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When a cannonball is shot towards the walls of a fortress, or when the ion drives on a satellite
eject gas in order to keep its orbit stable, or, similarly, when we observe the ordinary day-to-day
movements of cars, rivers, and other objects, and even the speed of a chemical reaction, we, in fact,
are witnessing the effects that physics, or more specifically, kinematics, has on our world. The former,
for instance, employs the range formula for projectiles; the satellite, on the other hand, utilizes the
concept of velocity to continue being kept afloat in space. Although the latter cases are, respectively,
measured in terms of acceleration, distance, and speed (or, depending on the circumstances, in terms
of their vectorized counterparts: change in speed, displacement, and velocity); they all, however, do
have a shared sense of motion attached to them, which in physics and engineering came to be known
as “kinematics.”

This paper aims to explain the fundamentals of kinematics and clarify the core topics and idioms
covered within college-level physics courses, and some of the advanced high school science textbooks,
straightforwardly and comprehensively; furthermore, core kinematics concepts and equations will be
demonstrated alongside the algebraic proofs of their derived formulae.
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Keywords: kinematics; particles; motion; newtonian mechanics; classical mechanics; advanced high school
physics; college-level physics; university physics course.
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I. INTRODUCTION

Kinematics—initially developed in classical mechanics
and traditionally known as a branch in the subject theory
of machines, as a subfield of physics, focuses on the
description of motions without any regard to force, as
opposed to kinetics, or the study of forces (and masses
thereof) that cause motion themselves. Thus, it could
be said that kinematics is the study of motion
independent from objects’ masses.

a. Etymology and nomenclature The English term
known as kinematics (pronounced /kin@"madiks/ or
ki·nuh·ma·tuhks) is from French cinématique, which
in turn was derived from the Ancient Greek word
κίνημα (kínēma, “motion”), plus the Middle English
suffix -ics, referring to the study or knowledge of motions.

Within the equations and solutions of kinematics prob-
lems, algebra and geometry are perhaps among the most
widely used areas of mathematics; so much, in fact, that
inside mathematicians’ communities, kinematics is often
regarded as “the Geometry of Motion.”

In the chapters that follow, core kinematics concepts
and equations alongside their commonly associated vari-
ables will be demonstrated, and some examples in addi-
tion to their solutions will be provided as well. Several
of the derived formulae will also be proven algebraically.

II. MEASUREMENTS OF POSITION

Everything in the world around us is in ever-lasting
motion. Even the objects that appear inanimate relative
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to us are still in absolute motion within the universe due
to the rotation of the earth around the sun, the rotation
of the sun around the center of the milky way, and so
on; moreover, even the atoms and sub-atomic particles of
said objects are still vibrating in their places and are not
motionless.

A. Pointwise Distance and Displacement

In addition to the coordinates of these objects, what
else is of considerable importance is their change in po-
sition, which is expressed using the terms distance and
displacement. Although these two terms are both used
to measure the same unit (meters, m), they, however, are
two distinct variables in physics with different properties.

Distance refers to the total sum of the length of the
path(s) traversed by an object from its starting position
up until its ending point, while displacement is as its
name implies: the shortest path between those points.

Case in point, let us say that a person is trying to get
to their friend’s house that is situated one alley to the
north, then another one to the east, and finally one to the
south of their own home, and that all these alleys are of
the same length. If there are no shortcuts in between and
they only travel through said alleys, then the distance
they have traveled is equal to the length of three alleys,
while their displacement would only be the length of one
alley to the east. Notice how we also include directions
(e.g., to the east) when mentioning the displacement.

In order to have a clearer understanding of the differ-
ences between the former and the latter, first have a look
at the following figure (Fig. 1):
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Figure 1. Distance vs. Displacement: Comparison of
displacement (

−−→
𝐴𝐵) and distance (S) between the two

points of A and B.

As it appears in the Illustration, distance (denoted S),
depending on the traversed path, may not necessarily be a
straight line, while displacement (denoted by a two-point
vector such as

−−→
𝐴𝐵), being the shortest possible route, will

always be a straight line with a direction. In other words,
displacement as a directed line is a vector quantity,
in contrast to its non-directional counterpart, distance,
which is a scalar quantity.

