On Born Reciprocal Relativity, Algebraic Extensions of the Yang and Quaplectic Algebra, and Noncommutative Curved Phase Spaces

Carlos Castro Perelman
Ronin Institute, 127 Haddon Place, Montclair, N.J. 07043.
perelmanc@hotmail.com

December, 2022

Abstract

After a brief introduction of Born's reciprocal relativity theory is presented, we review the construction of the deformed Quaplectic group that is given by the semi-direct product of $U(1,3)$ with the deformed (noncommutative) Weyl-Heisenberg group corresponding to noncommutative fiber coordinates and momenta $\left[X_{a}, X_{b}\right] \neq 0 ;\left[P_{a}, P_{b}\right] \neq 0$. This construction leads to more general algebras given by a two-parameter family of deformations of the Quaplectic algebra, and to further algebraic extensions involving antisymmetric tensor coordinates and momenta of higher ranks $\left[X_{a_{1} a_{2} \cdots a_{n}}, X_{b_{1} b_{2} \cdots b_{n}}\right] \neq 0 ;\left[P_{a_{1} a_{2} \cdots a_{n}}, P_{b_{1} b_{2} \cdots b_{n}}\right] \neq 0$. We continue by examining algebraic extensions of the Yang algebra in extended noncommutative phase spaces and compare them with the above extensions of the deformed Quaplectic algebra. A solution is found for the exact analytical mapping of the non-commuting x^{μ}, p^{μ} operator variables (associated to an $8 D$ curved phase space) to the canonical Y^{A}, Π^{A} operator variables of a flat $12 D$ phase space. We explore the geometrical implications of this mapping which provides, in the classical limit, with the embedding functions $Y^{A}(x, p), \Pi^{A}(x, p)$ of an $8 D$ curved phase space into a flat $12 D$ phase space background. The latter embedding functions determine the functional forms of the base spacetime metric $g_{\mu \nu}(x, p)$, the fiber metric of the vertical space $h^{a b}(x, p)$, and the nonlinear connection $N_{a \mu}(x, p)$ associated with the $8 D$ cotangent space of the $4 D$ spacetime. Consequently, one has found a direct link between noncommutative curved phase spaces in lower dimensions to commutative flat phase spaces in higher dimensions.

1 Introduction : Born Reciprocal Relativity Theory

Most of the work devoted to Quantum Gravity has been focused on the geometry of spacetime rather than phase space per se. The first indication that phase space should play a role in Quantum Gravity was raised by [3]. The principle behind Born's reciprocal relativity theory [5], [6] was based on the idea proposed long ago by [3] that coordinates and momenta should be unified on the same footing. Consequently, if there is a limiting speed (temporal derivative of the position coordinates) in Nature there should be a maximal force as well, since force is the temporal derivative of the momentum. The principle of maximal acceleration was advocated earlier on by [4]. A maximal speed limit (speed of light) must be accompanied with a maximal proper force (which is also compatible with a maximal and minimal length duality) [6].

We explored in [6] some novel consequences of Born's reciprocal Relativity theory in flat phase-space and generalized the theory to the curved spacetime scenario. We provided, in particular, some specific results resulting from Born's reciprocal Relativity and which are not present in Special Relativity. These are : momentum-dependent time delay in the emission and detection of photons; relativity of chronology; energy-dependent notion of locality; superluminal behavior; relative rotation of photon trajectories due to the aberration of light; invariance of areas-cells in phase-space and modified dispersion relations.

The generalized velocity and force (acceleration) boosts (rotations) transformations of the flat $8 D$ Phase space coordinates, where $X^{i}, T, E, P^{i} ; i=1,2,3$ are \mathbf{c}-valued (classical) variables which are all boosted (rotated) into each-other, were given by [5] based on the group $U(1,3)$ and which is the Born version of the Lorentz group $S O(1,3)$. The $U(1,3)=S U(1,3) \times U(1)$ group transformations leave invariant the symplectic 2-form $\Omega=-d T \wedge d E+\delta_{i j} d X^{i} \wedge d P^{j} ; i, j=1,2,3$ and also the following Born-Green line interval in the flat $8 D$ phase-space

$$
\begin{align*}
& (d \omega)^{2}=c^{2}(d T)^{2}-(d X)^{2}-(d Y)^{2}-(d Z)^{2}+ \\
& \frac{1}{b^{2}}\left((d E)^{2}-c^{2}\left(d P_{x}\right)^{2}-c^{2}\left(d P_{y}\right)^{2}-c^{2}\left(d P_{z}\right)^{2}\right) \tag{1.1}
\end{align*}
$$

The maximal proper force is set to be given by b. The rotations, velocity and force (acceleration) boosts leaving invariant the symplectic 2-form and the line interval in the $8 D$ phase-space are rather elaborate, see [5] for details.

These transformations can be simplified drastically when the velocity and force (acceleration) boosts are both parallel to the x-direction and leave the transverse directions Y, Z, P_{y}, P_{z} intact. There is now a subgroup $U(1,1)=$ $S U(1,1) \times U(1) \subset U(1,3)$ which leaves invariant the following line interval

$$
(d \omega)^{2}=c^{2}(d T)^{2}-(d X)^{2}+\frac{(d E)^{2}-c^{2}(d P)^{2}}{b^{2}}=
$$

$$
\begin{equation*}
(d \tau)^{2}\left(1+\frac{(d E / d \tau)^{2}-c^{2}(d P / d \tau)^{2}}{b^{2}}\right)=(d \tau)^{2}\left(1-\frac{F^{2}}{F_{\max }^{2}}\right), \quad P=P_{x} \tag{1.2}
\end{equation*}
$$

where one has factored out the proper time infinitesimal $(d \tau)^{2}=c^{2} d T^{2}-d X^{2}$ in (1.2). The proper force interval $(d E / d \tau)^{2}-c^{2}(d P / d \tau)^{2}=-F^{2}<0$ is "spacelike" when the proper velocity interval $c^{2}(d T / d \tau)^{2}-(d X / d \tau)^{2}>0$ is timelike. The analog of the Lorentz relativistic factor in eq-(1.14) involves the ratios of two proper forces.

One may set the maximal proper-force acting on a fundamental particle of Planck mass to be given by $F_{\max }=b \equiv m_{P} c^{2} / L_{P}$, where m_{P} is the Planck mass and L_{P} is the postulated minimal Planck length. Invoking a minimal/maximal length duality one can also set $b=M_{U} c^{2} / R_{H}$, where R_{H} is the Hubble scale and M_{U} is the observable mass of the universe. Equating both expressions for b leads to $M_{U} / m_{P}=R_{H} / L_{P} \sim 10^{60}$. The value of b may also be interpreted as the maximal string tension.

The $U(1,1)$ group transformation laws of the phase-space coordinates X, T, P, E which leave the interval (1.2) invariant are [5]

$$
\begin{align*}
& T^{\prime}=T \cosh \xi+\left(\frac{\xi_{v} X}{c^{2}}+\frac{\xi_{a} P}{b^{2}}\right) \frac{\sinh \xi}{\xi} \tag{1.3a}\\
& E^{\prime}=E \cosh \xi+\left(-\xi_{a} X+\xi_{v} P\right) \frac{\sinh \xi}{\xi} \tag{1.3b}\\
& X^{\prime}=X \cosh \xi+\left(\xi_{v} T-\frac{\xi_{a} E}{b^{2}}\right) \frac{\sinh \xi}{\xi} \tag{1.4a}\\
& P^{\prime}=P \cosh \xi+\left(\frac{\xi_{v} E}{c^{2}}+\xi_{a} T\right) \frac{\sinh \xi}{\xi} \tag{1.4b}
\end{align*}
$$

ξ_{v} is the velocity-boost rapidity parameter; ξ_{a} is the force (acceleration) boost rapidity parameter, and ξ is the net effective rapidity parameter of the primedreference frame. These parameters ξ_{a}, ξ_{v}, ξ are defined respectively in terms of the velocity $v=d X / d T$ and force $f=d P / d T$ (related to acceleration) as

$$
\begin{equation*}
\tanh \left(\frac{\xi_{v}}{c}\right)=\frac{v}{c} ; \quad \tanh \left(\frac{\xi_{a}}{b}\right)=\frac{F}{F_{\max }}, \quad \xi=\sqrt{\left(\frac{\xi_{v}}{c}\right)^{2}+\left(\frac{\xi_{a}}{b}\right)^{2}} \tag{1.5}
\end{equation*}
$$

The $U(3,1)$ generators $Z_{a b}=\frac{1}{2}\left(L_{[a b]}+M_{(a b)}\right)$ are comprised of the 6 ordinary Lorentz generators $L_{[a b]}$, and 10 force (acceleration) boost/rotation generators $M_{(a b)}$ giving a total of 16 generators.

It is straight-forward to verify that the transformations (1.4) leave invariant the phase space interval $c^{2}(d T)^{2}-(d X)^{2}+\left((d E)^{2}-c^{2}(d P)^{2}\right) / b^{2}$ but do not leave separately invariant the proper time interval $(d \tau)^{2}=c^{2} d T^{2}-d X^{2}$, nor the interval in energy-momentum space $\frac{1}{b^{2}}\left[(d E)^{2}-(d P)^{2}\right]$. Only the combination

$$
\begin{equation*}
(d \omega)^{2}=(d \tau)^{2}\left(1-\frac{F^{2}}{F_{\max }^{2}}\right) \tag{1.6}
\end{equation*}
$$

is truly left invariant under force (acceleration) boosts (1.4). They also leave invariant the symplectic 2 -form (phase space areas) $\Omega=-d T \wedge d E+d X \wedge d P$.

After this brief introduction of Born's reciprocal relativity theory is presented, in section 2 we review the construction of the deformed Quaplectic group that is given by the semi-direct product of $U(1,3)$ with the deformed (noncommutative) Weyl-Heisenberg group corresponding to noncommutative fiber coordinates and momenta $\left[X_{a}, X_{b}\right] \neq 0 ;\left[P_{a}, P_{b}\right] \neq 0$. This construction leads at the end of section 2 to more general algebras given by a two-parameter family of deformations of the Quaplectic algebra, and to local gauge theories of gravity based on the latter deformed Quaplectic algebras.

We continue in section $\mathbf{3}$ by examining the algebraic extensions of the Yang algebra in extended noncommutative phase spaces, and compare them with the extensions of the deformed Quaplectic algebra involving antisymmetric tensor coordinates and momenta of higher ranks $\left[X_{a_{1} a_{2} \cdots a_{n}}, X_{b_{1} b_{2} \cdots b_{n}}\right] \neq 0 ;\left[P_{a_{1} a_{2} \cdots a_{n}}, P_{b_{1} b_{2} \cdots b_{n}}\right] \neq$ 0.

In section 4 a solution is found for the exact analytical mapping of the noncommuting x^{μ}, p^{μ} operator variables (associated to an $8 D$ curved phase space) to the canonical Y^{A}, Π^{A} operator variables of a flat $12 D$ phase space. We explore the geometrical implications of this mapping which provides, in the classical limit, with the embedding functions $Y^{A}(x, p), \Pi^{A}(x, p)$ of an $8 D$ curved phase space into a flat $12 D$ phase space background. The latter embedding functions determine the functional forms of the base spacetime metric $g_{\mu \nu}(x, p)$, the fiber metric of the vertical space $h^{a b}(x, p)$, and the nonlinear connection $N_{a \mu}(x, p)$ associated with the $8 D$ cotangent space of the $4 D$ spacetime. We finalize with some concluding remarks.

