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Abstract

With the rising popularity of machine learning in the past decade, a stronger ur-
gency has been placed on drastically improving computational technology. Despite
recent advancements in this industry, the speed at which our technologies can com-
plete machine learning tasks continues to be its most significant bottleneck. Mod-
ern machine learning algorithms are notorious for requiring a substantial amount
of computational power. As the demand for computational power increases, so
does the demand for new ways to improve the speed of these algorithms. Machine
learning researchers have turned to leverage quantum computation to significantly
improve their algorithms’ time complexities. This counteracts the physical limita-
tions that come with the chips used in our technology today. This paper questions
current classical machine learning practices by comparing them to their quantum
alternatives and addressing the applications and limitations of this new approach.

1 Introduction to Machine Learning and Quantum Com-
puting

Machine learning has yielded significant advancements in practically every indus-
try, allowing algorithms to utilize large amounts of data to create predictions,
automate tasks, and understand complicated trends. As the industry grows, ex-
perts discover new ways to use machine learning to execute high-impact tasks;
however, this also means that the complexity of these algorithms rises in tandem.

Quantum computing is a technology that fundamentally remodels the way
computers approach computation. While it is not inherently faster, it does pro-
vide a new approach to computing that significantly improves algorithmic time
efficiency for various classical tasks in many circumstances. Naturally, there is a
parallel between these two industries with time complexity being one of the biggest
points of research for both quantum computing experts and machine learning
researchers[1].

1.1 Moore’s Law and State of the Industry

In the past, the growth of the AI industry has heavily relied on the growth of the
semiconductor industry. For years, there had been enough computational power to
support more computationally complex algorithms. Machine learning researchers
created computationally intensive algorithms while companies created chips that
yielded higher computational power. The growth of this industry has historically
been modelled by a law commonly referred to as Moore’s Law[5]. Moore’s Law is
an “empirical relationship”, a relationship that relies on observation as opposed to
rigorous physics. This law states the following:
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"The number of transistors on a microchip doubles about every two
years, though the cost of computers is halved."

This relationship has been accurate since it was deemed law in 1965 by Gor-
don Moore until recently. Due to the physical limitations on transistor cooling,
size, and cost, Moore’s Law is thought to no longer apply[6]. The growth of the
semiconductor industry will soon no longer be able to sustain the growth in the
Machine Learning (ML) industry. Unfortunately, this means that this industry
can no longer rely on improvements to these classical systems; however, replacing
the classical systems inherent in modern-day ML with new infrastructure rooted
in quantum mechanics can eliminate its reliance on Moore’s Law.

1.2 Quantum Computing and Qubits

Classical computers run on bits, the most basic unit of information in computing.
These bits contain one of two values that represent a logical state[7], which binary
representations are often used for.

Figure 1: Bloch Sphere

Quantum computers run on quantum bits
(qubits), the most basic unit of quantum informa-
tion, instead. Contrary to classical bits, qubits can
contain more than just two values.

“Schrödinger’s cat” [9] is a thought experiment
that demonstrates this concept. In this thought ex-
periment, a cat is placed in a box with a device that
has a 50% chance of killing the cat within the hour.
At the end of the hour, the cat is in a superposition:
a state of being both dead and alive at the same
time.

Similarly, a qubit contains a superposition of
both the states "0" and "1" rather than just containing one or the other. A
superposition can be represented as a vector on the Bloch sphere (see Figure 1).
These qubits will always collapse to either 0 or 1 when observed or measured. In
Schrödinger’s cat, the state of the aforementioned cat be represented as a prob-
ability until the moment in which the box is opened. This probability can be
represented mathematically as the following superposition:

1√
2
|0⟩+ 1√

2
|1⟩

Here, the vector |0⟩ is a basis vector that denotes the cat being alive, and the
vector |1⟩ is a basis vector that denotes the cat being dead in Dirac notation.
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1.3 Quantum Advantage for Algorithms: Why Quantum?

Outside of machine learning, quantum computing has shown how replacing classi-
cal infrastructure with its quantum counterpart can significantly improve classical
algorithms. An example of this is Grover’s Algorithm[2]. This algorithm references
a popular classical algorithm that searches an unstructured array of elements for
an element with a certain value and returns the index of the element.

