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Abstract 

   A perfect fluid model with a shell of charge is presented which yields g = 2 for low angular  

velocity.    This model is not intended to represent a classical model of the electron but to show  

that a simple model based on equations consistent with special relativity can yield a value of  

g = 2. 

 

I. Introduction 

   An electron takes on a value of g = 2 as predicted by the Dirac equation and is often taken 

as consequence of quantum mechanics, (for example see Sakauri1).   If we have a matter  

distribution where the mass density is proportional to the charge density then a value of g = 1 is  

found (for example see Singh and Raghuvanshi2 ) and g = 1 is often taken as the classical value  

of g, however different mass and charge distributions can yield different g values.  These do not  

include the electromagnetic field contribution to the mass and angular momentum which will  

affect the value of g.  Numerous attempts have been made to find a classical electron model with  

a value of g = 2, (for a review see Lorentz3, Rohrlich4, and Spohn5).    

    We will consider a shell of charge model.  The electrostatic mass of a spherical shell of charge  

q and radius R is given by 
R

1
q

2

1 2 ,  and if this is used and there is no mechanical mass then g 

takes on the value of 
2

3
, (for example see Norvik6).   However if we define the electrostatic mass 
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using the non-relativistic radiation reaction from an accelerated charge then the electrostatic 

mass is given the value 
R

1
q

3

2 2 (for example see Jackson7), and if this value is used then we 

obtain g = 2 (for example see Crisp8). 

   In this paper we will consider a perfect fluid inside a shell of charge and show that for low  

angular velocity we obtain g = 2 using the electrostatic mass 
R

1
q

2

1 2  as given in Norvik6.    

Bialynicki-Birula9  also considers a perfect fluid model of the electron but does not use a shell  

of charge.   Horwitz and Katz10  consider an perfect fluid with no rotation and use a general  

charge distribution.   Giulini11  considers a rotating spherical shell with stresses inside the shell to  

counterbalance the electrostatic forces.   He only considers low angular velocity as we do, but  

does not consider a fluid inside the shell.   Jimenez and Campos12 use a perfect fluid as we do but  

do not write down equations of motion in the rest frame. 

   Our model is not an attempt to make a classical electron model but just to show that g = 2 is  

obtainable using the normal definition of electrostatic mass and equations consistent with special  

relativity with a solution in the low angular velocity limit. 

   We are taking the speed of light c to be one, and using the Einstein summation convention  

where repeated indices represent a summation.  Greek indices indicate space-time indices with 0  

representing time. 

   

II. Equations of Motion 

  Following Misner, Thorne and Wheeler (herein MTW) 13 we have for an prefect fluid a  

mechanical stress-energy tensor S expressed in the form 

 

     ++= uu)p  (pgS                                                                                                  (1) 

 



where p and   are the pressure and mass density in the rest frame of the fluid element. 

u  is the 4-velocity of the fluid, and  g is the metric of the coordinate system.  Jimenez and  

Campos12 also uses this form for the stress-energy tensor but with the opposite signed metric. 

  Following MTW13 we have the equations of motion in general coordinates in the following  

form 

 

   





 = jFS ;                                                                                                    (2) 

 

where the ; represents a covariant derivative.   j  is the 4-current density and 
F  is the  

electromagnetic field .  We are taking the system to be cylindrically symmetric and stationary.  

   Using cylindrical coordinates t, r, z, and   take the system to be rotating at a constant angular  

velocity .  We can then write the 4-velocity as 

 

   2/1220 )r1(u −−= ,  0uu = ,  
 

0uu zr ==                                                                (3) 

 

with   = uj  where   is the charge density in the rest frame of the fluid. 

  In this way eq. (1) reduces to 

 

   1222200 )r1)(pr(S −−+=                                                                                               (4a) 

   1220 )r1()p(S − −+=                                                                                                     (4b) 

   1222-2 )r1)(pr(S − −+=                                                                                                (4c) 

   pSS zzrr ==                                                                                                                               (4d) 

   



with the rest of the S  terms being zero.  

  Then in terms of cylindrical coordinates eq. (2) reduces to the two equations  

 

   0r

   

r

0   

1222

r u)F  F()r1()r(p -p, +=−+ 

−                                                                   (5a) 

0z

   

z

0   z u)F  F(p, +=                                                                                                                  (5b) 

 

along with the condition that 0F0

   =  .  0

   F   is zero since the charge distribution 

is independent of  . 

 

III. Boundary Condition 

   In the interior take the charge density  to be zero and the pressure constant so setting 0pp =   

on the inside, from eq. (5a) we need 0p−= .   This leads to a negative pressure, which Jimenez  

and Campos12 also use to counterbalance the electrostatic forces.  There is only constant pressure  

in the interior of the shell, not in the shell itself which we take to have a width d. 