2 The Deformed Quaplectic Group and Complex Gravity

To begin this section we review the construction of the deformed Quaplectic group given by the semidirect product of $U(1,3)$ with the deformed (noncommutative) Weyl-Heisenberg group involving noncommutative coordinates and momenta [16]. And then we proceed to construct a two-parameter family of deformed Quaplectic algebras parametrized by two complex coefficients α, β. The deformed Weyl-Heisenberg algebra involves the generators

$$
\begin{equation*}
Z_{a}=\frac{1}{\sqrt{2}}\left(\frac{X_{a}}{\lambda_{l}}-i \frac{P_{a}}{\lambda_{p}}\right) ; \quad Z_{a}^{\dagger}=\frac{1}{\sqrt{2}}\left(\frac{X_{a}}{\lambda_{l}}+i \frac{P_{a}}{\lambda_{p}}\right) ; \quad a=1,2,3,4 \tag{2.1}
\end{equation*}
$$

Notice that we must not confuse the generators X_{a}, P_{a} (associated with the fiber coordinates of the internal space of the fiber bundle) with the ordinary base spacetime coordinates and momenta x_{μ}, p_{μ}. The local gauge theory based on the deformed Quaplectic algebra was constructed in the fiber bundle over
the base manifold which is a $4 D$ curved spacetime with commuting coordinates $x^{\mu}=x^{0}, x^{1}, x^{2}, x^{3}[16]$. The (deformed) Quaplectic group acts as the automorphism group along the internal fiber coordinates. Therefore we must not confuse the deformed complex gravitational theory constructed in [16] with the noncommutative gravity work in the literature where the spacetime coordinates x^{μ} are not commuting.

The four fundamental length, momentum, temporal and energy scales are respectively

$$
\begin{equation*}
\lambda_{l}=\sqrt{\frac{\hbar c}{b}} ; \quad \lambda_{p}=\sqrt{\frac{\hbar b}{c}} ; \quad \lambda_{t}=\sqrt{\frac{\hbar}{b c}} ; \quad \lambda_{e}=\sqrt{\hbar b c} . \tag{2.2}
\end{equation*}
$$

where b is the maximal proper force associated with the Born's reciprocal relativity theory. In the natural units $\hbar=c=b=1$ all four scales become unity. The gravitational coupling is given by

$$
\begin{equation*}
G=\frac{c^{4}}{\mathcal{F}_{\max }}=\frac{c^{4}}{b} \tag{2.3}
\end{equation*}
$$

and the four scales coincide then with the Planck length, momentum, time and energy, respectively and we can verify that

$$
\begin{equation*}
\mathcal{F}_{\max }=m_{P} \frac{c^{2}}{L_{P}} \sim M_{\text {Universe }} \frac{c^{2}}{R_{H}} \tag{2.4}
\end{equation*}
$$

The generators of the $U(1,3)$ algebra given by $Z_{a b}$ are Hermitian $\left(Z_{a b}\right)^{\dagger}=$ $Z_{a b}$, with $a, b=1,2,3,4$; while the generators of the deformed Weyl-Heisenberg algebra Z_{a}, Z_{a}^{\dagger} are pairs of Hermitan-conjugates like $L_{+}=L_{x}+i L_{y}, L_{-}=$ $L_{x}-i L_{y}$ in the $S O(3)$ algebra. The standard Quaplectic group [5] is given by the semi-direct product of the $U(1,3)$ group and the unmodified Weyl-Heisenberg $H(1,3)$ group : $\mathcal{Q}(1,3) \equiv U(1,3) \otimes_{s} H(1,3)$ and is defined in terms of the generators $Z_{a b}, Z_{a}, Z_{a}^{\dagger}, \mathcal{I}$ described below with $a, b=1,2,3,4$.

A careful analysis reveals that the generators Z_{a}, Z_{a}^{\dagger} (comprised of Hermitian and anti-Hermitian pieces) of the deformed Weyl-Heisenberg algebra can be defined in terms of judicious linear combinations of the Hermitian $U(1,4)$ algebra generators $Z_{A B}$, where $A, B=1,2,3,4,5 ; a, b=1,2,3,4 ; \eta_{A B}=$ $\operatorname{diag}(+,-,-,-,-)$. The linear combination is defined after introducing the following complex-valued coefficients as follows

$$
\begin{equation*}
Z_{a}=(-i)^{1 / 2}\left(Z_{a 5}-i Z_{5 a}\right) ; Z_{a}^{\dagger}=(i)^{1 / 2}\left(Z_{a 5}+i Z_{5 a}\right) ; Z_{55}=\frac{\mathcal{I}}{2} \tag{2.5}
\end{equation*}
$$

The reason behind this particular choice of the complex coefficients appearing in eq-(2.5) will be explained below in eq-(2.14). The Hermitian generators of the $U(1,4)$ algebra are given by $Z_{A B} \equiv \mathcal{E}_{A}^{B}$ and $Z_{B A} \equiv \mathcal{E}_{B}^{A}$; notice that the position of the indices is very relevant because $Z_{A B} \neq Z_{B A}$. The commutators are
$\left[\mathcal{E}_{a}^{b}, \mathcal{E}_{c}^{d}\right]=-i \delta_{c}^{b} \mathcal{E}_{a}^{d}+i \delta_{a}^{d} \mathcal{E}_{c}^{b} ; \quad\left[\mathcal{E}_{c}^{d}, \mathcal{E}_{a}^{5}\right]=-i \delta_{a}^{d} \mathcal{E}_{c}^{5} ; \quad\left[\mathcal{E}_{c}^{d}, \mathcal{E}_{5}^{a}\right]=i \delta_{c}^{a} \mathcal{E}_{5}^{d}$.
and $\left[\mathcal{E}_{5}^{5}, \mathcal{E}_{5}^{a}\right]=-i \delta_{5}^{5} \mathcal{E}_{5}^{a} \ldots$ such that now $\mathcal{I}\left(=2 Z_{55}\right)$ no longer commutes with Z_{a}, Z_{a}^{\dagger}. The generators $Z_{a b}$ of the $U(1,3)$ algebra can be decomposed into the Lorentz sub-algebra generators $L_{[a b]}$ and the "shear"-like generators $M_{(a b)}$ as
$Z_{a b} \equiv \frac{1}{2}\left(M_{(a b)}+L_{[a b]}\right) \Rightarrow L_{a b} \equiv L_{[a b]}=\left(Z_{a b}-Z_{b a}\right) ; M_{a b} \equiv M_{(a b)}=\left(Z_{a b}+Z_{b a}\right)$,
the "shear"-like generators $M_{(a b)}$ and the Lorentz generators $L_{[a b]}$ are Hermitian. The explicit commutation relations of the $M_{a b}, L_{a b}$ generators is given by

$$
\begin{gather*}
{\left[L_{a b}, L_{c d}\right]=i\left(\eta_{b c} L_{a d}-\eta_{a c} L_{b d}-\eta_{b d} L_{a c}+\eta_{a d} L_{b c}\right)} \tag{2.8a}\\
{\left[M_{a b}, M_{c d}\right]=-i\left(\eta_{b c} L_{a d}+\eta_{a c} L_{b d}+\eta_{b d} L_{a c}+\eta_{a d} L_{b c}\right)} \tag{2.8b}\\
{\left[L_{a b}, M_{c d}\right]=i\left(\eta_{b c} M_{a d}-\eta_{a c} M_{b d}+\eta_{b d} M_{a c}-\eta_{a d} M_{b c}\right)} \tag{2.8c}
\end{gather*}
$$

Therefore, given $Z_{a b}=\frac{1}{2}\left(M_{a b}+L_{a b}\right), Z_{c d}=\frac{1}{2}\left(M_{c d}+L_{c d}\right)$ after straightforward algebra it leads to the $U(1,3)$ commutators

$$
\begin{equation*}
\left[Z_{a b}, Z_{c d}\right]=-i\left(\eta_{b c} Z_{a d}-\eta_{a d} Z_{c b}\right) \tag{2.8d}
\end{equation*}
$$

as expected. By extension, the $U(1,4)$ commutators are ${ }^{1}$

$$
\begin{equation*}
\left[Z_{A B}, Z_{C D}\right]=-i\left(\eta_{B C} Z_{A D}-\eta_{A D} Z_{C B}\right) \tag{2.8e}
\end{equation*}
$$

The commutators of the Lorentz boosts generators $L_{a b}$ with the X_{c}, P_{c} generators are

$$
\begin{equation*}
\left[L_{a b}, X_{c}\right]=i\left(\eta_{b c} X_{a}-\eta_{a c} X_{b}\right) ; \quad\left[L_{a b}, P_{c}\right]=i\left(\eta_{b c} P_{a}-\eta_{a c} P_{b}\right) \tag{2.9}
\end{equation*}
$$

The Hermitian $M_{a b}$ generators are the "reciprocal" boosts/rotation transformations which exchange X for P, in addition to boosting (rotating) those variables, and one ends up with the commutators of $M_{a b}$ with the X_{c}, P_{c} generators given by
$\left[M_{a b}, \frac{X_{c}}{\lambda_{l}}\right]=-\frac{i}{\lambda_{p}}\left(\eta_{b c} P_{a}+\eta_{a c} P_{b}\right) ; \quad\left[M_{a b}, \frac{P_{c}}{\lambda_{p}}\right]=-\frac{i}{\lambda_{l}}\left(\eta_{b c} X_{a}+\eta_{a c} X_{b}\right)$

[^0]The commutators in eq- $(1.8 \mathrm{~d})$ and the definitions in eq-(2.5) lead to

$$
\begin{gather*}
{\left[Z_{a b}, Z_{c}\right]=(-i)^{3 / 2}\left(\eta_{b c} Z_{a 5}+i \eta_{a c} Z_{5 b}\right)} \\
{\left[Z_{a b}, Z_{c}^{\dagger}\right]=-(i)^{1 / 2}\left(i \eta_{b c} Z_{a 5}+\eta_{a c} Z_{5 b}\right)} \tag{2.11}
\end{gather*}
$$

which are consistent with the commutators in eqs-(2.8a-2.8c) and the definitions in eqs-(2.5,2.7). The right-hand side of eq-(2.11) can be rewritten in terms of $Z_{a}, Z_{a}^{\dagger}, Z_{b}, Z_{b}^{\dagger}$ after the following replacements

$$
\begin{equation*}
Z_{a 5}=\frac{1}{2}\left[(-i)^{1 / 2} Z_{a}^{\dagger}+(i)^{1 / 2} Z_{a}\right], Z_{b 5}=\frac{1}{2 i}\left[(-i)^{1 / 2} Z_{a}^{\dagger}-(i)^{1 / 2} Z_{a}\right] \tag{2.12}
\end{equation*}
$$