Notice that since displacement is a vector quantity, it
could also be re-interpreted by being assigned negative
values. To give you an idea, negative two (−2) units to
the east could also mean positive two (+2) units to the
direction opposite of the east, thus positive two (+2) units
to the west. However, this property does not hold true for
scalar quantities, as they lack directions; negative values
for scalar quantities are not possible.

As another example, when cars in a racetrack finish a
single lap, their distance would be equal to the total length
of that racetrack, whereas their displacement would be
zero because they are now back at the same starting point.
Even if they race for a second lap, even though then their
new distance would now be equal to twice the racetrack’s
length, their displacement would still remain zero.

Based on the previous definitions, distance is found by
simply adding the length of the different path(s) taken,
and displacement, the shortest difference between two
points, is defined as follows:

Δ𝑥 (𝑚) = 𝑥𝑓 − 𝑥𝑖 . (1)

Equation 1. Read as Delta-X (with the unit of meters) equals
X-final minus X-initial . If you are unfamiliar with these

terms or would like to see more alternative variations of the
aforementioned notation in physics, then refer to Appendix

C: Glossary and Elementary Definitions in Physics.

Where Δ𝑥 is the change in position, 𝑥𝑓 is the final
(ending) position, and 𝑥𝑖 is the initial (starting) position,
with all being measurements of length with the SI unit
meters (m).1

A key takeaway about the above explanations is that
the two starting–ending points can only be subtracted di-
rectly in the context of two-dimensional plane physics; for
subtraction in three-dimensional spaces, the Pythagoras
theorem would have to be used.2

1 In some textbooks, “𝑑 ” is written instead of “𝑥 ”; they both carry
the same meaning. From here onwards, “𝑑 ” will be used in place
of distance and “𝑥 ” in place of displacement.

2 3-D and higher dimensions are outside of the teaching scope. For
the Pythagoras theorem, see Appendix B: Graphs and the Basics
of Geometry.
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III. CONSTANT MOVEMENT

Prior to the experiments conducted by the prominent
Italian scientist Galileo Galilei about how fast objects
move, people would nominally categorize movements into
“fast,” “slow,” or “resting”; but nowadays, with all the
complex types of machinery and traffics, expressing these
movements in terms of numerical values has become quite
important.

A. Average Speed and Velocity

The relation between speed and velocity is similar
to that of distance and displacement; speed is the scalar
quantity, and velocity is its vector counterpart. In other
words, the average speed is the distance (be it a straight
line or curved line) covered within a timeframe, and the
average velocity is the displacement traveled within a
timeframe.

Here, the word average signifies the measurement type:
an interval (i.e., more than just a single point) as a whole
is being used to compute one value. If a single point were
to be measured, we would instead call it the instantaneous
speed or velocity.3

The formula for the average speed is as follows:

𝑠 (𝑚/𝑠) =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑚𝑒𝑡𝑒𝑟𝑠

𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
=

𝑑

Δ𝑡
, (2)

And the formula for the average velocity is comparative:

−→𝑣 (𝑚/𝑠) =
𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑚𝑒𝑡𝑒𝑟𝑠

𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
=

Δ𝑥

Δ𝑡
. (3)

Considering that distance and displacement are both
measured in meters (m), in addition to the fact that the
SI unit of time is seconds (s), it could be said that speed
and velocity have the same unit—meters per second (𝑚/𝑠).
Furthermore, it is trivial that by solving for different vari-
ables (e.g., −→𝑣 = Δ𝑥

Δ𝑡 ⇔ Δ𝑡 = Δ𝑥−→𝑣 ), the unknown param-
eters of a problem could be determined from the known
ones.4

To expand on what was said earlier, if the speed or
velocity (both defined as meters per a single second) are
known, then the amount of movement during an elapsed
time could be calculated, too. For example, an object
moving at an average speed of 5.5 meters per second, for
a total duration of 4 seconds, would travel a total of 22
meters at the end. (5.5 𝑚𝑒𝑡𝑒𝑟𝑠

1 𝑠𝑒𝑐𝑜𝑛𝑑 × 4 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 22 𝑚𝑒𝑡𝑒𝑟𝑠.)