With classical computing, this algorithm takes O(n) time, meaning the time
taken to run the algorithm increases linearly with the number of inputs. How-
ever, quantum computing allows this same algorithm to be executed in O(

√
n)

time which makes it significantly faster. It is crucial to note that the quantum
counterpart for this algorithm constructs a dramatic speedup. Algorithms with
this characteristic are known to have the “quantum advantage”.

2 Algorithmic Time Complexity

Algorithmic Time Complexity[10] is ultimately the crux of this paper. The role that
quantum computing plays in machine learning can control the practical impacts
that ML algorithms have. To make these impacts tangible, it is important to
understand what computational complexity is.

The time complexity of an algorithm is known to be the ‘worst case scenario’
time taken for an algorithm to run for a given size of inputs denoted with N by
convention.

"Time complexity is defined as the amount of time taken by an algo-
rithm to run, as a function of the length of the input."[11]

Various modifications of the same algorithm can yield different time complex-
ities based on structural differences and the number of operations needed to run
the algorithm, an important concept in computer science in the context of improv-
ing algorithms. As stated earlier, this becomes especially relevant when there is
not enough computational power to support algorithms that are not optimized to
their highest possible efficiency.

2.1 Relevance to Machine Learning

While the concept of time complexity is often in the scope of most algorithm-
related discussions in the field of computer science, it holds a special place in the
world of machine learning. Time complexity refers to the relationship between
the number of items within an algorithm and the amount of time it takes to run
the algorithm. For example, it is evident that sorting numbers in an array with
100 elements would take less time than sorting numbers in an array with 1000
elements.
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Many algorithms do not require significantly large input sizes while others
might. That being said, even when programmers attempt to accomplish tasks
such as sorting through 5000 elements in an array, these tasks are not very
computationally-intensive due to the impressive power of modern computers. A
lot of the time, realistic applications of computer science do not require algorithms
with unreasonably large input sizes, removing the emphasis on time complexity;
however, this would no longer be the case if a computer had to go through 1 000
000 elements instead, or maybe even 1 000 000 000.

Suppose there are two algorithms, both of which sort 1 000 000 numbers from
highest to lowest. One of them requires n computations while the other requires
n2 computations. The first algorithm would only require 1 000 000 computations,
while the second algorithm would require 1 000 000 000 000. Due to the quadratic
nature of the second algorithm, a very large dataset yields an unreasonable amount
of computations. This increases the relevance of time complexity.

Machine learning requires large datasets to identify patterns and ‘learn’ from
the data. This means that it requires the largest input sizes in comparison to
almost every other discipline of computer science. While other types of algorithms
can be satisfied with poor time complexities and still remain practical, machine
learning cannot. Poor time complexities can render machine learning algorithms
entirely impractical, forcing programmers to choose between including more data
for a better-informed algorithm or fewer data to allow for the algorithm to run
in a reasonable amount of time. Note that running machine learning algorithms
is not just a matter of seconds or even minutes. A lot of the time, training ML
algorithms takes hours or even days.

2.2 Big O Notation

In computer science, the Big O notation refers to the growth rate of a certain
algorithm as a function of the number of inputs n.

"Different functions with the same growth rates may be represented
using the same O notation"[12]

This notation helps us differentiate between algorithmic complexity by outlin-
ing whether algorithms are linearly, exponentially, logarithmically, or polynomially
proportional to the number of inputs n.

The relationships between input size and time can be seen in Figure 2.
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Figure 2: Big O Notation Graphs

A common analogy used to describe
this is using different methods to trans-
fer data. Suppose a set of data needs
to be sent from one house to another.
There are two options: transfer the
data through the internet or walk over
with a USB stick that has the data on
it. Here, these options are analogous
to different algorithms that complete
the same task. With the first example,
the amount of time it would take to
transfer the data is dependent on the
number of files there are. Transferring

more data through the internet requires more time. The relationship here is linear
as the amount of time it takes to send over the data has a linear relationship with
the number of files being sent over. This would be represented as O(n). With
the second option, the amount of time it takes to travel over to the other house
is the same regardless of the amount of data on the USB stick. Here, the time
taken is constant and not proportional to the input size. This can be represented
as O(1). The notation does not necessarily outline the specific function that mod-
els the relationship between input size and time. Instead, it provides a general
understanding of the nature of the relationship.