After some algebra one finds

$$
\begin{align*}
{\left[Z_{a b}, Z_{c}\right] } & =-\frac{i}{2} \eta_{b c} Z_{a}+\frac{i}{2} \eta_{a c} Z_{b}-\frac{1}{2} \eta_{b c} Z_{a}^{\dagger}-\frac{1}{2} \eta_{a c} Z_{b}^{\dagger} \\
{\left[Z_{a b}, Z_{c}^{\dagger}\right] } & =-\frac{i}{2} \eta_{b c} Z_{a}^{\dagger}+\frac{i}{2} \eta_{a c} Z_{b}^{\dagger}+\frac{1}{2} \eta_{b c} Z_{a}+\frac{1}{2} \eta_{a c} Z_{b} \tag{2.13}
\end{align*}
$$

The particular choice of the complex coefficients appearing in eq-(2.5) leads to the following deformed Weyl-Heisenberg algebra

$$
\begin{align*}
& {\left[Z_{a}, Z_{b}^{\dagger}\right]=-\left(\eta_{a b} \mathcal{I}+M_{a b}\right) ; \quad\left[Z_{a}, Z_{b}\right]=\left[Z_{a}^{\dagger}, Z_{b}^{\dagger}\right]=-i L_{a b}} \tag{2.14a}\\
& {\left[Z_{a}, \mathcal{I}\right]=2 Z_{a}^{\dagger} ; \quad\left[Z_{a}^{\dagger}, \mathcal{I}\right]=-2 Z_{a} ; \quad\left[Z_{a b}, \mathcal{I}\right]=0 . \quad \mathcal{I}=2 Z_{55}}
\end{align*}
$$

where $\left[\frac{X_{a}}{\lambda_{l}}, \mathcal{I}\right]=2 i \frac{P_{a}}{\lambda_{p}} ;\left[\frac{P_{a}}{\lambda_{p}}, \mathcal{I}\right]=2 i \frac{X_{a}}{\lambda_{l}}$ and the metric $\eta_{a b}=(+1,-1,-1,-1)$ is used to raise and lower indices. The Planck constant is given in terms of the length and momentum scales of eq- (2.2) as $\hbar=\lambda_{l} \lambda_{p}$. In $\hbar=1$ units, $\lambda_{l} \lambda_{p} \rightarrow 1$.

The deformed Quaplectic algebra is given explicitly by eqs-(2.8d, 2.11, 2.13, 2.14) and obeys the Jacobi identities by virtue of the definitions in eqs-($2.5,2.7$). After recurring directly to definitions in eq-(2.1), one finds that eq-(2.14a) explicitly reflects the deformation of the Weyl-Heisenberg algebra resulting from the noncommutative algebra of coordinates and momenta given by
$\left[\frac{X_{a}}{\lambda_{l}}, \frac{P_{b}}{\lambda_{p}}\right]=i\left(\eta_{a b} \mathcal{I}+M_{a b}\right) ;\left[X_{a}, X_{b}\right]=-i\left(\lambda_{l}\right)^{2} L_{a b} ;\left[P_{a}, P_{b}\right]=i\left(\lambda_{p}\right)^{2} L_{a b} ;$
One could interpret the term $\eta_{a b} \mathcal{I}+M_{a b}$ as a matrix-valued Planck constant $\hbar_{a b}$ (in units of $\hbar=1$). One may also note that the generator \mathcal{I} no longer commutes with Z_{a}, Z_{a}^{\dagger}, but it exchanges them, as one can see from eq-(2.14 b) resulting from the definition of \mathcal{I} given by $\mathcal{I} \equiv 2 Z_{55}=M_{55}$.

One of the salient features of the construction of the deformed Quaplectic (Weyl-Heisenberg) algebra is that by varying the values of the following complex coefficients α, β appearing in the linear combinations

$$
\begin{equation*}
Z_{a}=\alpha Z_{a 5}+\beta Z_{5 a} ; \quad Z_{a}^{\dagger}=\alpha^{*} Z_{a 5}+\beta^{*} Z_{5 a} ; \quad Z_{55}=\frac{\mathcal{I}}{2} \tag{2.16}
\end{equation*}
$$

it furnishes different commutation relations than the ones described by eqs(2.14,2.15). The latter commutators are found in the special case when $\alpha=$ $(-i)^{1 / 2}, \beta=(-i)^{3 / 2}$ as chosen in eq-(2.5). For instance, if either $\alpha=0$ or $\beta=0$ it will lead instead to vanishing commutators $\left[Z_{a}, Z_{b}^{\dagger}\right]=\left[Z_{a}, Z_{b}\right]=\left[Z_{a}^{\dagger}, Z_{b}^{\dagger}\right]=0$ as a result of eq-(2.8e). And, in turn, one would have had $\left[X_{a}, X_{b}\right]=\left[P_{a}, P_{b}\right]=$ $\left[X_{a}, P_{b}\right]=0$ instead of eqs-(2.15). Therefore, the introduction of non-vanishing complex coefficients α, β, via eq-(2.16), yield a two-parameter family of deformed fiber coordinates and momenta algebras parametrized by α, β. In particular, one may explicitly introduce these parameters by writing $Z_{a}(\alpha, \beta), Z_{a}^{\dagger}\left(\alpha^{*}, \beta^{*}\right)$.

After introducing the complex-valued vierbein $E_{\mu}^{a}=e_{\mu}^{a}+i f_{\mu}^{a}$, it leads to the complex metric

$$
\begin{equation*}
g_{\mu \nu} \equiv E_{\mu}^{a}\left(E_{\nu}^{b}\right)^{*} \eta_{a b}=g_{(\mu \nu)}+i g_{[\mu \nu]} \tag{2.18a}
\end{equation*}
$$

with

$$
\begin{equation*}
g_{(\mu \nu)}=\left(e_{\mu}^{a} e_{\nu}^{b}+f_{\mu}^{a} f_{\nu}^{b}\right) \eta_{a b}, \quad i g_{[\mu \nu]}=-i\left(e_{\mu}^{a} f_{\nu}^{b}-e_{\nu}^{b} f_{\mu}^{a}\right) \eta_{a b} \tag{2.18b}
\end{equation*}
$$

The 4×4 complex metric $g_{\mu \nu}$ is Hermitian $g_{\mu \nu}^{\dagger}=g_{\mu \nu}$ as a result of $g_{\nu \mu}=\left(g_{\mu \nu}\right)^{*}$. To verify that $g_{[\mu \nu]}=-g_{[\nu \mu]}$ one just needs to relabel the indices $a \leftrightarrow b$ in (eq2.18 b) and recur to $\eta_{b a}=\eta_{a b}$.

The two-parameter family of $U(1,4)$-valued Hermitian gauge fields is given by

$$
\begin{equation*}
\mathbf{A}_{\mu}=\Omega_{\mu}^{a b} Z_{a b}+\frac{1}{L}\left[E_{\mu}^{a} Z_{a}(\alpha, \beta)+\left(E_{\mu}^{a}\right)^{*} Z_{a}^{\dagger}\left(\alpha^{*}, \beta^{*}\right)\right]+\Omega_{\mu} \mathcal{I} \tag{2.19}
\end{equation*}
$$

where L is a length scale that is introduced for dimensional reasons since the physical units of \mathbf{A}_{μ} are (length) ${ }^{-1} . \Omega_{\mu}^{a b} Z_{a b}$ is given by $\frac{1}{2}\left(\Omega_{\mu}^{(a b)} M_{a b}+\Omega_{\mu}^{[a b]} L_{a b}\right)$, and $Z_{a}(\alpha, \beta), Z_{a}^{\dagger}\left(\alpha^{*}, \beta^{*}\right)$ are displayed in eq- (2.16).

One can rewrite the two-parameter family of $U(1,4)$-valued Hermitian gauge fields (2.19) as

$$
\begin{equation*}
\mathbf{A}_{\mu}=\Omega_{\mu}^{a b} Z_{a b}+\Omega_{\mu}^{(a 5)} M_{a 5}+\Omega_{\mu}^{[a 5]} L_{a 5}+\Omega_{\mu} \mathcal{I}, \quad \Omega_{\mu} \equiv \Omega_{\mu}^{55} \tag{2.20}
\end{equation*}
$$

After some straightforward algebra one finds that the real-valued connection components $\Omega_{\mu}^{a 5}, \Omega_{\mu}^{5 a}$ are given by suitable linear combinations of the e_{μ}^{a}, f_{μ}^{a} components of the complex-valued vierbein as follows

$$
\begin{equation*}
\Omega_{\mu}^{a 5}=e_{\mu}^{a}\left(\frac{\alpha+\alpha^{*}}{L}\right)-f_{\mu}^{a}\left(\frac{\alpha-\alpha^{*}}{i L}\right) ; \Omega_{\mu}^{5 a}=e_{\mu}^{a}\left(\frac{\beta+\beta^{*}}{L}\right)-f_{\mu}^{a}\left(\frac{\beta-\beta^{*}}{i L}\right) \tag{2.21a}
\end{equation*}
$$

and such that

$$
\begin{equation*}
\Omega_{\mu}^{(a 5)} \equiv \frac{1}{2}\left(\Omega_{\mu}^{a 5}+\Omega_{\mu}^{5 a}\right), \Omega_{\mu}^{[a 5]} \equiv \frac{1}{2}\left(\Omega_{\mu}^{a 5}-\Omega_{\mu}^{5 a}\right) \tag{2.21b}
\end{equation*}
$$

Because $\alpha \neq \beta$, one finds that $\Omega_{\mu}^{a 5} \neq \Omega_{\mu}^{5 a}$, consequently, $\Omega_{\mu}^{(a 5)} \neq 0 ; \Omega_{\mu}^{[a 5]} \neq$ 0 . Therefore, the introduction of the two distinct complex coefficients α, β is tantamount of choosing an infinite family of real-valued connection components $\Omega_{\mu}^{a 5}, \Omega_{\mu}^{5 a}$ given by the many different linear combinations of e_{μ}^{a} and f_{μ}^{a}. The real valued coefficients of these linear combinations are given by the real and imaginary parts of α and β as displayed in eq-(2.21a). One should also emphasize that no zero torsion conditions were imposed in reaching the relations in eqs(2.21) between $\Omega_{\mu}^{a 5}, \Omega_{\mu}^{5 a}$ and e_{μ}^{a}, f_{μ}^{a}.

The Hermitian $U(1,4)$-valued field strength is defined by

$$
\begin{equation*}
\mathbf{F}_{\mu \nu}=\partial_{\mu} \mathbf{A}_{\nu}-\partial_{\nu} \mathbf{A}_{\mu}+i\left[\mathbf{A}_{\mu}, \mathbf{A}_{\nu}\right] \tag{2.22}
\end{equation*}
$$

from which one can read-off the curvature components $R_{\mu \nu}^{(a b)} ; R_{\mu \nu}^{[a b]}$, and the other components of the field strength (like torsion), in terms of the connection components (and their derivatives) of eq-(2.19) from the following decomposition of the field strength

$$
\begin{equation*}
\mathbf{F}_{\mu \nu}=R_{\mu \nu}^{(a b)} M_{a b}+R_{\mu \nu}^{[a b]} L_{a b}+\frac{1}{L}\left[F_{\mu \nu}^{a} Z_{a}(\alpha, \beta)+\left(F_{\mu \nu}^{a}\right)^{*} Z_{a}^{\dagger}\left(\alpha^{*}, \beta^{*}\right)\right]+F_{\mu \nu} \mathcal{I} \tag{2.23}
\end{equation*}
$$

By proceeding as one did in [16] one may then construct the generalized actions for complex gravity after using the complex metric (vierbein) and its inverse to raise and lower indices. The most simple actions can have terms linear and quadratic in the curvature, and also quadratic terms in the torsion. For further details we refer to [16].