3 Instantaneous rates of change, which depend on the knowledge of
derivatives, are outside of the teaching scope of this paper; they
will not be explained in-depth here.

4 For more assistance regarding this, see Appendix A: Algebraic
Laws and Properties.

IV. ACCELERATION AND VARYING
MOVEMENT

A car being driven is likely to change through its gears
as time goes by; it is, to put it differently, likely to accel-
erate or decelerate and change its speed. Acceleration
is inherently a vector quantity; it is found by dividing
the velocity by the time elapsed. So, by this logic, its
unit has to be meters per second, per second (or meters
per second squared, 𝑚/𝑠2), which implies that the car or
object is gaining—or losing—some of its velocity and, by
extension, speed each and every second.

The formula for constant3 acceleration is as follows:

−→𝑎 (𝑚/𝑠2) =
𝑐𝑎𝑛𝑔𝑒 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑚/𝑠

𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
=

Δ𝐯

Δ𝑡
. (4)

And, as mentioned earlier in the first chapter, negative
vector quantities could be re-interpreted oppositely, just
like any other vector value. Thus, if the acceleration is
negative, it could be said that the object is decelerating—
it is accelerating in the opposite direction.

Similar to how the covered distance or displacement
could be calculated based on the velocity or speed in
addition to the elapsed time, the same could also be done
for the acceleration in order to find the total velocity
change. Even the total displacement could be evaluated
from just the acceleration and time: the multiplication
of acceleration by time results in the velocity change,
and the multiplication of the resultant velocity by time
again provides the total distance traversed; multiplying
the acceleration by time squared (𝑡2) is a more direct way
of obtaining the same outcome.

V. SUMMARIZING AND DERIVING
FORMULAE

In respect to an initial position (𝑥𝑖), finding the final
position (𝑥𝑓 ) when an initial velocity (𝐯𝐢) and a constant
acceleration (𝐚) are involved is done using the following
formula:

𝑥𝑓 (𝑚) = 𝑥𝑖 + 𝐯𝐢 · 𝑡+
1

2
· 𝐚 · 𝑡2. (5a)

It is trivial that, in this way, solving for the amount of
change (Δ𝑥) would simply require subtracting the initial
position (𝑥𝑖) from both sides of the Equation. (Remember
that Δ𝑥 = 𝑥𝑓 − 𝑥𝑖 applies here.)

Also, if the question or problem does not supply the
acceleration directly but does give a final and initial value
for the velocity, the acceleration could manually be cal-
culated based on those and then input into the above for-
mula; these manual steps could also be embedded within
the previous equation:

𝑥𝑓 (𝑚) = 𝑥𝑖 +
(𝐯𝐟 + 𝐯𝐢)

2
· 𝑡 = 𝑥𝑖 + 𝐯 · 𝑡 . (5b)
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Proof of Eq. (5b):

𝐼 = 𝑥𝑓

= 𝑥𝑖 + 𝐯𝐢 · 𝑡+
1

2
· 𝐚 · 𝑡2

[︀
as per Eq. (5a)

]︀
= 𝑥𝑖 + 𝑡×

(︀
𝐯𝐢 +

1

2
· 𝐚 · 𝑡

)︀
[factorized 𝑡]

= 𝑥𝑖 + 𝑡×
(︀
𝐯𝐢 +

1

2
· (𝐯𝐟 − 𝐯𝐢)

𝑡
· 𝑡
)︀

[expanded 𝐚]

= 𝑥𝑖 + 𝑡×
(︀
𝐯𝐢 +

1

2
· (𝐯𝐟 − 𝐯𝐢)

)︀
[simplified 𝑡]

= 𝑥𝑖 + 𝑡×
(︂
(2𝐯𝐢 + 𝐯𝐟 − 𝐯𝐢)

2

)︂
[multiplied, &c.]