Note that there are other factors that can affect time complexity. For example,
giving a USB stick to somebody a few blocks away versus sending it across the en-
tire country are two very different things that take very different amounts of time.
That being said, the relationship between input size and time remains the same:
constant. Big O notation is not designed to outline the exact time complexity, but
rather the growth rate between time complexities. This becomes especially useful
to compare algorithms with incredibly large data sets. There may be moments
where algorithms that run in O(n2) time may take less time than algorithms that
run in O(n) time. However, when the input sizes become as large as they tend to
be in ML, it can objectively be said that certain algorithmic complexity growth
rates are superior to others, creating a clear and tangible comparison between
algorithms. This will contextualize the rest of this paper and create clear bench-
marks of comparison in the discussion of machine learning algorithms and their
quantum counterparts.

3 Quantum Machine Learning (QML)

Quantum Machine Learning (QML) utilizes quantum computing to decrease the
time complexity for various machine learning problems. A major component of
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this quantum speedup is its ability to significantly improve computation for linear
algebra operations known as Basic Linear Algebra Subroutines (BLAS)[13]. These
include solving linear systems, matrix multiplication, linear combinations, Fourier
transforms, etc. It is important to note that machine learning is almost entirely
based on linear algebra and calculus. Many of the operations required for training
machine learning models include these subroutines. Quantum computing can solve
linear algebra problems faster than any classical system. Acquiring exponential
speedups to these linear algebraic operations creates large implications for the
future use of the machine learning algorithms rooted in these subroutines.

One of the most relied-upon linear algebra operations in the field of machine
learning is the ability to solve linear systems through matrix operations. Solving
linear systems by representing them as matrices is a concept utilized in various
machine learning algorithms such as linear regression and support vector ma-
chines. Classically, one of the largest limitations to the applications that these
algorithms can have is the time complexity for solving linear systems; however, an
algorithm developed by Aram Harrow, Avinatan Hassidim, and Seth Lloyd creates
an exponential speedup for solving linear systems compared to the fastest classical
counterpart. This algorithm is known as the HHL Algorithm[14].

3.1 Solving Linear Systems Classically

Solving linear equations can be modeled classically with the equation Ax⃗ = b⃗
where A is a matrix, x⃗ is a vector of n variables, and b⃗ is a vector of solutions. The
question aims to solve for x⃗ = A−1⃗b, commonly done classically with algorithms
such as “Gaussian Elimination” which has a time complexity of O(n3). The best
algorithms take approximately O(n) time, much better than exponential time but
much slower than potential quantum alternatives.

3.2 The HHL Algorithm - A Quantum Alternative

This problem can be modelled through quantum mechanics with the Harrow-
Hassidim-Lloyd Algorithm. This algorithm has a time complexity of O(log n),
an exponential speedup to the best classical algorithms for this problem. This
problem can be modeled quantumly with the equation A |x⟩ = |b⟩ where the
question aims to solve for |x⟩ = A−1 |b⟩. However, the exponential speedup only
occurs under the conditions that A is a Hermitian matrix, a matrix equal to its
own conjugate transpose, and the user isn’t interested in the actual values of |x⟩
but rather the result of applying an operator onto it. Reading out the values of the
solution vector would change the algorithmic time complexity to O(N), matching
the best classical algorithm for this problem since the result of the HHL algorithm
is a quantumly encoded representation of the solution vector |x⟩. Despite these
restrictions, this algorithm changes the way linear systems can be solved within
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machine learning algorithms, ultimately impacting the holistic time complexity of
the algorithms.

4 Quantum Approach to SVMs

Figure 4: SVM Model

Support Vector Machines (SVMs)[15] use a unique
technique of data representation in order to solve
classification machine learning problems. Data is
mapped to an N -dimensional feature space where
its manipulated so that a hyperplane, a subspace
with N − 1 dimensions, can separate the data into
different classes. Oftentimes, this is done using
the "kernel trick" where data that is not linear is
projected into a higher dimensional space to allow
it to be divided linearly by a hyperplane. As a
result, new data that is mapped onto the feature
space can be classified based on the physical positioning of this hyperplane. The
model uses backpropagation techniques to define an accurate hyperplane in order
to solve classification problems.

