspired by Euler’s identity, we have provided several relations between the
base of natural logarithms (e), the ratio of the circumference of a circle to its diameter
(π), and the golden ratios (Φp) of the additive p-sequences.
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