= 𝑥𝑖 + 𝑡×
(︂
(𝐯𝐢 + 𝐯𝐟 )

2

)︂
[subtracted 𝐯𝐢]

= 𝑥𝑖 +
(𝐯𝐟 + 𝐯𝐢)

2
· 𝑡 [reordered]

= 𝑥𝑖 + 𝐯 · 𝑡 = 𝐼𝐼

A. The Timeless Equation for Acceleration

While sharply braking, the length of the brake lines or
trail that a car’s tires leave behind on the road can give
law enforcement an idea of how fast that car was moving
before it began to brake. Oftentimes, calculating the
maximum distance that an object with its initial velocity
against an opposing force (i.e., deceleration) can reach,
before eventually slowing down to a halt and reaching the
nill final velocity of zero, has its own practical uses. In
such cases, the “timeless” equation could be used instead
of manually calculating the time from other factors for
the same result:

−→𝑣𝑓 2 (𝑚/𝑠) = 𝐯𝐢
2 + 2 · 𝐚 ·Δ𝑥 . (6)

Proof of Eq. (6): Let −→𝑎 = Δ𝐯
Δ𝑡 ∋ −→𝑎 < 0 ∵ 𝐯𝐟 = 0 , 𝐯𝐢 ∈ ℕ ∴ Δ𝐯 ≜ 𝐯𝐟 − 𝐯𝐢 < 0 . So,⏞ ⏟

 
𝑥𝑓 = 𝑥𝑖 + (𝐯𝐢 ·Δ𝑡) +

(︀1
2
· 𝐚 · (Δ𝑡)2

)︀
= 𝑥𝑖 +Δ𝑡 ·

(︀
𝐯𝐢 + (

1

2
· 𝐚 · Δ𝑡)

)︀
= 𝑥𝑖 +

Δ𝐯

𝐚
·
(︀
𝐯𝐢 + (

1

2
· 𝐚 · Δ𝐯

𝐚
)
)︀

= 𝑥𝑖 +
Δ𝐯

𝐚
·
(︀
𝐯𝐢 +

Δ𝐯

2

)︀

⏞ ⏟
 

−→ = 𝑥𝑖 +
𝐯𝐟 − 𝐯𝐢

𝐚
·
(︂
𝐯𝐢 +

(𝐯𝐟 − 𝐯𝐢)

2

)︂
= 𝑥𝑖 +

𝐯𝐟 − 𝐯𝐢

𝐚
· 2𝐯𝐢 + 𝐯𝐟 − 𝐯𝐢

2

= 𝑥𝑖 +
𝐯𝐟 − 𝐯𝐢

𝐚
· 𝐯𝐟 + 𝐯𝐢

2

= 𝑥𝑖 +
𝐯𝐟

2 − 𝐯𝐢
2

2𝐚

−→ ⇒ 𝑥𝑓 − 𝑥𝑖 =
𝐯𝐟

2 − 𝐯𝐢
2

2𝐚

= Δ𝑥 =
𝐯𝐟

2 − 𝐯𝐢
2

2𝐚

⇒ 2 · 𝐚 ·Δ𝑥 = 𝐯𝐟
2 − 𝐯𝐢

2

⇒ 𝐯𝐟
2 = 𝐯𝐢

2 + 2 · 𝐚 ·Δ𝑥

Q.E.D.

VI. GRAPHS OF PLANE KINEMATICS

Based on what was covered in the earlier chapters and
Appendix B, it should now be possible to plot the previ-
ously mentioned equations of two-dimensional kinematics
according to the different types of motion; in the follow-
ing subchapters, stationary, constant-speed, speeding-up,
and slowing-down objects will be plotted in relation to
their positions, velocities, and acceleration over time.

A. Graphs of Stationary Objects

Stationary objects have the most trivial form of motion:
“stationary,” as the name suggests, refers to an object that
lacks motion—an object that is, in other words, stand-
ing still so that its velocity (and hence its acceleration)
equals zero, regardless of the object’s starting position
and whether or not it is in the negative side of the y-
axis. Shown in the Graph (Fig. 2) are sample Position–
Time, Velocity–Time, and Acceleration–Time plots for
these types of movements:
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𝐯
(𝑚

/𝑠
)
,

𝐚
(𝑚

/𝑠
2
)

Figure 2. The Plots of a Stationary Object
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Notice how objects, as long as their 𝑥𝑓 and 𝑥𝑖 are equal,
and regardless of the location of their initial position, are
considered to be stationary; consequently, this results in
both their Δ𝐯 and Δ𝐚 being equal to Δ𝑥—naught.