Alternatively, one could instead start with the $U(1,4)$-valued Hermitian gauge field in eq-(2.20) leading to the field strength

$$
\begin{equation*}
\mathbf{F}_{\mu \nu}=R_{\mu \nu}^{(a b)} M_{a b}+R_{\mu \nu}^{[a b]} L_{a b}+R_{\mu}^{(a 5)} M_{a 5}+R_{\mu}^{[a 5]} L_{a 5}+F_{\mu \nu} \mathcal{I} \tag{2.24}
\end{equation*}
$$

and expressed in terms of $\Omega_{\mu}^{(a b)}, \Omega_{\mu}^{[a b]}, e_{\mu}^{a}, f_{\mu}^{a}, \Omega_{\mu}^{55}=\Omega_{\mu}$ and their derivatives. Note that $U(1,4)$ has 25 generators, whereas the metric affine group in $4 D$, given by the semi-direct product of $G L(4, R)$ with the translation group T_{4}, has 20 generators. Therefore, the complex gravitational theory based on $U(1,4)$, and inspired from Born reciprocal relativity theory, has more degrees of freedom than the metric affine theory of gravity in $4 D$. This is not surprising since one is dealing with gravity in curved phase spaces. There is also torsion in our construction.

A curved phase-space action associated with the geometry of the cotangent bundle of spacetime and based on Lagrange-Finsler and Hamilton-Cartan Geometry [17], [18] can be found in [15]. To conclude this section, there are two different approaches to construct generalized gravitational theories in curved phase spaces : (i) via the $U(1,4)$ local gauge theory construction presented here, or (ii) via Finsler geometric methods.

3 The Yang Algebra versus the Deformed Quaplectic Algebra

This section is devoted to an extensive analysis of the Yang and the deformed Quaplectic algebras associated with noncommutative phase spaces. Secondly, we present extensions of such algebras involving antisymmetric tensor coordinates and momenta of different ranks.

3.1 The Yang Algebra and its Extension via Generalized Angular Momentum Operators in Higher Dimensions

Given a flat $6 D$ spacetime with coordinates $Y^{M}=\left\{Y^{1}, Y^{2}, Y^{3}, Y^{4}, Y^{5}, Y^{6}\right\}$, and a metric $\eta_{M N}=\operatorname{diag}(-1,+1,+1, \ldots,+1)^{2}$, the Yang algebra [2], which is an extension of the Snyder algebra [1], can be derived in terms of the $S O(5,1)$ Lorentz algebra generators described by the angular momentum/boost operators ${ }^{3}$

$$
\begin{equation*}
J^{M N}=-\left(Y^{M} \Pi^{N}-Y^{N} \Pi^{M}\right)=i Y^{M} \frac{\partial}{\partial Y_{N}}-i Y^{N} \frac{\partial}{\partial Y_{M}} \tag{3.1}
\end{equation*}
$$

where $\Pi^{M}=-i\left(\partial / \partial Y_{A}\right)$ is the canonical conjugate momentum variable to Y^{M}. Their commutators are

$$
\begin{equation*}
\left[Y^{M}, Y^{N}\right]=0,\left[\Pi^{M}, \Pi^{N}\right]=0, \quad\left[Y^{M}, \Pi^{N}\right]=i \eta^{M N}, \quad M, N=1,2,3,4,5,6 \tag{3.2}
\end{equation*}
$$

The coordinates Y^{M} commute. The momenta Π^{M} also commute, and the canonical conjugate variables Y^{M}, Π^{N} obey the Weyl-Heisenberg algebra in $6 D$.

Adopting the units $\hbar=c=1$, the correspondence among the noncommuting $4 D$ spacetime coordinates x^{μ}, the noncommuting momenta p^{μ}, and the Lorentz $S O(5,1)$ algebra generators leading to the Yang algebra [2] is given by

$$
\begin{align*}
& x^{\mu} \leftrightarrow L_{P} J^{\mu 5}=-L_{P}\left(Y^{\mu} \Pi^{5}-Y^{5} \Pi^{\mu}\right) \tag{3.3a}\\
& p^{\mu} \leftrightarrow \frac{1}{\mathcal{L}} J^{\mu 6}=-\frac{1}{\mathcal{L}}\left(Y^{\mu} \Pi^{6}-Y^{6} \Pi^{\mu}\right), \quad \mu, \nu=1,2,3,4 \tag{3.3b}
\end{align*}
$$

and which requires the introduction of an ultra-violet cutoff scale L_{P} given by the Planck scale, and an infra-red cutoff scale \mathcal{L} that can be set equal to the Hubble scale R_{H} (which determines the cosmological constant). It is very important to emphasize that despite the introduction of two length scales L_{P}, \mathcal{L}

[^1]the Lorentz symmetry is not lost. This is one of the most salient features of the Snyder [1] and Yang [2] algebras. ${ }^{4}$

The other generators are given by
$\mathcal{N} \equiv J^{56}=-\left(Y^{5} \Pi^{6}-Y^{6} \Pi^{5}\right), J^{\mu \nu}=-\left(Y^{\mu} \Pi^{\nu}-Y^{\nu} \Pi^{\mu}\right), \quad \mu, \nu=1,2,3,4$
One can then verify that the Yang algebra is recovered after imposing the correspondence in eqs- $(3.3,3.4)$

$$
\begin{gather*}
{\left[x^{\mu}, x^{\nu}\right]=-i L_{P}^{2} J^{\mu \nu}, \quad\left[p^{\mu}, p^{\nu}\right]=-i\left(\frac{1}{\mathcal{L}}\right)^{2} J^{\mu \nu}, \eta^{55}=\eta^{66}=1} \tag{3.5}\\
{\left[x^{\mu}, J^{\nu \rho}\right]=i\left(\eta^{\mu \rho} x^{\nu}-\eta^{\mu \nu} x^{\rho}\right)} \tag{3.6}\\
{\left[p^{\mu}, J^{\nu \rho}\right]=i\left(\eta^{\mu \rho} p^{\nu}-\eta^{\mu \nu} p^{\rho}\right)} \tag{3.7}\\
{\left[x^{\mu}, p^{\nu}\right]=-i \eta^{\mu \nu} \frac{L_{P}}{\mathcal{L}} \mathcal{N},\left[J^{\mu \nu}, \mathcal{N}\right]=0} \tag{3.8}\\
{\left[x^{\mu}, \mathcal{N}\right]=i L_{P} \mathcal{L} p^{\mu}, \quad\left[p^{\mu}, \mathcal{N}\right]=-i \frac{1}{L_{P} \mathcal{L}} x^{\mu}} \tag{3.9}
\end{gather*}
$$

and where the $\left[J^{\mu \nu}, J^{\rho \sigma}\right]$ commutators are the same as in the $S O(3,1)$ Lorentz algebra in $4 D$. They are of the form

$$
\begin{gather*}
{\left[J^{\mu_{1} \mu_{2}}, J^{\nu_{1} \nu_{2}}\right]=-i \eta^{\mu_{1} \nu_{1}} J^{\mu_{2} \nu_{2}}+i \eta^{\mu_{1} \nu_{2}} J^{\mu_{2} \nu_{1}}+} \\
i \eta^{\mu_{2} \nu_{1}} J^{\mu_{1} \nu_{2}}-i \eta^{\mu_{2} \nu_{2}} J^{\mu_{1} \nu_{1}}, \quad \hbar=c=1 \tag{3.10}
\end{gather*}
$$

The generators are assigned to be Hermitian so there are i factors in the righthand side of eq-(1.10) since the commutator of two Hermitian operators is antiHermitian. The $4 D$ spacetime metric is $\eta_{\mu \nu}=\operatorname{diag}(-1,1,1,1)$.

Given the above correspondence (2.3), we were able to extend it further to the higher grade polyvector-valued coordinates and momenta operators in noncommutative Clifford phase spaces [14]. Given a Clifford algebra $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=$ $2 \eta^{\mu \nu} 1$, a polyvector-valued coordinate is defined as $\mathbf{X}=X_{M} \Gamma^{M}$, and admits the following expansion in terms of the Clifford algebra generators in D-dimensions, $\mathbf{1}, \gamma^{\mu}, \gamma^{\mu_{1}} \wedge \gamma^{\mu_{2}}, \cdots, \gamma^{\mu_{1}} \wedge \gamma^{\mu_{2}} \wedge \cdots \wedge \gamma^{\mu_{D}}$, as follows

$$
\begin{gather*}
\mathbf{X}=X 1+X_{\mu} \gamma^{\mu}+X_{\mu_{1} \mu_{2}} \gamma^{\mu_{1}} \wedge \gamma^{\mu_{2}}+X_{\mu_{1} \mu_{2} \mu_{3}} \gamma^{\mu_{1}} \wedge \gamma^{\mu_{2}} \wedge \gamma^{\mu_{3}}+\ldots \ldots+ \\
X_{\mu_{1} \mu_{2} \mu_{3} \ldots \ldots \mu_{D}} \gamma^{\mu_{1}} \wedge \gamma^{\mu_{2}} \wedge \gamma^{\mu_{3}} \ldots \ldots \wedge \gamma^{\mu_{D}} \tag{3.11a}
\end{gather*}
$$

The numerical combinatorial factors can be omitted by imposing the ordering prescription $\mu_{1}<\mu_{2}<\mu_{3} \cdots<\mu_{D}$. In order to match physical units in each

[^2]term of (2.11a) a length scale parameter must be suitably introduced in the expansion in eq-(2.11a). In [7] we introduced the Planck scale as the expansion parameter in (2.11a), and which was set to unity, when one adopts the units $\hbar=c=G=1$.

Similarly, the polyvector-valued momentum $\mathbf{P}=P_{M} \Gamma^{M}$ admits the following expansion in terms of the Clifford algebra generators in D-dimensions

$$
\begin{gather*}
\mathbf{P}=P \mathbf{1}+P_{\mu} \gamma^{\mu}+P_{\mu_{1} \mu_{2}} \gamma^{\mu_{1}} \wedge \gamma^{\mu_{2}}+P_{\mu_{1} \mu_{2} \mu_{3}} \gamma^{\mu_{1}} \wedge \gamma^{\mu_{2}} \wedge \gamma^{\mu_{3}}+\ldots \ldots+ \\
P_{\mu_{1} \mu_{2} \mu_{3} \ldots \ldots \mu_{D}} \gamma^{\mu_{1}} \wedge \gamma^{\mu_{2}} \wedge \gamma^{\mu_{3}} \ldots \ldots . \wedge \gamma^{\mu_{D}} \tag{3.11b}
\end{gather*}
$$

The scalar, vectorial, antisymmetric tensorial coordinates X, X_{μ}, $X_{\mu_{1} \mu_{2}}=-X_{\mu_{2} \mu_{1}}, \cdots, X_{\mu_{1} \mu_{2} \cdots \mu_{D}}$ are the scalar, vector, bivector, trivector, \cdots components of the polyvector-valued coordinates. The $X_{\mu_{1} \mu_{2}}$ bivector (antisymmetric tensor of rank 2) corresponds to an oriented area element. The trivector $X_{\mu_{1} \mu_{2} \mu_{3}}$ (antisymmetric tensor of rank 3) corresponds to an oriented volume element, and so forth.

