
ON THE TWIN PRIME CONJECTURE

B. GENSEL

Abstract. Every prime number p ≥ 5 has the form 6x−1 or 6x+1. We call x

the generator of p. Twin primes are distinguished by a common generator

for each pair. Therefore it makes sense to search for the Twin Primes on the
level of their generators. This paper presents a new approach to prove the

Twin Prime Conjecture by a method to extract all Twin Primes on the

level of the Twin Prime Generators. We define the ωpn–numbers x as numbers
for that holds that 6x−1 and 6x+1 are coprime to the primes 5, 7, . . . , pn. By

dint of the average size δ̄(pn) of the ωpn–gaps we can prove the Twin Prime

Conjecture..

1. Introduction

The question on the infinity of the twin primes keeps busy many mathematicians
for a long time. 1919 V. Brun [3] had proved that the series of the inverted twin
primes converges while he had tried to prove the Twin Prime Conjecture. Several
authors worked on bounds for the length of prime gaps (see f.i. [4, 5, 6]). In 2008 B.
Green and T. Tao [7] succeeded in proving that there are arbitrarily long arithmetic
progressions containing only prime numbers. 2014 Y. Zhang [8] obtained a great
attention with his proof that there are infinitely many consecutive primes with a
gap of 70, 000, 000 at most. With the project ”PolyMath8”, in particular forced by
T. Tao [9], this bound could be lessened down to 246 respectively to 12 assuming
the validity of the Elliott–Halberstam Conjecture [10].

In [11] an attempt to prove the Twin Prime Conjecture only by elementary
instruments is shown. Another approach as in the most works on this topic is
presented there. The looking for twin primes is transfered to the level of their
generators because each twin prime has a common generator. However the proof
based on a vague assumption over the distribution of the ωp–numbers. With this
new paper this gap will be closed. For a better understanding some definitions,
statements and results from [11] are repeated in the next two sections.

2. Twin Prime Generators

It is well known that every prime number p ≥ 5 has the form 6x− 1 or 6x+ 1.
We will call x the generator of p. Twin primes are distinguished by a common
generator for each pair.
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Definition 2.1. Let

N be the set of the positve integers,

P the set of the prime numbers, P∗ primes ≥ 5,

P− = {p ∈ P∗ | p ≡ −1(mod 6)}, P+ = {p ∈ P∗ | p ≡ +1(mod 6)}

and

κ(n) :=

⌊
n+ 1

6

⌋
for n ∈ N (2.1)

the generator function of the pair (6κ(n)− 1, 6κ(n) + 1). If a pair (6x− 1, 6x+ 1)
is a twin prime then we call x as a twin prime generator and

G := {x ∈ N | 6x− 1 ∈ P−, 6x+ 1 ∈ P+}

is the set of all twin prime generators. Hence the pair (5, 7) is the least twin prime
in our consideration.

In order to transfer the searching for twin primes to the level of their generators
we need a criterion for checking a natural number to be a twin prime generator.

Theorem 2.2. A number x is a twin prime generator, a member of G, if and
only if there is no p ∈ P∗ with p < 6x − 1 that one of the following congruences
fulfills:

x ≡ −κ(p)(mod p) (2.2)

x ≡ +κ(p)(mod p) (2.3)

Proof. At first we assume that there is a prime p ∈ P∗ with p < 6x − 1 such that
(2.2) or (2.3) is valid. There are two cases.

(1) p ∈ P− , what means p = 6κ(p)− 1:
If (2.2) is true then there is an n ∈ N with

x = −κ(p) + n · (6κ(p)− 1)

6x = −6κ(p) + 6n · (6κ(p)− 1)

6x+ 1 = −6κ(p) + 6n · (6κ(p)− 1) + 1

= (6n− 1)(6κ(p)− 1)

= (6n− 1) · p
=⇒ 6x+ 1 ≡ 0(mod p) =⇒ x /∈ G

For (2.3) the proof will be done with 6x− 1:

6x− 1 = 6κ(p) + 6n · (6κ(p)− 1)− 1

= (6n+ 1)(6κ(p)− 1)