B. Graphs of Constant-Speed Objects

Objects, whose Δ𝐯 equals a constant, non-changing
number, gradually change their position in accordance
with the direction of their velocity. Furthermore, in the
case of Velocity–Time graphs, the surface area be-
tween the velocity Graph and the x-axis will be
the same as the displacement that has occured dur-
ing the elapsed timeframe with the specified velocity; for
constant-speed objects, this displacement would be equal
to the area of a rectangle or square (i.e., 𝑤𝑖𝑑𝑡× 𝑙𝑒𝑛𝑔𝑡,
with them corresponding to the time and velocity axes).

Shown below (Fig. 3) are sample plots for an object
having a constant velocity:
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Figure 3. The Plots of a Constant-Speed Object
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C. Graphs of Accelerating Objects

Accelerating objects shift their position in an exponen-
tial manner. As in the previous method of calculating the
displacement from the surface area beneath the velocity
line and the x-axis, the velocity could also be computed
through finding the area covered by the x-axis and the
acceleration Graph. Also, the displacement, or the area
beneath the graph of velocity, now equals the area of a
triangle: (𝑤𝑖𝑑𝑡×𝑙𝑒𝑛𝑔𝑡)

2 .
Figure 4 depicts an accelerating object’s plots:
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Figure 4. The Plots of an Accelerating Object
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D. Graphs of Decelerating Objects

The graphs of decelerating objects are very similar to
that of accelerating objects: they both have an exponen-
tial increase in position; however, compared to its accel-
erating counterpart, a decelerating object starts with a
non-zero initial velocity (𝐯𝐢) that continuously decreases
as time passes. Consequently, the instantaneous rate of
change in position’s graph will decrease until it reaches
zero and the object ceases to move. Sample plots for a
decelerating object are drawn in Figure 5:
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Figure 5. The Plots of a Decelerating Object
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It is worth noting that acceleration may not always be
of the constant type and could be varying; in those cases,
to calculate the area under the then-complex curves, one
might utilize the use of anti-derivatives and integration.

Appendix A: Algebraic Laws and Properties

Written below in Table I are some of the essential al-
gebraic properties that will be commonly used within
kinematics:

Table I. The Basic Properties and Identities in Algebra

Property Name Property
Add./Sub. Mul./Div.

Commutative 𝑎+ 𝑏 = 𝑏+ 𝑎 𝑎× 𝑏 = 𝑏× 𝑎
Associative 𝑎+ (𝑏+ 𝑐) = (𝑎+ 𝑏) + 𝑐 𝑎× (𝑏𝑐) = (𝑎𝑏)× 𝑐
Identity 𝑎± 0 = 𝑎 𝑎⋇ 1 = 𝑎
Inverse 𝑎+ (−𝑎) = 0 𝑎× ( 1

𝑎
) = 1

Distributive 𝑎× (𝑏+ 𝑐) = (𝑎× 𝑏) + (𝑎× 𝑐)

Ultimately, as a general rule, everything that is
done to one side of an equation also has to be
done to the other side; this allows for simplifications
or solving for other variables. For inequalities, the same
generalization applies, with the exception of negative val-
ues, in which case the lesser or greater sign would be
reversed.

Appendix B: Graphs and the Basics of Geometry

a. 2-D graphs A two-dimensional graph has two
axes: the x-axis and the y-axis. The graph may also
have labels on said axes, in which case it should be
referred to as “the graph of [label of y ] over [label of x ].”
Additionally, points (also called coordinates) consist of
one position in the x-axis and one in the y-axis and
are expressed as an ordered pair of (𝑥, 𝑦). Similarly,
the horizontal x-axis and the vertical y-axis intersect
at a specific point at the origin of the graph, which,
in coordinates, is represented as (0, 0). Most of the
graphs in physics—especially in kinematics—only have a
positive side of the x-axis.