Similarly, the scalar, vectorial, antisymmetric tensorial coordinates P, P_{μ}, $P_{\mu_{1} \mu_{2}}=-P_{\mu_{2} \mu_{1}}, \cdots, P_{\mu_{1} \mu_{2} \cdots \mu_{D}}$ are the scalar, vector, bivector, trivector, \cdots components of the polyvector-valued momentum coordinates. The $P_{\mu_{1} \mu_{2}}$ bivector (antisymmetric tensor of rank 2) corresponds to an oriented areal-momentum element. The trivector $P_{\mu_{1} \mu_{2} \mu_{3}}$ (antisymmetric tensor of rank 3) corresponds to an oriented volume-momentum element, and so forth.

We constructed in [14] the corresponding non-vanishing commutators among the noncommutative antisymmetric tensors $X^{\mu_{1} \mu_{2}}, X^{\mu_{1} \mu_{2} \mu_{3}}, \cdots ; P^{\mu_{1} \mu_{2}}, P^{\mu_{1} \mu_{2} \mu_{3}}, \ldots$ of different ranks. We coined such extension of the Yang algebra the CliffordYang algebra since it involves polyvector-valued coordinates and momenta associated with a Clifford algebra. The noncommuting bivector coordinates obey

$$
\begin{equation*}
\left[X^{\mu_{1} \mu_{2}}, X^{\nu_{1} \nu_{2}}\right] \sim i L_{P}^{4} \eta^{55} J^{\mu_{1} \mu_{2} \mid \nu_{1} \nu_{2}}, J^{\mu_{1} \mu_{2} \mid \nu_{1} \nu_{2}} \equiv-\left(Y^{\mu_{1} \mu_{2}} \Pi^{\nu_{1} \nu_{2}}-Y^{\nu_{1} \nu_{2}} \Pi^{\mu_{1} \mu_{2}}\right) \tag{3.12a}
\end{equation*}
$$

$Y^{\mu_{1} \mu_{2}}$ is a bivector coordinate associated with the $C l(5,1)$ algebra of the $6 D$ flat spacetime. $\Pi^{\mu_{1} \mu_{2}}=-i\left(\partial / \partial Y_{\mu_{1} \mu_{2}}\right)$ is the corresponding bivector canonical momentum conjugate. Their commutators are

$$
\begin{equation*}
\left[Y^{\mu_{1} \mu_{2}}, Y^{\nu_{1} \nu_{2}}\right]=0, \quad\left[\Pi^{\mu_{1} \mu_{2}}, \Pi^{\nu_{1} \nu_{2}}\right]=0, \quad\left[Y^{\mu_{1} \mu_{2}}, P^{\nu_{1} \nu_{2}}\right]=i \eta^{\mu_{1} \mu_{2} \mid \nu_{1} \nu_{2}} \tag{3.12b}
\end{equation*}
$$

and where the generalized metric involving bivector indices is defined as

$$
\begin{equation*}
\eta^{\mu_{1} \mu_{2} \mid \nu_{1} \nu_{2}}=\eta^{\nu_{1} \nu_{2} \mid \mu_{1} \mu_{2}}=\eta^{\mu_{1} \nu_{1}} \eta^{\mu_{2} \nu_{2}}-\eta^{\mu_{1} \nu_{2}} \eta^{\mu_{2} \nu_{1}} \tag{3.12c}
\end{equation*}
$$

The noncommuting bivector momenta obey

$$
\begin{equation*}
\left[P^{\mu_{1} \mu_{2}}, P^{\nu_{1} \nu_{2}}\right] \sim i \mathcal{L}^{-4} \eta^{66} J^{\mu_{1} \mu_{2} \mid \nu_{1} \nu_{2}} \tag{3.12d}
\end{equation*}
$$

And so forth. All the commutators have the same structural form of a generalized angular momentum algebra as follows

$$
\left[J^{A\left(r_{1}\right) \mid B\left(r_{2}\right)}, J^{C\left(s_{1}\right) \mid D\left(s_{2}\right)}\right]=-i \eta^{A\left(r_{1}\right) \mid C\left(s_{1}\right)} J^{B\left(r_{2}\right) \mid D\left(s_{2}\right)}+i \eta^{A\left(r_{1}\right) \mid D\left(s_{2}\right)} J^{B\left(r_{2}\right) \mid C\left(s_{1}\right)}+
$$

$$
\begin{equation*}
i \eta^{B\left(r_{2}\right) \mid C\left(s_{1}\right)} J^{A\left(r_{1}\right) \mid D\left(s_{2}\right)}-i \eta^{B\left(r_{2}\right) \mid D\left(s_{2}\right)} J^{A\left(r_{1}\right) \mid C\left(s_{1}\right)}, \quad \hbar=c=1 \tag{3.12e}
\end{equation*}
$$

where the grades of the polyvector indices $A\left(r_{1}\right) B\left(r_{2}\right), C\left(s_{1}\right), D\left(s_{2}\right)$ appearing in the generators are $r_{1}, r_{2}, s_{1}, s_{2}$, respectively. The shorthand notation for $J^{a_{1} a_{2} \cdots a_{r_{1}} \mid b_{1} b_{2} \cdots b_{r_{2}}}$ is $J^{A\left(r_{1}\right) \mid B\left(r_{2}\right)}, \cdots$. The generalized metric tensor $\eta^{A \mid C}=0$ if the grade of A is not equal to the grade of C. Similarly, $\eta^{A \mid D}=0$ if the grade of A is not equal to the grade of D, \cdots. Also, $\eta^{\mu 5}=\eta^{\mu 6}=0$ since the $6 D$ metric is diagonal. The commutators (3.12e) will ensure that the Jacobi identities are satisfied. In addition, we found the spectrum of the quantum harmonic oscillator in noncommutative spaces in terms of the eigenvalues of the generalized angular momentum operators in higher dimensions, and discussed how to extend these results to higher grade polyvector-valued coordinates and momenta. For full details we refer to [14].

3.2 Realization of the Deformed Quaplectic Algebra and its Extensions

We have seen above how the noncommutative coordinates and momenta of the Yang-algebra in $4 D$ can be realized in terms of the angular momentum operators in $6 D$, and which in turn, are expressed in terms of the canonical-conjugate variables Y^{M}, Π^{N} in $6 D$ shown in eqs-(3.3,3.4), and obeying the standard commutation relations displayed in eqs-(3.2). Inspired by this procedure we shall find next a realization of the deformed Quaplectic algebra generators in terms of the canonical coordinate and momentum variables $Y_{a}, \Pi_{b}, Y_{5}, \Pi_{5}$ as follows

$$
\begin{gather*}
M_{a b}=M_{b a}=\frac{1}{2}\left(Y_{a} \Pi_{b}+\Pi_{b} Y_{a}\right)+\frac{1}{2}\left(Y_{b} \Pi_{a}+\Pi_{a} Y_{b}\right) \tag{3.13a}\\
M_{a 5}=M_{5 a}=\frac{1}{2}\left(Y_{a} \Pi_{5}+\Pi_{5} Y_{a}\right)+\frac{1}{2}\left(Y_{5} \Pi_{a}+\Pi_{a} Y_{5}\right), M_{55}=\left(Y_{5} \Pi_{5}+\Pi_{5} Y_{5}\right) \\
L_{a b}=-L_{b a}=\frac{1}{2}\left(Y_{a} \Pi_{b}+\Pi_{b} Y_{a}\right)-\frac{1}{2}\left(Y_{b} \Pi_{a}+\Pi_{a} Y_{b}\right) \tag{3.13b}\\
L_{a 5}=-L_{5 a}=\frac{1}{2}\left(Y_{a} \Pi_{5}+\Pi_{5} Y_{a}\right)-\frac{1}{2}\left(Y_{5} \Pi_{a}+\Pi_{a} Y_{5}\right) \tag{3.13d}
\end{gather*}
$$

From eqs- $(3.12,3.13)$ one then finds an explicit realization of the generators $Z_{A B}=\frac{1}{2}\left(M_{A B}+L_{A B}\right)$ of the deformed Quaplectic algebra, with $A, B=$ $1,2,3,4,5$, directly in terms of the canonical coordinate and momentum variables $Y_{a}, \Pi_{b}, Y_{5}, \Pi_{5}$, and obeying the following commutation relations

$$
\begin{array}{r}
{\left[Y_{a}, Y_{b}\right]=0, \quad\left[Y_{a}, Y_{5}\right]=0, \quad\left[\Pi_{a}, \Pi_{b}\right]=0} \\
{\left[\Pi_{a}, \Pi_{5}\right]=0, \quad\left[Y_{a}, \Pi_{b}\right]=i \eta_{a b},\left[Y_{5}, \Pi_{5}\right]=i \eta_{55}} \tag{3.14b}
\end{array}
$$

From eqs-(3.14) one learns that when $a \neq b$, the generator $M_{a b}$ reduces to $Y_{a} \Pi_{b}+Y_{b} \Pi_{a}$, and when $a=b, M_{a a}=Y_{a} \Pi_{a}+\Pi_{a} Y_{a}$. While the generator
$L_{a b}=Y_{a} \Pi_{b}-Y_{b} \Pi_{a}$. Similarly, $M_{a 5}$ reduces to $Y_{a} \Pi_{5}+Y_{5} \Pi_{a} ; M_{55}=Y_{5} \Pi_{5}+\Pi_{5} Y_{5}$, and $L_{a 5}=Y_{a} \Pi_{5}-Y_{5} \Pi_{a}$

The difference between the Yang and the deformed Quaplectic algebra is that in the Yang algebra case one adds two additional coordinates and momenta $Y^{5}, Y^{6}, \Pi^{5}, \Pi^{6}$ in order to construct the $S O(5,1)$ algebra with 15 generators. Whereas in the deformed Quaplectic algebra case one adds one additional coordinate and momentum Y^{5}, Π^{5}, and the extra generators $M_{a b}, M_{a 5}, M_{55}=\mathcal{I}$ in order to construct the $U(1,4)$ algebra with 25 generators. Furthermore, the construction of the Yang algebra requires the two length scales L_{P}, \mathcal{L}; whereas in the (deformed) Quaplectic algebra one has the length scale λ_{l}, and the momentum scale λ_{p}.