   All of the charge is concentrated in the outside shell which we take to have the unit normal  

 

  zrn zr nn +=                                                                                                                                        (6) 

 

pointing outward.  r and z are unit normals pointing in the r and z directions.   If n is a coordinate  

of unit length in the normal direction then 

 

   zzrr npnpp
n

p
+=•=




n                                                                                                                (7) 

 



which with the use of eqs. (5a) and (5b) becomes 
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z
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0   r
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++++−+=






−                                (8) 

 

Integrating eq. (8) from the inside of the shell to the outside yields 

 

    dn]u}n)F  F(n)F  F{()r1(n)r[(pp0
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   Now consider eq. (9) as the width of the shell d goes to zero.   Since   and p are finite, in this  

limit the 
122

r

2 )r1(n)r(p −−+  term gives no contribution, and eq. (9) reduces to 

 

  dnu}n)F  F(n)F  F{(

d

0

0

z
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z
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r

0    +++=                                                                    (10) 

 

Since r

0   F , r

   F  , z

0   F  and z

   F   can be expressed in terms of the charge and current density we  

should in principle be able to solve this.  Since   is constant, the right hand side of eq. (10) 

has to be independent of position, and this requirement may determine the shape of the surface.   

 

IV. Low angular velocity approximation 

   In general eq. (10) will not be an easy problem to solve.   Since the current density is linear in  

 , r

   F   and z

   F   will also be linear in  .  If we only consider low angular velocity so that we can  

ignore second order  terms, then eq. (10) becomes 

 



  dn)nFnF(

d

0

z

z
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and thus we can approximate the surface as spherical with a constant charge density.  We can 

set 
r

r

0   EnF = and 
z

z

0   EnF = where E is the magnitude of the electric field normal to the surface  

so that eq. (11) becomes  

  

Edn

d

0

=                                                                                                                        (12) 

 

since 1nn
2

z

2

r =+ . 

  From Gauss's law we have  

 

   = dv4Er4 2                                                                                                                                   (13) 

 

where the integral is over the volume inside a radius r, and again ignoring 2  terms. 

  Taking the charge density   to be evenly distributed from 0 to d, eq. (13) reduces to 
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and eq. (12) becomes 
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Thus in the limit of d going to zero, 22d2=  and the total charge is dR4q 2= . 

Our boundary condition eq. (15) then becomes 

 

    
4

2

R

q

8

1


=                                                                                                                                                 (16) 

 

V. g = 2 calculation 

  The total mechanical mass inside the shell is then 

 

dr
r1

pr
r4drSr4dvSm
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22R
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                                                                          (17a) 

      
R

q

6

1
R

3

4
 drr4

2
3

R

0

2 ===                                                                                                           (17b) 

 

since −=   p  on the inside of the shell.   Howitz and Katz10  also obtain this value. 

   Following Crisp8  and Nodvik6  the electromagnetic mass can be written as 

 

   2

em

2

em I
2

1
 

R

1
q

2

1
m +=                                                                                                                         (18) 

 

where  
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  In the case of a shell of charge eq. (19) becomes 

 

    Rq
9

2
I 2

em =                                                                                                                     (20) 

 

so that eq. (18) reduces to  

 

  
R

1
q

2

1
 )R

9

2
  

R

1
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m 222
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again neglecting 2 terms.   The total mass is then 

 

  
R

1
q

3

2
mmm 2

emm =+=                                                                                                                        (22) 

   

The mechanical mass has no angular momentum since 0S0 = , so the total angular momentum 

is  

all electromagnetic which, again following Crisp8, is  

 

   Rq
9

2
IL 2

em ==                                                                                                                                 (23) 

 

Following  Singh and Raghuvanshi2 the magnetic moment is 

 

   2Rq
3

1
=                                                                                                                                                (24) 



 

and from Jackson7  we have the relationship 

 

  L
m

q

2

g
=                                                                                                                           (25) 

 

so that we need 2g = .  

 

VI. Assumptions and possible Electron model 

   The only assumptions that have gone into this are  

  (1) shell of charge 

  (2) Perfect fluid inside with constant angular velocity 

  (3) constant pressure inside 

  (4) low angular velocity. 

   It is interesting to see how the properties of an electron apply to this model.  Using 
4

3
L =

along with the mass and charge of the electron we obtain cm109.1R 13−=  and  

rad/s105.8 25= .  These values make the velocity at the radius R much greater than the speed  

of light.  Thus as a model of the electron our assumption of neglecting 2  terms is not valid. 

 

VII. Conclusion 

   This model is not intended to be a classical model of the electron but to show that a simple  

model with equations consistent with special relativity can yield 2g =  in the low angular  

velocity limit. 

  It would be interesting to try to solve this model for a more general value of  and to see if that  



model would also yield 2g =  and whether the speed of the shell was less than light when the  

properties of the electron were applied.   The idea of a negative pressure is also not realistic but it  

is needed to make the model work.         
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