= (6n+ 1) · p
=⇒ 6x− 1 ≡ 0(mod p) =⇒ x /∈ G

(2) p ∈ P+, what means p = 6κ(p) + 1:
We go the same way with (2.2) and 6x− 1 as well as (2.3) and 6x+ 1:

6x− 1 = (6n− 1)(6κ(p) + 1) =⇒ 6x− 1 ≡ 0(mod p)

6x+ 1 = (6n+ 1)(6κ(p) + 1) =⇒ 6x+ 1 ≡ 0(mod p)
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With these it’s shown that x /∈ G if the congruences (2.2) or (2.3) are valid. They
cannot be true both because they exclude each other.

If on the other hand x /∈ G, then 6x− 1 or 6x+ 1 is no prime. Let be 6x− 1 ≡
0(mod p) for any p ∈ P−. Then we have

6x− 1 ≡ 0(mod p) ≡ p(mod p)

≡ (6κ(p)− 1)(mod p)

6x ≡ 6κ(p)(mod p)

x ≡ κ(p)(mod p) =⇒ (2.3).

For any p ∈ P+ we have

6x− 1 ≡ −p(mod p)

≡ −(6κ(p) + 1)(mod p)

6x ≡ −6κ(p)(mod p)

x ≡ −κ(p)(mod p) =⇒ (2.2).

The other both cases we can handle in the same way. Therefore either (2.2) or (2.3)
is valid if x /∈ G. �

If we consider that the least proper divisor of a number 6x + 1 is less or equal
to
√

6x+ 1 then p in the congruences (2.2) and (2.3) can be limited by

p̂(x) = max(p ∈ P∗ | p ≤
√

6x+ 1).

Remark 2.3. Henceforth we will use the letter p for a general prime number and
pn if we describe an element of a sequence of primes.

With pn as the n-the prime number1 and π(z) as the number of primes ≤ z we
have with

x ≡ −κ(pn)(mod pn) or x ≡ +κ(pn)(mod pn) (2.4)

for 3 ≤ n ≤ π (p̂(x)) a provable system of criteria to exclude all numbers x ≥ 4
being no twin prime generators. Since the modules are primes the criteria are
independent among each other.

Hence we can square the congruences (2.4) and get

x2 ≡ κ(pn)2(mod pn) for 3 ≤ n ≤ π (p̂(x)) . (2.5)

This results in a system of indicator functions ψ(x, pn) for that holds for 3 ≤
n ≤ π (p̂(x))

x2 − κ(pn)2 ≡ ψ(x, pn)(mod pn) respectively

ψ(x, pn) =
(
x2 − κ(pn)2

)
Mod pn. (2.6)

For the sake of completeness we define ψ(x, pn) = 0 for x ≤ κ(pn).
Obviously holds that if ψ(x, p) = 0 for any p ≤ p̂(x) then x cannot be a twin

prime generator. 2 Due to modulo the indicator function ψ(x, p) is periodical in x

1It is p1 = 2
2We consider only cases x > κ(pn) in the sequel.
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with a period length of p. With the indicator functions for all modules p3, . . . , pn
we build the aggregate indicator functions

Ψ(x, pn) =

n∏
i=3

ψ(x, pi)

pi

and (2.7)

Ψ̂(x) = Ψ(x, p̂(x)).

Because the co-domain of ψ(x, p) consists of integers between 0 and p − 1, the

aggregate functions Ψ(x, p) and Ψ̂(x) have rational values between 0 and < 1.

Definition 2.4. Let be

ξn := min(x ∈ N | p̂(x) = pn). (2.8)

It is the first integer x for that the modul pn could be a prime factor of 6x ± 1.
Therefore we denote it as the origin of the modul pn.

Up from ξn in every ψ–period there are just pn − 2 positions with ψ(x, pn) > 0
and two positions with ψ(x, pn) = 0, once if (2.2) and on the other hand if (2.3)
holds. Obviously the distance between these both positions is 2κ(pn) respectively
4κ(pn)± 1 since the period length is 6κ(pn)± 1.