The antisymmetric rank- 2 tensor coordinates and momenta operators extensions of the expressions in eqs- $(3.12,3.13)$ are given by

$$
\begin{align*}
& M_{a_{1} a_{2} \mid b_{1} b_{2}}=\frac{1}{2}\left(Y_{a_{1} a_{2}} \Pi_{b_{1} b_{2}}+\Pi_{b_{1} b_{2}} Y_{a_{1} a_{2}}\right)+\frac{1}{2}\left(Y_{b_{1} b_{2}} \Pi_{a_{1} a_{2}}+\Pi_{a_{1} a_{2}} Y_{b_{1} b_{2}}\right) \tag{3.15a}\\
& \tag{3.15b}\\
& L_{a_{1} a_{2} \mid b_{1} b_{2}}=\frac{1}{2}\left(Y_{a_{1} a_{2}} \Pi_{b_{1} b_{2}}+\Pi_{b_{1} b_{2}} Y_{a_{1} a_{2}}\right)-\frac{1}{2}\left(Y_{b_{1} b_{2}} \Pi_{a_{1} a_{2}}+\Pi_{a_{1} a_{2}} Y_{b_{1} b_{2}}\right)
\end{align*}
$$

where

$$
\begin{align*}
& M_{a_{1} a_{2} \mid b_{1} b_{2}}=-M_{a_{2} a_{1} \mid b_{1} b_{2}}=-M_{a_{1} a_{2} \mid b_{2} b_{1}}=M_{b_{1} b_{2} \mid a_{1} a_{2}} \tag{3.16a}\\
& L_{a_{1} a_{2} \mid b_{1} b_{2}}=-L_{a_{2} a_{1} \mid b_{1} b_{2}}=-L_{a_{1} a_{2} \mid b_{2} b_{1}}=-L_{b_{1} b_{2} \mid a_{1} a_{2}} \tag{3.16b}
\end{align*}
$$

Given $M_{a_{1} a_{2} \mid b_{1} b_{2}}, L_{a_{1} a_{2} \mid b_{1} b_{2}}$ the generalization of the operator $Z_{a b}$ is

$$
\begin{equation*}
Z_{a_{1} a_{2} \mid b_{1} b_{2}} \equiv \frac{1}{2}\left(M_{a_{1} a_{2} \mid b_{1} b_{2}}+L_{a_{1} a_{2} \mid b_{1} b_{2}}\right) \tag{3.16c}
\end{equation*}
$$

The generalization of the commutators in eqs-(2.8a, $2.8 \mathrm{~b}, 2.8 \mathrm{c})$ corresponding to the $M_{a_{1} a_{2} \mid b_{1} b_{2}}, L_{a_{1} a_{2} \mid b_{1} b_{2}}$ generators is given by

$$
\begin{gather*}
{\left[L_{a_{1} a_{2} \mid b_{1} b_{2}}, L_{c_{1} c_{2} \mid d_{1} d_{2}}\right]=i \eta_{b_{1} b_{2} \mid c_{1} c_{2}} L_{a_{1} a_{2} \mid d_{1} d_{2}}-i \eta_{a_{1} a_{2} \mid c_{1} c_{2}} L_{b_{1} b_{2} \mid d_{1} d_{2}}-} \\
i \eta_{b_{1} b_{2} \mid d_{1} d_{2}} L_{a_{1} a_{2} \mid c_{1} c_{2}}+i \eta_{a_{1} a_{2} \mid d_{1} d_{2}} L_{b_{1} b_{2} \mid c_{1} c_{2}} \tag{3.17}\\
{\left[M_{a b}, M_{c d}\right]=-i \eta_{b_{1} b_{2} \mid c_{1} c_{2}} L_{a_{1} a_{2} \mid d_{1} d_{2}}-i \eta_{a_{1} a_{2} \mid c_{1} c_{2}} L_{b_{1} b_{2} \mid d_{1} d_{2}}-} \\
i \eta_{b_{1} b_{2} \mid d_{1} d_{2}} L_{a_{1} a_{2} \mid c_{1} c_{2}}-i \eta_{a_{1} a_{2} \mid d_{1} d_{2}} L_{b_{1} b_{2} \mid c_{1} c_{2}} \tag{3.18}\\
{\left[L_{a b}, M_{c d}\right]=i \eta_{b_{1} b_{2} \mid c_{1} c_{2}} M_{a_{1} a_{2} \mid c_{1} c_{2} d_{2}} M_{b_{1} b_{2} \mid d_{1} d_{2}}+} \\
i \eta_{b_{1} b_{2} \mid d_{1} d_{2}} M_{a_{1} a_{2} \mid c_{1} c_{2}}-i \eta_{a_{1} a_{2} \mid d_{1} d_{2}} M_{b_{1} b_{2} \mid c_{1} c_{2}} \tag{3.19}
\end{gather*}
$$

where

$$
\begin{equation*}
\eta^{a_{1} a_{2} \mid b_{1} b_{2}} \equiv \eta^{a_{1} b_{1}} \eta^{a_{2} b_{2}}-\eta^{a_{1} b_{2}} \eta^{a_{2} b_{1}} \tag{3.20}
\end{equation*}
$$

From eqs-(3.16c, $3.17-3.20)$ one finds that

$$
\begin{equation*}
\left[Z_{a_{1} a_{2} \mid b_{1} b_{2}}, Z_{c_{1} c_{2} \mid d_{1} d_{2}}\right]=-i\left(\eta_{b_{1} b_{2} \mid c_{1} c_{2}} Z_{a_{1} a_{2} \mid d_{1} d_{2}}-\eta_{a_{1} a_{2} \mid d_{1} d_{2}} Z_{c_{1} c_{2} \mid b_{1} b_{2}}\right) \tag{3.21}
\end{equation*}
$$

This is a result of the canonical antisymmetric rank-2 tensor coordinates and momenta variables $Y_{a_{1} a_{2}}, \Pi_{b_{1} b_{2}}$ obeying the following commutation relations (the generalization of eqs-(3.14))

$$
\begin{equation*}
\left[Y_{a_{1} a_{2}}, Y_{b_{1} b_{2}}\right]=0,\left[\Pi_{a_{1} a_{2}}, \Pi_{b_{1} b_{2}}\right]=0, \quad\left[Y_{a_{1} a_{2}}, \Pi_{b_{1} b_{2}}\right]=i \eta_{a_{1} a_{2} \mid b_{1} b_{2}} \tag{3.22}
\end{equation*}
$$

The other dimensionless generators are ${ }^{5}$

$$
\begin{align*}
M_{a_{1} a_{2} \mid 5} & =\frac{Y_{a_{1} a_{2}}}{\lambda_{l}^{2}} \frac{\Pi_{5}}{\lambda_{p}}+\frac{Y_{5}}{\lambda_{l}} \frac{\Pi_{a_{1} a_{2}}}{\lambda_{p}^{2}}, \\
M_{5 \mid a_{1} a_{2}} & =\frac{Y_{5}}{\lambda_{l}} \frac{\Pi_{a_{1} a_{2}}}{\lambda_{p}^{2}}+\frac{Y_{a_{1} a_{2}}^{2}}{\lambda_{l}^{2}} \frac{\Pi_{5}}{\lambda_{p}} \tag{3.23}\\
L_{a_{1} a_{2} \mid 5} & =\frac{Y_{a_{1} a_{2}}^{\lambda_{l}^{2}} \frac{\Pi_{5}}{\lambda_{p}}-\frac{Y_{5}}{\lambda_{l}} \frac{\Pi_{a_{1} a_{2}}}{\lambda_{p}^{2}}}{L_{5 \mid a_{1} a_{2}}}=\frac{Y_{5}}{\lambda_{l}} \frac{\Pi_{a_{1} a_{2}}}{\lambda_{p}^{2}}-\frac{Y_{a_{1} a_{2}}}{\lambda_{l}^{2}} \frac{\Pi_{5}}{\lambda_{p}}
\end{align*}
$$

such that

$$
\begin{equation*}
Z_{a_{1} a_{2} \mid 5}=\frac{1}{2}\left(M_{a_{1} a_{2} \mid 5}+L_{a_{1} a_{2} \mid 5}\right), \quad Z_{5 \mid a_{1} a_{2}}=\frac{1}{2}\left(M_{5 \mid a_{1} a_{2}}+L_{5 \mid a_{1} a_{2}}\right) \tag{3.25}
\end{equation*}
$$

and leading to the following generators

$$
\begin{align*}
Z_{\left[a_{1} a_{2}\right]} & \equiv \frac{1}{\sqrt{2}}\left(\frac{X_{a_{1} a_{2}}}{\lambda_{l}^{2}}-i \frac{P_{a_{1} a_{2}}}{\lambda_{p}^{2}}\right)=\alpha Z_{a_{1} a_{2} \mid 5}+\beta Z_{5 \mid a_{1} a_{2}} \tag{3.26a}\\
Z_{\left[a_{1} a_{2}\right]}^{\dagger} & \equiv \frac{1}{\sqrt{2}}\left(\frac{X_{a_{1} a_{2}}}{\lambda_{l}^{2}}+i \frac{P_{a_{1} a_{2}}}{\lambda_{p}^{2}}\right)=\alpha^{*} Z_{a_{1} a_{2} \mid 5}+\beta^{*} Z_{5 \mid a_{1} a_{2}} \tag{3.26b}
\end{align*}
$$

where α, β are suitable complex-valued coefficients chosen so that ${ }^{6}$

$$
\begin{gather*}
{\left[Z_{\left[a_{1} a_{2}\right]}, Z_{\left[b_{1} b_{2}\right]}^{\dagger}\right]=-\left(\eta_{a_{1} a_{2} \mid b_{1} b_{2}} \mathcal{I}+M_{a_{1} a_{2} \mid b_{1} b_{2}}\right)} \tag{3.27}\\
{\left[Z_{\left[a_{1} a_{2}\right]}, Z_{\left[b_{1} b_{2}\right]}\right]=\left[Z_{\left[a_{1} a_{2}\right]}^{\dagger}, Z_{\left[b_{1} b_{2}\right]}^{\dagger}\right]=-i L_{a_{1} a_{2} \mid b_{1} b_{2}}} \tag{3.28}
\end{gather*}
$$

Finally, from eqs- $(3.26,3.27,3.28)$ one arrives at the desired result

[^3]\[

$$
\begin{gather*}
{\left[\frac{X_{a_{1} a_{2}}}{\lambda_{l}^{2}}, \frac{P_{b_{1} b_{2}}}{\lambda_{p}^{2}}\right]=i\left(\eta_{a_{1} a_{2} \mid b_{1} b_{2}} \mathcal{I}+M_{a_{1} a_{2} \mid b_{1} b_{2}}\right)} \tag{3.29}\\
{\left[X_{a_{1} a_{2}}, X_{b_{1} b_{2}}\right]=-i\left(\lambda_{l}\right)^{4} L_{a_{1} a_{2} \mid b_{1} b_{2}} ;\left[P_{a_{1} a_{2}}, P_{b_{1} b_{2}}\right]=i\left(\lambda_{p}\right)^{4} L_{a_{1} a_{2} \mid b_{1} b_{2}}} \tag{3.30}
\end{gather*}
$$
\]