b. Pythagoras theorem The theorem of Pythagoras
states as follows: given any right triangle with the
angles ̂︀𝐴, ̂︀𝐵, and ̂︀𝐶, where ̂︀𝐴 = 90∘, exists the equation
𝑎2 = 𝑏2 + 𝑎2. (Notice that 𝑎 is the Hypotenuse—the side
in front of which is the ninety degrees angle, ̂︀𝐴.)

c. Trigonometric functions Let 𝛼 be an angle.
So, sin (𝑎) = 𝑜𝑝𝑝𝑜𝑠𝑖𝑛𝑔 𝑠𝑖𝑑𝑒

𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒 , cos (𝑎) = 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒
𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒 ,

tan (𝑎) = 𝑜𝑝𝑝𝑜𝑠𝑖𝑛𝑔 𝑠𝑖𝑑𝑒
𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒 , cot (𝑎) = 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒

𝑜𝑝𝑝𝑜𝑠𝑖𝑛𝑔 𝑠𝑖𝑑𝑒 = 1
tan (𝑎) .

There are also several rules and identities between these
functions, but since most of the calculations in physics
are commonly made using a calculator and not manually,
they will not be mentioned here; however, knowing them
can still assist in having a better understanding of the
proof of some physics equations. Lastly, the inverse of
these functions could be used to find angles from values,
e.g., tan−1 ( 𝑜𝑝𝑝𝑜𝑠𝑖𝑛𝑔 𝑠𝑖𝑑𝑒

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒 ) = arctan ( 𝑜𝑝𝑝𝑜𝑠𝑖𝑛𝑔 𝑠𝑖𝑑𝑒
𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒 ) = 𝛼 .

d. Vector addition The generic way to take the sum-
mation of two vectors is to use the following formula:
𝑟 =

√︀
𝑎2 + 𝑏2 − 2 · 𝑎𝑏 · cos (𝛼) , where 𝑟 is the resultant

vector, 𝑎 and 𝑏 are the two additive vectors, and 𝛼 is the
in-between angle. Conversely, by taking the sin and cos
functions of the angle 𝛼 and then multiplying them by
the vector 𝑟, 𝑟 could be expanded into two unit vectors:
𝑖 and 𝑗, with the former being the horizontal component
and the latter the vertical one. If 𝛼 is smaller than 45
degrees, then cos should be used in order to obtain the
larger component, and sin for the smaller one; otherwise,
it would the other way around.

Appendix C: Glossary and Elementary Definitions
in Physics

a. Vector and scalar quantities Scalar quantities
only have a magnitude, while vector quantities have
a direction in addition to a magnitude. For example,
mass (𝑚) and heat (𝑄) are among the scalars, yet force
(𝐹 ) and displacement (𝑥) are vectors. A simple way to
understand whether a quantity is a vector or scalar is
to ask, “to which direction?” e.g., “to which direction is
a force of 450 newtons applied?” If it does make sense,
then it is a vector. However, the same question in the
context of mass, i.e., “to which direction is this object’s
mass of 50 kilograms?” would not make sense; thereafter,
it becomes clear that mass is a scalar quantity. Lastly,
vector variables are typically written with an arrow
above them, such as −→𝑣 , though they may alternatively
be written in bolds, like 𝐯.

b. Delta (Δ) The difference or change of a given
variable is denoted by Delta (Δ). For instance, Δ𝑥 refers
to the difference between the final and initial values of
𝑥 or, in other words, 𝑥𝑓 − 𝑥𝑖 . (Note: Some physics
textbooks might use subscripts other than 𝑓 and 𝑖 [e.g.,
2 and 1, 1 and 0, or no subscripts and 0] to refer to the
final and initial values.)

c. SI units The internationally agreed upon (i.e.,
standardized) units used in physics are referred to as
SI units. In other words, even though mass could be ex-
pressed using both pounds and kilograms, only the latter
(kilograms, kg) is recommended by the SI to be used in
calculations. SI was originally an abbreviation for the
French phrase Le Système International d’Unités.



7

[1] Organization for Educational Research and Planning
(OERP), Iranian Ministry of Education, in Experimen-
tal Sciences of the Ninth Grade of Lower-Secondary High

School—134 (The Iranian Textbook Publishing and Writ-
ing Company, Tehran, Iran, 2018) Chapter 4, pp. 37–49,
4th ed.
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