Let be pn ≤ p̂(x) ≤
√

6x+ 1 and therefore p2n ≤ 6x+ 1. Then
p2n−1

6 is the least
number that meets this relation. Comparing with (2.8) we get

ξn =
p2n − 1

6
. (2.9)

It is easy to prove that for every integer n ≥ 3 holds that ξn is an integer divisible
by 4.

Lemma 2.5. At the origin ξn cannot be a twin prime generator since we have
ψ(ξn, pn) = 0.

Proof. We substitute pn by 6κ(pn)± 1. With this and (2.9) holds

ξn =
(6κ(pn)± 1)

2 − 1

6

=
6κ(pn) (6κ(pn)± 2)

6
= κ(pn) (6κ(pn)± 1)± κ(pn)

= κ(pn) · pn ± κ(pn)

≡ ±κ(pn)(mod pn) =⇒ ψ(ξn, pn) = 0.

�

In the proof we have seen that for every prime p holds that p2 − 1 is an integer
divisible by 6.

For every x ≥ ξn the local position relative to the period start 3 can be deter-
mined by the position function τ(x, pn):

x+ κ(pn) ≡ τ(x, pn)(mod pn) respectively

τ(x, pn) = (x+ κ(pn)) Mod pn. (2.10)

3For pn ∈ P− the period start is ξn and else it is ξn − 2κ(pn).
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Hence the co-domain of the position function τ(x, p) are the integers 0, 1, . . . , p− 1
and it has in x a period length of p. Between the indicator function ψ(x, p) and
the position function τ(x, p) there is the following relationship:

ψ(x, p) = τ(x, p) · (x− κ(p)) Mod p

= τ(x, p) · (τ(x, p)− 2κ(p)) Mod p. (2.11)

Obviously holds ψ(x, p) = 0 if and only if τ(x, p) = 0 or τ(x, p) = 2κ(p). From
(2.10) we see that the values of the position function τ(x, p) consists exactly of the
p values 0, 1, 2, . . . , p − 1. Because the values 0 and 2κ(p) indicate that x cannot
be a twin prime generator (see Theorem 2.2) we will call them as τ–bad values and
the others as τ–good values. Hence there are two τ–bad values and p − 2 τ–good
values for each modul p.

3. The ωpn–numbers

For every natural number x in the interval

An := {x ∈ N | ξn ≤ x < ξn+1} (3.1)

p̂(x) persists constant on the value pn. The length of this interval will be denoted
as dn. It is depending on the distance between successive primes. Since they can
only be even, we have with a = 2, 4, 6, . . .

dn =
(pn + a)2 − 1

6
− p2n − 1

6

=
2apn + a2

6

=
a

3
(pn +

a

2
)

≥ 2

3
(pn + 1). (3.2)

On the other hand we obtain because of pn+1 < 2pn (see [2], p. 188)

dn =
p2n+1 − 1

6
− p2n − 1

6

=
p2n+1 − p2n

6

=
(pn+1 + pn)(pn+1 − pn)

6

<
3pn · pn

6
=
p2n
2
.

And since dn is an integer and p2n is odd it holds

dn ≤
p2n − 1

2
= 3ξn and hence (3.3)

ξn+1 ≤ 4ξn. (3.4)

The congruences in (2.10)

x+ κ(pi) ≡ τ(x, pi)(mod pi), 3 ≤ i ≤ n (3.5)
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fulfill the requirements of the Chinese Remainder Theorem (see [1], p. 89). There-
fore it is modulo 5 · 7 · . . . · pn uniquely resolvable. With

pn#5 :=

n∏
i=3

pi = 5 · 7 · . . . · pn (3.6)

it’s (mod pn#5) 4 uniquely resolvable. Therefore the aggregate indicator function
Ψ(x, pn) has the period length pn#5 and it holds:

Ψ(x+ a · pn#5, pn) = Ψ(x, pn) | a ∈ N.

Definition 3.1. A positive integer x will be called as an ωpn–number if both
6x− 1 and 6x+ 1 are coprime 5 to pn#5. Then is Ψ(x, pn) > 0.