The above construction can be extended to higher rank antisymmetric tensor coordinates and momenta $Y_{a_{1} a_{2}, a_{3}}, \Pi_{a_{1} a_{2} a_{3}}, \cdots$ leading to the generators $Z_{a_{1} a_{2} a_{3} \mid b_{1} b_{2} b_{3} ;} ; Z_{a_{1} a_{2} a_{3} \mid 5} ; Z_{5 \mid a_{1} a_{2} a_{3}}, \cdots$, and whose commutators are the extensions of the equations above. The end result is

$$
\begin{gather*}
{\left[\frac{X_{a_{1} a_{2} \cdots a_{n}}}{\lambda_{l}^{n}}, \frac{P_{b_{1} b_{2} \cdots b_{n}}}{\lambda_{p}^{n}}\right]=i\left(\eta_{a_{1} a_{2} \cdots a_{n} \mid b_{1} b_{2} \cdots b_{n}} \mathcal{I}+M_{a_{1} a_{2} \cdots a_{n} \mid b_{1} b_{2} \cdots b_{n}}\right)} \tag{3.31}\\
{\left[X_{a_{1} a_{2} \cdots a_{n}}, X_{b_{1} b_{2} \cdots b_{n}}\right]=-i\left(\lambda_{l}\right)^{2 n} L_{a_{1} a_{2} \cdots a_{n} \mid b_{1} b_{2} \cdots b_{n}}} \tag{3.32a}\\
{\left[P_{a_{1} a_{2} \cdots a_{n}}, P_{b_{1} b_{2} \cdots b_{n}}\right]=i\left(\lambda_{p}\right)^{2 n} L_{a_{1} a_{2} \cdots a_{n} \mid b_{1} b_{2} \cdots b_{n}}} \tag{3.32b}
\end{gather*}
$$

where $\eta_{a_{1} a_{2} \cdots a_{n} \mid b_{1} b_{2} \cdots b_{n}}$ can be written as the determinant of the $n \times n$ matrix whose entries are $\eta^{a_{i} b_{j}}$ with $i, j=1,2, \cdots, n$. The same occurs with $\delta_{b_{1} b_{2} \cdots b_{n}}^{a_{1} a_{2} \cdots a_{n}}$ where the entries are $\delta_{b_{j}}^{a_{i}}$. One finds that eqs-($3.31,32$) do not differ too much from those corresponding equations of the Clifford-Yang algebra [14]. In the latter algebra, $\mathcal{I}=2 Z_{55}=M_{55}$ is replaced by $\mathcal{N} \equiv J^{56}$; there are no $M_{a_{1} a_{2} \cdots a_{n} \mid b_{1} b_{2} \cdots b_{n}}$ terms, and λ_{l}, λ_{p} are replaced by L_{P}, \mathcal{L}^{-1}, respectively where L_{P}, \mathcal{L} are the lower and upper length scales.

To sum up, all the commutation relations can be obtained from

$$
\begin{gather*}
{\left[Z_{a_{1} a_{2} \cdots a_{n} \mid b_{1} b_{2} \cdots b_{n}}, Z_{c_{1} c_{2} \cdots c_{n} \mid d_{1} d_{2} \cdots d_{n}}\right]=} \\
-i\left(\eta_{b_{1} b_{2} \cdots b_{n} \mid c_{1} c_{2} \cdots c_{n}} Z_{a_{1} a_{2} \cdots a_{n} \mid d_{1} d_{2} \cdots d_{n}}-\eta_{a_{1} a_{2} \cdots a_{n} \mid d_{1} d_{2} \cdots d_{n}} Z_{c_{1} c_{2} \cdots c_{n} \mid b_{1} b_{2} \cdots b_{n}}\right) . \tag{3.3.3a}
\end{gather*}
$$

$$
\begin{equation*}
\left[Z_{a_{1} a_{2} \cdots a_{n} \mid 5}, Z_{5 \mid b_{1} b_{2} \cdots b_{n}}\right]=-i\left(\eta_{55} Z_{a_{1} a_{2} \cdots a_{n} \mid b_{1} b_{2} \cdots b_{n}}-\eta_{a_{1} a_{2} \cdots a_{n} \mid b_{1} b_{2} \cdots b_{n}} Z_{55}\right), \cdots \tag{3.33b}
\end{equation*}
$$

4 Curved Phase Space due to Noncommutative Coordinates and Momenta

Noncommuting momentum operators are a reflection of the spacetime curvature after invoking the QM prescription $p_{\mu} \leftrightarrow-i \hbar \nabla_{\mu}$. By Born's reciprocity, noncommuting coordinates are a reflection of the momentum space curvature after invoking $x_{\mu} \leftrightarrow i \hbar \tilde{\nabla}_{\mu}$, where the tilde derivatives represent derivatives with respect to the momentum variables.

Having reviewed the basics of the Yang algebra of noncommutative phase spaces, Born Reciprocal Relativity, the extended Yang and (deformed) Quaplectic algebras, in this section we shall provide a solution for the exact analytical mapping of the non-commuting x^{μ}, p^{μ} operator variables (associated to an $8 D$ curved phase space) into the canonical Y^{A}, Π^{A} operator variables of a flat $12 D$ phase space. We explore the geometrical implications of this mapping which provides, in the classical limit, with the embedding functions $Y^{A}(x, p), \Pi^{A}(x, p)$ of an $8 D$ curved phase space into a flat $12 D$ phase space background. The latter embedding functions determine the functional forms of the base spacetime metric $g_{\mu \nu}(x, p)$, the fiber metric of the vertical space $h^{a b}(x, p)$, and the nonlinear connection $N_{a \mu}(x, p)$ associated with the $8 D$ cotangent space of the $4 D$ spacetime.

4.1 Mapping of x^{μ}, p^{μ} to the Y^{A}, Π^{A} variables in Flat Phase Space

The $Y^{5}, Y^{6}, \Pi^{5}, \Pi^{6}$ canonical coordinates and momenta (operators) in the flat 12-dim phase space are scalars from the point of view of the 8 -dim curved phase space parametrized by the non-canonical coordinates x^{μ} and momenta p^{μ}. Therefore, $Y^{5}, Y^{6}, \Pi^{5}, \Pi^{6}$ must be functions of the Lorentz scalars
$x^{2}=\eta_{\mu \nu} x^{\mu} x^{\nu}, p^{2}=\eta_{\mu \nu} p^{\mu} p^{\nu}, x \cdot p=\eta_{\mu \nu} x^{\mu} p^{\mu}, p \cdot x=\eta_{\mu \nu} p^{\mu} x^{\nu}, \quad \mu, \nu=1,2,3,4$
Setting $\alpha=\mathcal{L}^{-1}, \beta=L_{P}$, due to the Born reciprocity principle, one must have functions $f\left(z_{1}, z_{2}, z_{3}\right)$ of the arguments z_{1}, z_{2}, z_{3} given by the following combination of Hermitian variables (operators)
$z_{1} \equiv\left(\alpha^{2} x^{2}+\beta^{2} p^{2}\right), \quad z_{2} \equiv(x \cdot p+p \cdot x), \quad z_{3} \equiv i(x \cdot p-p \cdot x), \quad \alpha=\mathcal{L}^{-1}, \beta=L_{P}$

The arguments z_{1}, z_{2}, z_{3} are invariant under $\alpha \leftrightarrow \beta, x \leftrightarrow p$, and $i \leftrightarrow-i$ if one wishes to implement Born's reciprocity symmetry. Therefore, one must have functions of the form
$Y^{5}=Y^{5}\left(z_{1}, z_{2}, z_{3}\right), Y^{6}=Y^{6}\left(z_{1}, z_{2}, z_{3}\right), \Pi^{5}=\Pi^{5}\left(z_{1}, z_{2}, z_{3}\right), \quad \Pi^{6}=\Pi^{6}\left(z_{1}, z_{2}, z_{3}\right)$
For instance, one could have functions linear in z_{1}, z_{2}, z_{3} defined as follows

$$
\begin{align*}
& Y^{5}(x, p)=a_{1}\left(\alpha^{2} x^{2}+\beta^{2} p^{2}\right)+b_{1}(x \cdot p)+b_{1}^{*}(p \cdot x)+c_{1} \tag{4.4a}\\
& Y^{6}(x, p)=a_{2}\left(\alpha^{2} x^{2}+\beta^{2} p^{2}\right)+b_{2}(x \cdot p)+b_{2}^{*}(p \cdot x)+c_{2} \tag{4.4b}\\
& \Pi^{5}(x, p)=a_{3}\left(\alpha^{2} x^{2}+\beta^{2} p^{2}\right)+b_{3}(x \cdot p)+b_{3}^{*}(p \cdot x)+c_{3} \tag{4.4c}\\
& \Pi^{6}(x, p)=a_{4}\left(\alpha^{2} x^{2}+\beta^{2} p^{2}\right)+b_{4}(x \cdot p)+b_{4}^{*}(p \cdot x)+c_{4} \tag{4.4d}
\end{align*}
$$

where $a_{i}, b_{i}, c_{i}(i=1,2,3,4)$ are judicious numerical (dimensionful) coefficients. The units of the coefficients in eqs-(4.4a, 4.4b) are those of length, while those in eqs- $(4.4 \mathrm{c}, 4.4 \mathrm{~d})$ are those of mass. Note that the b_{i} coefficients in eqs-(4.4) are complex-valued $b_{i}=\gamma_{i}+i \delta_{i}$. The reason is that the combination
$b_{i}(x \cdot p)+b_{i}^{*}(p \cdot x)=\gamma_{i}(x \cdot p+p \cdot x)+i \delta_{i}(x \cdot p-p \cdot x)=\gamma_{i} z_{2}+\delta_{i} z_{3}, \quad i=1,2,3,4$
ensures that eq-(4.4e) is Hermitian by construction. Eq-(4.4e) is also invariant under Born's reciprocity $x \leftrightarrow p$ and $i \leftrightarrow-i$. We shall show that eqs-(4.4) should, in principle, provide satisfactory solutions to the embedding problem defined below.

The $\left[x^{\mu}, p^{\nu}\right]$ commutator is defined as

$$
\begin{equation*}
\left[x^{\mu}, p^{\nu}\right]=x^{\mu} p^{\nu}-p^{\nu} x^{\mu}=i \gamma^{\mu \nu}(x, p) \tag{4.5}
\end{equation*}
$$

where $\gamma^{\mu \nu}(x, p)$ is a second rank tensor, not necessarily symmetric, that we refrain from identifying it to a metric tensor. The above commutator can also be expressed in terms of the $6 D$ angular momenta variables displayed by eqs(3.3,3.4) as

$$
\begin{gather*}
{\left[x^{\mu}, p^{\nu}\right]=i \gamma^{\mu \nu}(x, p)=-i \alpha \beta J^{56}(x, p) \eta^{\mu \nu}=} \\
i \alpha \beta\left[Y^{5}(x, p) \Pi^{6}(x, p)-Y^{6}(x, p) \Pi^{5}(x, p)\right] \eta^{\mu \nu}, \alpha=\mathcal{L}^{-1}, \beta=L_{P} \tag{4.6}
\end{gather*}
$$

Therefore, from eqs- $(4.5,4.6)$ one arrives at the following relation, after contracting both equations with $\eta_{\mu \nu}$,

$$
\begin{gather*}
\frac{1}{4 i} \eta_{\mu \nu}\left(x^{\mu} p^{\nu}-p^{\nu} x^{\mu}\right)=\frac{1}{4 i}(x \cdot p-p \cdot x)= \\
\left.\alpha \beta\left(Y^{5}(x, p) \Pi^{6}(x, p)-Y^{6}(x, p) \Pi^{5}(x, p)\right)\right)=-\alpha \beta \mathcal{N} \tag{4.7}
\end{gather*}
$$

Therefore, in this particular case, one finds that the tensor is symmetric $\gamma^{\mu \nu}(x, p)=$ $\Phi(x, p) \eta^{\mu \nu}$ and such that the conformal factor $\Phi(x, p)$ is Hermitian and given by the left hand side of eq-(4.7). The r.h.s of (4.7) is Hermitian because J^{56} is Hermitian due to the canonical and Hermiticity nature of the $6 D$ variables $:\left(Y^{5} \Pi^{6}\right)^{\dagger}=\Pi^{6} Y^{5}=Y^{5} \Pi^{6}$, and $\left(Y^{6} \Pi^{5}\right)^{\dagger}=\Pi^{5} Y^{6}=Y^{6} \Pi^{5}$ resulting from the commutators of the $6 D$ canonical variables given by eq-(3.2).