4.1 Mathematically Modeling the SVM

In classical SVMs, a hyperplane is created with the equation w⃗ · x⃗− b = 0. Here,
w⃗ is a vector of weights and b is the bias for an n-dimensional hyperplane. Our
training data is defined by the following vectorsx⃗1...

x⃗n


y1...
yn


where each x⃗i represents the ith training example and each yi is either 1 or -1, de-
fining which class x⃗i is a part of. The following equation is the expanded equation
of a hyperplane:

w1x1 + · · ·+ wnxn − b = 0

An SVM model aims to optimize our weights and biases to separate the data
within our feature space. It does so by maximizing the margins between the
support vectors and the hyperplane. The equations for these support vectors are:

w⃗ · x⃗− b = 1 and w⃗ · x⃗− b = −1

The margins between the hyperplane and the support vectors are characterized by
the magnitude of the vector orthogonal to our hyperplane between the hyperplane
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and the support vectors, This vector is also known as the normal vector. Since
the weights vector is the coefficient vector for our hyperplane, the normal vector
is defined by the vector w⃗.

Utilizing this information, the margin can be mathematically derived. We can
take any x⃗ on our hyperplane and calculate the distance required to reach the
support vector travelling along it. Knowing that w⃗ · x⃗ − b = 0, we can add a
coefficient k to a unit vector in the same direction as our normal vector w⃗ to reach
w⃗ · x⃗− b = 1 and isolate for the margin k.

w⃗ · (x⃗+ k w⃗
⃗||w||

)− b = 1

Here, w⃗
⃗||w||

is a unit vector in the same direction as w⃗ and k is the magnitude
of this unit vector. Knowing that w⃗ · x⃗ − b = 0, this equation can be further
simplified:

(w⃗ · x⃗− b) + k( w⃗·w⃗
⃗||w||

) = 1

0 + k
⃗||w||

2

⃗||w||
= 1

k = 1
⃗||w||

This means that our margin k is 1
⃗||w||

. The distance between each support
vector and the hyperplane needs to be the same in order to ensure proper clas-
sification from this model, meaning that our overall margin is 2 · 1

⃗||w||
, simplified

to 2
⃗||w||

. The optimization of an SVM model attempts to maximize this equation,

synonymous to minimizing ⃗||w||. For hard-margin SVM problems, the following
constraints are maintained in order to ensure that the data is classified correctly:

w⃗ · x⃗− b ≥ 1 for y = 1 and w⃗ · x⃗− b ≤ 1 for y = −1

4.2 The Gap in Classical SVMs

With larger and larger datasets, the limitations of the classical SVM models be-
come evident with training time increasing quicker and quicker. When our data is
mapped to higher dimensional feature spaces, the computational power required
for minimizing ||w|| increases alongside it. With more and more training data, the
sheer amount of computations is increased as the loss function used for training
the weights and biases of the hyperplane is dependent on each individual data
point in the training dataset.
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4.3 Quantum SVMs (QSVMs)

The bottleneck for models like SVMs is the classical, computationally-intensive
means of optimization. In Quantum SVMs (QSVMs), the input data is encoded
into qubits and various algorithms such as the HHL algorithm significantly speed
up linear algebra computation utilized during optimization. Despite initializing
the model classically, mapping the inputs and hyperplane onto qubits allows for
quantum optimization techniques to rapidly decrease the time frame that these
models train in. These results can then be decoded, resulting in a well-optimized
SVM model that functions in the same way as classical SVMs despite the signifi-
cant improvement in its training time.