Corollary 3.2. Because of the periodicity of the aggregate indicator function Ψ(x, pn)
in x there are infinitely many ωpn–numbers.

Definition 3.3. Let be

Pn := {x ∈ N | ξn ≤ x < ξn + pn#5}
the interval of one period of the aggregate indicator function Ψ(x, pn). We’ll denote
it henceforth as period section. Evidently is An ⊂ Pn for all n ≥ 3.

Proposition 3.4. The period section Pn contains

φ(pn) :=

n∏
k=3

(pk − 2) (3.7)

ωpn–numbers.

Proof. Due to Definition 3.3 the period section Pn contains pn#5 successive natural
numbers ξn, ξn + 1, . . . , ξn + pn#5 − 1. Each sequence of pk successive members of
them for 3 ≤ k ≤ n contains due to (2.11) two members x∓ with the two τ–bad
values

τ(x−, pk) = 0 and τ(x+, pk) = 2κ(pk)

and pk − 2 members y with the pk − 2 τ–good values. Each ωpn–number y ∈ Pn is
represented exactly by one m–tuple with m = n− 2

(τ3, τ4, . . . , τn),

where all values τk = τ(y, pk) are τ–good values and since by virtue of (2.11) for
only τ–good values holds

Ψ(y, pn) =

n∏
k=3

τk(τk − 2κ(pk) Mod pk
pk

> 0.

Because the primes 5, 7, . . . , pn are independent, all the m–tuples are different and
their number is

n∏
k=3

(pk − 2).

4It is pn#5 = pn#
6

, with the primorial pn#.
5Then is gcd(36x2 − 1, pn#5) = 1.
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Since each such m–tuple represents exactly one different ωpn–number in Pn it holds

φ(pn) =

n∏
k=3

(pk − 2).

�

Conclusion 3.5. Let x be an ωpn–number as a member of An. Then x is a twin
prime generators because by virtue of Definition 3.1 6x− 1 as well as 6x+ 1 are

prime to 5, 7, . . . , pn and it holds Ψ(x, pn) = Ψ̂(x) > 0.
Vice versa an ωpm–number as member of An by m < n is not necessarily a twin

prime generator.

The ratio between (3.7) and the period length by virtue of (3.6) results in

η(pn) :=
φ(pn)

pn#5
=

n∏
i=3

pi − 2

pi
, (3.8)

as the average density of the ωpn–numbers in Pn. Obviously η(p) is a strictly
monotonic decreasing function.

Proposition 3.6. The average density function η(pn) is double-sided bounded by

3

pn
< η(pn) <

3

log pn
.

Proof.

A) At first we prove the left inequality.
Because all primes > 2 are odd numbers, the count of primes ≤ pn is less
than the count of odd numbers in the same range. All factors of η(pn) are
less than 1. Thus we get with m = pn+1

2

η(pn) =

n∏
k=3

pk − 2

pk
>

m∏
k=3

(2k − 1)− 2

2k − 1

=
3

5
· 5

7
· 7

9
· . . . · pn − 4

pn − 2
· pn − 2

pn

=
3

pn
.

B) It’s well known that (see [1], p. 40 above)

log x <
∏
p≤x

(
1− 1

p

)−1
=

π(x)∏
k=1

(
pk − 1

pk

)−1
.

Therefore is

1

log pn
>

n∏
k=1

pk − 1

pk

=
1

2
· 2

3
·
n∏
k=3

pk − 1

pk
=

1

3
·
n∏
k=3

pk − 1

pk

>
1

3
·
n∏
k=3

pk − 2

pk
=
η(pn)

3
.
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Hence we get for the right inequality η(pn) <
3

log pn
.

With it the proof is completed. �

Corollary 3.7. Since both bounds in Proposition 3.6 go to zero holds

lim
n→∞

η(pn) = 0.

This means that the ωpn–numbers have an asymptotic zero–density. Therefore
the twin prime generators as subset of the ωpn–numbers have an asymptotic zero–
density too. This result is in accordance with the the fact that also the set of the
primes has an asymptotic zero–density.

4. The ωpn–Gaps

Definition 4.1. The inverse of η(pn) means the average distance between two
immediately successive ωpn–numbers in the period section Pn

δ̄(pn) :=
1

η(pn)
, (4.1)

the average size of the so called ωpn–gaps.

Corollary 4.2. From Proposition 3.6 follows

lim
n→∞

δ̄(pn) =∞.

Theorem 4.3. For pn > 200 the square of the average size of the ωpn–gaps is less
than the length of the A-section An

δ̄(pn)2 < dn for pn > 200.

Proof. At first we prove that

u(pn) := pnη(pn)2

is an increasing function by trend. We consider their properties for two cases:

A) pn+1 ≥ pn + 4:

u(pn+1)− u(pn) = η(pn)2
(
pn+1

(pn+1 − 2)2

p2n+1

− pn
)

= η(pn)2
(
pn+1(pn+1 − 4) + 4

pn+1
− pn

)
= η(pn)2

(
pn+1 − 4− pn +

4

pn+1

)
≥ 4η(pn)2

pn+1
> 0.

Hence it holds in this case u(pn+1) > u(pn).
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B) pn+1 = pn + 2:

u(pn+1)− u(pn) = η(pn)2
(
pn+1

(pn+1 − 2)2

p2n+1

− pn
)

and since pn = pn+1 − 2

= pnη(pn)2
(

pn
pn+1

− 1

)
= pnη(pn)2 ·

(
pn − pn+1

pn+1

)
= − 2pn

pn + 2
η(pn)2 < 0.

Hence holds u(pn+1) < u(pn). Now we set u(pn+1) = u(pn) − v(pn) with
the “loss function”

v(pn) :=
2pn
pn + 2

η(pn)2.

At first we’ll look for the behavior of u(pn+2) depending on the prime
distance

a := pn+2 − pn+1 = pn+2 − pn − 2 for a = 4, 6, 10, 12, 16, . . .

With it we get

u(pn+2) = pn+2 · η(pn+2)2

= (pn + a+ 2) · η(pn + a+ 2)2

= (pn + a+ 2) · (pn + a)2

(pn + a+ 2)2
· p2n

(pn + 2)2
· η(pn)2

= u(pn) · (pn + a)2 · pn
(pn + a+ 2)(pn + 2)2

.

We consider the difference between nominator and denominator of the frac-
tion

(pn + a)2 · pn − (pn + a+ 2)(pn + 2)2

= (p2n + 2apn + a2)pn − (pn + a+ 2)(p2n + 4pn + 4)

= p3n + 2ap2n + a2pn − p3n − 4p2n − 4pn − ap2n−
− 4apn − 4a− 2p2n − 8pn − 8

= (a− 6)p2n + (a2 − 4a− 12)pn − 4a− 8

and get for

a = 4 → −2p2 − 12p− 24 < 0

a = 6 → −32 < 0

a = 10 → 4p2 + 48p− 48 > 0 | p ≥ 2.

This means that u(pn+2) < u(pn) for a = 4, 6 and u(pn+2) > u(pn) for
a ≥ 10.
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With an analogous procedure we can demonstrate even for the case
pn+3 = pn+2 + 2 that also holds

u(pn+3) > u(pn)

if a ≥ 10. Also for the case a = 4 and pn+3 = pn + 2 + a+ b with b > 2. It
seems to be important to emphasize that all these results hold for the case
pn+1 − pn = 2.

The loss function v(pn) is strictly monotonic decreasing, because for two
twin primes pn, pn + 2 und pn + 2 + d, pn + 4 + d with the distance d ≥ 4
holds

v(pn + 2 + d) =
2(pn + 2 + d)

pn + 4 + d
η(pn + 2 + d)2

and since η(p) is a decreasing function

≤ 2

pn + 4 + d
· (pn + d)2

pn + 2 + d
η(pn + 2)2

=
2

pn + 4 + d
· (pn + d)2

pn + 2 + d
· p2n

(pn + 2)2
η(pn)2

= v(pn) · pn
pn + 2

· pn + d

pn + 2 + d
· pn + d

pn + 4 + d
< v(pn).