Classical Support Vector Machines utilize kernels in order to map data onto a
new domain allowing for it to be classified with a hyperplane. Some examples of
these kernels include:

Polynomial: k(xi, xj) = (xi · xj)d

Sigmoid: k(xi, xj) = tanh(κxi · xj + c)

Radial Basis Function (RBF): k(xi, xj) = exp(−γ|xi − xj |2)

Aside from quantum optimization, QSVMs can also implement quantum ker-
nels that allow for the quantum advantage to occur within classical SVM models.
Rather than operating on data classically, quantum operations on quantumly-
encoded data are done to create mapped states. The dot products of these states
are then taken, functioning similarly to classical kernels. The ZZFeatureMap and
PauliMatricesMap are popular quantum kernels that use quantum gates to map
the data in order to be classified classically[19].

5 Encoding Classical Data for Quantum Machine Learn-
ing

In the previous section, it is briefly stated that classical input data is encoded
into qubits for Quantum SVMs, with the exception that the input data begins
in a quantum form. In many QML algorithms, classical data must be encoded
into qubits. That being said, the computational power required for this step holds
great relevance in the conversation of algorithmic time complexity, being a large
contributing factor as to whether or not a machine learning algorithm truly has a
quantum speedup[1]. While many quantum algorithms in their worst-case scenario
require exponential time to encode classical data into qubits, many algorithms that
promise quantum speedup assume that this data can be quantumly encoded in
linear or logarithmic time[21]. This is an aspect of QML that still requires a large
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amount of research to truly allow for quantum computing to reach the potential
it could have in this industry.

5.1 Basis Encoding

One of the methods in which classical data is encoded for use by quantum systems
is basis encoding. This digital encoding method utilizes the computational basis
within a quantum system by directly mapping data in the form of binary strings
into its corresponding quantum state. For example, x = 01 would be represented as
|x⟩ = |01⟩. A dataset can be represented as superpositions of these computational
basis states

For example, let us take a dataset X consisting of n-dimensional vectors for a
total of a vectors.

X = x1, x2, . . . , xa

The dataset after basis encoding is represented with the following superposition:

|X⟩ = 1√
a

a∑
i=1

|xi⟩[22]

The following dataset X = {010, 101, 011} would be represented quantumly as:

|X⟩ = 1√
3
|010⟩+ 1√

3
|101⟩+ 1√

3
|011⟩

This form of encoding is largely preferred when the data has to be arithmetically
manipulated within the quantum algorithm.

5.2 Amplitude Encoding

Amplitude encoding is an analogue encoding method in which classical data can
be quantumly encoded. It often holds a large advantage when optimizing for
information density and trying to store a large amount of data in a small number
of qubits. This method utilizes the amplitude of a quantum state in order to
encode classical data and is largely preferred for machine learning algorithms,
utilizing log2(n) qubits.

With amplitude encoding, the amplitudes of a normalized vector are utilized as
the coefficients for our basis vectors. For example, suppose we have a normalized
vector

x =

[
x0
x1

]

11

https://pennylane.ai/qml/glossary/quantum_embedding.html


Here, ||x|| = 1. The amplitude encoded vector would look like the following:

|x⟩ = x0 |0⟩+ x1 |1⟩

Utilizing this same concept, we can encode the following vector:

α = (3, 5, 1)

The normalized version of the vector α is:

αnorm =
1√
35

(3, 5, 1)

These can then be utilized as the coefficients for our superposition, resulting in
our final encoded vector:

|α⟩ = 3√
35

|00⟩+ 5√
35

|01⟩+ 1√
35

|10⟩

A remarkable improvement is made in the number of qubits required when
using amplitude encoding as opposed to basis encoding. That being said, the
nature of the encoded superposition makes this method harder to manipulate
arithmetically.

6 Conclusion

Despite the indisputable potential for disruption in the machine learning industry
with quantum computing, this technology is not where it needs to be to achieve
these disruptions. Quantum computers are incredibly susceptible to noise and
do not currently have enough qubits to fully improve time complexity at a scale
required to have any real relevance; however, it is a field that is growing rapidly,
a field that will one day be where it needs to be to have these impacts. With
the considerable research being done in the intersection between QC and AI/ML,
researchers prepare themselves for the day in which their research transforms from
theory to reality. Quantum is highly regarded as a potential solution for solving
the computational limitations machine learning algorithms currently face. As one
of the largest tools with the ability to disrupt the ML industry, there is no doubt
that the future of machine learning is quantum.
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