From twin prime to twin prime the loss function v(pn) monotonicly de-
creases for each twin distance d.

As upshot we see that in the majority of cases u(p) is an increasing func-
tion while the loss function v(p) from twin prime to twin prime decreases.
The function u(p) tends to result in an increasing function.

The greatest twin prime < 200 is (197, 199). For the next prime number 211
holds u(211) > 1.5159 = 3

2 + 0.0159. Since the next prime after 211 follows only
at 223 therefore for no prime pn > 211 is u(pn) < u(211). On the other hand
since v(pn) is monotonicly decreasing, is v(197) < 0.0148 < 0.0159 and all further
v(pn+k) are more less. Therefore we get for pn > 200 with (3.2) and (4.1)

u(pn) = pnη(pn)2 >
3

2
−→ δ̄(pn)2 <

2

3
pn <

2

3
(pn + 1) ≤ dn.

This completes the proof. �

Corollary 4.4. Since u(p) is an increasing function by trend there is always a
prime p and a number cp > 1 such that holds

cp · δ̄(pn)2 < dn for pn > p.

For instance we get for

pn > 1, 277→ 2δ̄(pn)2 < dn,

pn > 25, 561→ 10δ̄(pn)2 < dn,

pn > 77, 291→ 20δ̄(pn)2 < dn or for

pn > 830, 293→ 100δ̄(pn)2 < dn.
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Figure 1. Symmetry in a period section Pn (not to scale)

5. The Distribution of the ωpn–Numbers

5.1. The Symmetry of the ωpn–Numbers. In the period section Pn the element

x(0)n := pn#5

has a particular importance. Because pn#5 is divisible by all primes between 5 and
pn it holds

pn#5 ≡ 0(mod pm) | 3 ≤ m ≤ n, pm ∈ P∗

and hence

x(0)n 6≡ ±κ(pm)(mod pm) | 3 ≤ m ≤ n, pm ∈ P∗.

Hence x
(0)
n is an ωpn–number and it holds

Ψ(pn#5, pn) > 0. (5.1)

Because of ξn < pn#5 < ξn + pn#5 the number x
(0)
n is in the inner of Pn but near

to the end.

Theorem 5.1. The ωpn–numbers are symmetrically distributed around the axis

x
(0)
n

Ψ(x(0)n − a, pn) = Ψ(x(0)n + a, pn)

for any positive integer a < x
(0)
n .

Proof. Since by virtue of (2.7) the aggregate indicator function Ψ(x, pn) consists of
the product of the indicator functions ψ(x, 5), . . . , ψ(x, pn), the ωpn–numbers are

symmetrically arranged around the axis x
(0)
n if and only if holds for m = 3, . . . , n 6

ψ(x(0)n − a, pm) = ψ(x(0)n + a, pm) (5.2)

with any number a < x
(0)
n . From (2.6) we have

ψ(x, pm) =
(
x2 − κ(pm)2

)
Mod pm.

6Unless otherwise specified the use of the variable pm means below pm ∈ P∗ | 3 ≤ m ≤ n.
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With x
(0)
n ± a for x we get

ψ(x(0)n ± a, pm) =
(

(x(0)n ± a)2 − κ(pm)2
)

Mod pm

=
(
x(0)n (x(0)n ± 2a) + a2 − κ(pm)2

)
Mod pm

and since x(0)n ≡ 0(mod pm)

=
(
a2 − κ(pm)2

)
Mod pm. (5.3)

Since ψ(x
(0)
n ± a, pm) result in a common value it follows (5.2). �

Additionally from (5.3) we see that

ψ(x(0)n ± a, pm) = 0 for a = κ(pm).

This means that at these positions there cannot be ωpn–numbers. Around the axis

x
(0)
n there are ωpn–gaps with the length κ(pn) but an ωpn–gap cannot reach over

x
(0)
n .

If we limit our consideration to the period section Pn then there is a section of

symmetry with a length of 2ξn at the end of Pn around on x
(0)
n = pn#5. But in

the remaining of the period section there is symmetry too (see Figure 1). Let

x(1)n :=
pn#5

2
be a rational number as the middle between the integers

x(1−)n :=
pn#5 − 1

2
and x(1+)

n :=
pn#5 + 1

2
. (5.4)

Theorem 5.2. The ωpn–numbers are symmetrically distributed around the axis

x
(1)
n

Ψ(x(1−)n − a, pn) = Ψ(x(1+)
n + a, pn)

for any positive integer a < x
(1)
n .

Proof. Because of the periodicity of the aggregate indicator function we have

Ψ(ξn + a, pn) = Ψ(pn#5 + ξn + a, pn) and because of Theorem 5.1

= Ψ(pn#5 − ξn − a, pn). (5.5)

Therefore there is symmetry around

ξn + a+ pn#5 − ξn − a
2

=
pn#5

2
= x(1)n .

We set x
(1+)
n instead of ξn in (5.5) and get

Ψ
(
x(1+)
n + a, pm

)
= Ψ

(
pn#5 − (x(1+)

n + a), pm

)
= Ψ

(
pn#5 −

pn#5 + 1

2
− a, pm

)
= Ψ

(
pn#5 − 1

2
− a, pm

)
= Ψ

(
x(1−)n − a, pm

)
�
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The section around x
(1)
n has a length of pn#5 − 2ξn. It increases more quickly

than the length 2ξn of the section around x
(0)
n because pn#5 increases more quickly

than ξn.

Corollary 5.3. Since by virtue of Theorems 5.1 and 5.2 the ωpn–numbers are

symmetrically distributed around the axes x
(0)
n = pn#5 as well as x

(1)
n =

pn#5

2
therefore the ωpn–gaps are symmetrically distributed with respect to their sizes and
positions.

Lemma 5.4. At the positions x
(1−)
n and x

(1+)
n (see (5.4)) are ωpn–numbers.

Proof. Since 4 6≡ 0(mod pn#5) we can multiply (2.6) by 4 and have for 3 ≤ m ≤ n

4ψ(x, pm) Mod pm =
(
(2x)2 − (2κ(pm))2

)
Mod pm

and get for x =
pn#5 ± 1

2

4ψ(
pn#5 ± 1

2
, pm) Mod pm =

(
(pn#5 ± 1)2 − 4κ(pm)2

)
Mod pm

=
(
pn#5(pn#5 ± 2) + 1− 4κ(pm)2

)
Mod pm

=
(
1− 4κ(pm)2

)
Mod pm.

Because this never can be zero therefore at the positions x
(1−)
n and x

(1+)
n are ωpn–

numbers. �

Hence no ωpn–gap can reach over the symmetry axis x
(1)
n . Each ωpn–gap has in

Pn always a symmetry partner, each ωpn–gap occurs twice in Pn.

Now we shift the period sections to the left by ξn − 1 and obtain

Gn := Pn − (ξn − 1) = {x ∈ N | 1 ≤ x ≤ pn#5}

Proposition 5.5. The sections Pn and Gn are equivalent with respect to the count
of the ωpn–numbers and their relative positions shifted by ξn − 1.

Proof. Due to the periodicity of the aggregate indicator function Ψ(x, pn) and the
setting ψ(x, pn) = 0 | x ≤ κ(pn) holds for all x | 1 ≤ x ≤ ξn − 1

Ψ(x, pn) = 0 if and only if Ψ(x+ pn#5, pn) = 0

and

Ψ(x, pn) > 0 if and only if Ψ(x+ pn#5, pn) > 0

for each n ≥ 3. Hence the sets

An ={x ∈ N | 1 ≤ x ≤ ξn − 1}
and

Bn ={x ∈ N | pn#5 + 1 ≤ x ≤ pn#5 + ξn − 1}

are equivalent with respect to the relative positions to the ωpn–numbers and have
the same count of them.

On the other hand is

Gn ∩ Pn = {x ∈ N | ξn ≤ x ≤ pn#5}
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and

Gn = An ∪ (Gn ∩ Pn) (5.6)

as well as

Pn = (Gn ∩ Pn) ∪Bn. (5.7)

Hence the sets Pn and Gn are also equivalent with respect to the count of ωpn–
numbers. Due to the equivalence with respect to their relative positions between
An and Bn and the positions of them in (5.6) resp. (5.7) the sets Gn and Pn are
equivalent with respect to the positions of the ωpn–numbers shifted by ξn − 1, the
size of An. This completes the proof. �

From this follows that the ωpn–numbers in Gn are symmetrically distributed

around the axis x
(1)
n . This is the main symmetry of the ωpn–numbers in the first

period.

With the transition pn → pn+1 the symmetry of the ωpn–numbers in their period
sections Pn repeats pn+1–times oneself in Pn+1, disturbed by the

pn+1 · φ(pn)− φ(pn+1) = pn+1 · φ(pn)− φ(pn) · (pn+1 − 2)

= 2φ(pn) (5.8)

excludings since the indicator function ψ(x, pn+1) becomes zero. These excludings
x are characterized by ψ(x, pn) = 0, while ψ(x, pm) > 0 for m < n.

5.2. The Overlapping of the period sections. The intervals An, n ≥ 3 defined
by (3.1) cover the positive integers ≥ 4 gapless and densely. It is

N = {1, 2, 3} ∪
∞⋃
n=3

An and

∞⋂
n=3

An = ∅.

They are the beginnings of the period sections Pn of the ωpn–numbers. Hereafter
let’s say A-sections to the intervals An. Every ωpn–number that lies in an A-
section is a twin prime generator (see Conclusion 3.5). In contrast to the A-sections
the period sections Pn overlap each other very closely. So the period section P9

reachs over 1739 A-sections up to the beginning of the period section P1748 and the
next P10 over 7863 A-sections up to the beginning of P7873.

Lemma 5.6. Each origin ξn cannot be located at the beginning ξm+a·pm#5 of any
period of the aggregate indicator function Ψ(x, pm) for n > m and a ∈ N. Therefore
it holds for n > m

ξn 6≡ ξm(mod pm#5).

Proof. The equation

p2m − 1

6
+ a · pm#5 =

p2n − 1

6
and hence pm(pm + a · pm−1#) = p2n

is for no prime pn > pm solvable since holds gcd(pn, pm) = 1. �
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Vice versa every period section Pn+1 starts always inside of the previous period
section Pn nearby to its origin because (see (3.3) too)

ξn+1 = ξn + dn and

dn <
p2n
2
� pn#5

2
.

Lemma 5.7. Even with modul pm instead of pm#5 holds

ξn 6≡ ξm(mod pm) for all n > m.

Proof. We assume contrarily ξn = ξm + a · pm for any a ∈ N. Analogously to the
proof of Lemma 5.6 we multiply by 6 and get finally

p2n = pm(pm + 6a).

Also this equation is since gcd(pm, pn) = 1 for no pm 6= pn ∈ P solvable. �

Conclusion 5.8. The shown overlapping of the period sections Pn and the sym-
metry and periodicity of the distribution of the ωpn–numbers avoid the formation
of extreme nonuniform distribution of the ωpn–numbers.

6. Proof of the Twin Prime Conjecture

Proof. The proof will be done by contradiction. We assume contrarily that there
is only a finite number of twin primes and therefore only a finite number of twin
prime generators. Let yo be the greatest one. It lies in the A-section Ano with
no = π (p̂(yo)), the beginning of the period section Pno . W.l.o.g. we can assume
that no > 200. In the successive A-sections At with t > no consequently there
cannot be any twin prime generators and hence by virtue of Conclusion 3.5 no
ωpt–numbers. And then we have ωpt–gaps with sizes > dt in all (infinitely many)
A-sections At for t > no.
But because

• the squared average size of the ωpt–gaps δ̄(pt)
2 is less than a fraction of

the size of the A-section At
• and since Conclusion 5.8,

therefore it is not possible to have for all t > no only A-sections At with ωpt–gaps
that all are greater than dt. Hence the assumption is wrong and therefore the

Twin Prime Conjecture is true.

�
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