From eqs-(3.3) one learnt that the $4 D$ operators x^{μ}, p^{μ} admitted a $6 D$ angular momentum realization of the form

$$
\begin{align*}
x^{\mu} & =\beta J^{\mu 5}=-\beta\left(Y^{\mu} \Pi^{5}-Y^{5} \Pi^{\mu}\right), \quad \beta=L_{P} \tag{4.8}\\
p^{\mu} & =\alpha J^{\mu 6}=-\alpha\left(Y^{\mu} \Pi^{6}-Y^{6} \Pi^{\mu}\right), \quad \alpha=\mathcal{L}^{-1} \tag{4.9}
\end{align*}
$$

From eqs-(4.8, 4.9) one can deduce the relation

$$
\begin{equation*}
\mathcal{J}^{\mu \nu}=x^{\mu} p^{\nu}-x^{\nu} p^{\mu}=\alpha \beta J^{56}\left(Y^{\mu} \Pi^{\nu}-Y^{\nu} \Pi^{\mu}\right) \tag{4.10}
\end{equation*}
$$

where $J^{56} \equiv \mathcal{N}$ and $J^{\mu \nu}$ are given by eq-(3.4) explicitly in terms of the $6 D$ canonical variables Y^{A}, Π^{B}.

One can invert the relations in eqs- $(4.8,4.9)$ as follows. After multiplying eqs-(4.8 4.9) on the right by Π^{6}, Π^{5}, respectively, and subtracting the top equation from the bottom one, it yields

$$
\begin{equation*}
\beta^{-1} x^{\mu} \Pi^{6}-\alpha^{-1} p^{\mu} \Pi^{5}=\Pi^{\mu} \mathcal{N}=\mathcal{N} \Pi^{\mu} \tag{4.11a}
\end{equation*}
$$

due to the canonical nature of the $6 D$ variables Y^{A}, Π^{A} described by the commutators in eqs-(3.2) and which allows us to re-order the relevant factors due to the commutativity.

And multiplying eqs- $(4.8,249)$ on the right by Y^{6}, Y^{5}, respectively, and subtracting the top equation from the bottom one, it yields

$$
\begin{equation*}
\beta^{-1} x^{\mu} Y^{6}-\alpha^{-1} p^{\mu} Y^{5}=Y^{\mu} \mathcal{N}=\mathcal{N} Y^{\mu} \tag{4.11b}
\end{equation*}
$$

We shall see next that the functional forms of $Y^{5}(x, p), Y^{6}(x, p), \Pi^{5}(x, p)$, $\Pi^{6}(x, p)$ provided eqs-(4.4) lead to solutions to eq-(4.7), and which in turn, yield automatically the solutions to eqs-(4.11a, 4.11b). And, in doing so, one has found the solutions to the embedding problem : $Y^{\mu}=Y^{\mu}(x, p) ; \Pi^{\mu}=\Pi^{\mu}(x, p)$, with $\mathcal{N}(x, p) \equiv J^{56}(x, p)=-\left(Y^{5} \Pi^{6}-Y^{6} \Pi^{5}\right)(x, p)$, and where $\left[\mathcal{N}, Y^{\mu}\right]=$ $\left[\mathcal{N}, \Pi^{\mu}\right]=0$. The operator \mathcal{N} appearing in the right hand side of eqs-(4.11) can be moved to the left hand side via the inverse \mathcal{N}^{-1} operator, and that can be defined as a formal power series as follows $[1-(1-\mathcal{N})]^{-1}=1+(1-\mathcal{N})+$ $(1-\mathcal{N})^{2}+\cdots$.

Thus, from eqs- $(4.7,4.11)$ one can then construct the maps from the x^{μ}, p^{μ} noncanonical (operator) variables in $4 D$ to the canonical (operator) variables Y^{A}, Π^{A} in $6 D$. After a laborious but straightforward procedure we find the following family of solutions

$$
\begin{gather*}
Y^{5}(x, p)=\kappa_{1} \beta z_{1}+\kappa_{2} \beta z_{2}+\kappa_{3} \beta z_{3}+\kappa_{4} \beta \tag{4.12a}\\
Y^{6}(x, p)=\kappa_{1} \beta z_{1}+\kappa_{2} \beta z_{2}+\kappa_{3} \beta z_{3}+\left(\kappa_{4}+1\right) \beta \tag{4.12b}\\
\Pi^{5}(x, p)=\kappa_{1} \beta^{-1} z_{1}+\kappa_{2} \beta^{-1} z_{2}+\frac{5}{4} \kappa_{3} \beta^{-1} z_{3}+\kappa_{4} \beta^{-1} \tag{4.12c}\\
\Pi^{6}(x, p)=\kappa_{1} \beta^{-1} z_{1}+\kappa_{2} \beta^{-1} z_{2}+\frac{5}{4} \kappa_{3} \beta^{-1} z_{3}+\left(\kappa_{4}+1\right) \beta^{-1} \tag{4.12d}
\end{gather*}
$$

where $\kappa_{3}=(\alpha \beta)^{-1}$ and $\kappa_{1}, \kappa_{2}, \kappa_{4}$ are three arbitrary parameters. This is due to the nonlinearity of the equations that one is solving. These solutions (4.12) have the form $Y^{6}=Y^{5}+\beta ; \Pi^{5}=\Pi^{6}-\beta^{-1}$ such that $\alpha \beta Y^{[5} \Pi^{6]}=-\frac{z_{3}}{4}=-\alpha \beta \mathcal{N}$ as required by eq-(4.7).

When one takes the classical limit, upon restoring \hbar which was set to unity in the terms $\gamma_{i} z_{2} \rightarrow \frac{\gamma_{i}}{\hbar} z_{2}$ of eqs-(4.4e), in order to match units, one can see that these terms are singular in the $\hbar \rightarrow 0$ limit. Whereas the terms $\frac{\delta_{i}}{\hbar} z_{3} \rightarrow-4 \delta_{i}$ are well behaved and yield constants.

For these reasons we shall just adhere to the following prescription in finding the classical limit of the embedding functions $Y^{A}(x, p), \Pi^{A}(x, p)$. We could simply drop the singular $\frac{1}{\hbar} z_{2}$ terms in eqs-(4.12) by setting the arbitrary constant κ_{2} to zero $\kappa_{2}=0$; and set the $\frac{1}{\hbar} z_{3}$ terms to constants that can be reabsorbed into a redefinition of the κ_{4} parameter in the explicit solutions for $Y^{5}, Y^{6}, \Pi^{5}, \Pi^{6}$ given by eqs-(4.12). In doing so one ends up with the following expressions in the classical limit

$$
\begin{array}{r}
Y^{5}\left(z_{1}\right)=\kappa_{1} \beta z_{1}+\beta\left(\kappa_{4}-4(\alpha \beta)^{-1}\right) \\
Y^{6}\left(z_{1}\right)=\kappa_{1} \beta z_{1}+\beta\left(\kappa_{4}+1-4(\alpha \beta)^{-1}\right) \\
\Pi^{5}\left(z_{1}\right)=\kappa_{1} \beta^{-1} z_{1}+\beta^{-1}\left(\kappa_{4}-5(\alpha \beta)^{-1}\right) \\
\Pi^{6}\left(z_{1}\right)=\kappa_{1} \beta^{-1} z_{1}+\beta^{-1}\left(\kappa_{4}+1-5(\alpha \beta)^{-1}\right) \tag{4.13d}
\end{array}
$$

To conclude, one can finally obtain the explicit solutions for $Y^{\mu},\left(z_{1}, x^{\mu}, p^{\mu}\right)$; $\Pi^{\mu}\left(z_{1}, x^{\mu}, p^{\mu}\right)$, in the classical limit, and given in terms of the functions $Y^{5}\left(z_{1}\right)$, $Y^{6}\left(z_{1}\right), \Pi^{5}\left(z_{1}\right), \Pi^{6}\left(z_{1}\right)$ in eqs-(4.13) (and $\left.x^{\mu}, p^{\mu}\right)$ as follows

$$
\begin{align*}
& \alpha x^{\mu} \Pi^{6}\left(z_{1}\right)-\beta p^{\mu} \Pi^{5}\left(z_{1}\right)=-\Pi^{\mu}\left(z_{1}, x^{\mu}, p^{\mu}\right) \tag{4.14a}\\
& \alpha x^{\mu} Y^{6}\left(z_{1}\right)-\beta p^{\mu} Y^{5}\left(z_{1}\right)=-Y^{\mu}\left(z_{1}, x^{\mu}, p^{\mu}\right) \tag{4.14b}
\end{align*}
$$

where $z_{1} \equiv \alpha^{2} x^{2}+\beta^{2} p^{2}, \alpha=\mathcal{L}^{-1} ; \beta=L_{P}$. Next we shall study the geometrical implications of the (classical) embedding solutions found in this section and provided by eqs-(4.13.4.14).

4.2 Embedding a $8 D$ curved phase space into a $12 D$ flat phase space

The previous section involved the use of coordinates and momenta operators. In this section we shall deal with classical variables (c-numbers) x, p. A more rigorous notation in the previous section would have been to assign "hats" to operators $\hat{x}^{\mu}, \hat{p}^{\mu} ; \hat{Y}^{A}, \hat{\Pi}^{A}$. For the sake of simplicity we avoided it. The geometry of the cotangent bundle of spacetime (phase space) can be best explored within the context of Lagrange-Finsler, Hamilton-Cartan geometry [17], [18]. The line element in the $8 D$ curved phase space is
$(d s)^{2}=g_{\mu \nu}(x, p) d x^{\mu} d x^{\nu}+h^{a b}(x, p)\left(d p_{a}+N_{a \mu}(x, p) d x^{\mu}\right)\left(d p_{b}+N_{b \nu}(x, p) d x^{\nu}\right)$
where $g_{\mu \nu}(x, p), h^{a b}(x, p)$ are the base spacetime and internal space metrics, respectively, with $a, b=1,2,3,4, \mu, \nu=1,2,3,4$, and $N_{a \mu}(x, p)$ is the nonlinear connection.

One should note that the metric tensor $g_{\mu \nu}$ is not the vertical Hessian of the square of a Finsler function, and $h^{a b}$ is not the inverse of $g_{\mu \nu}$. $h^{a b}$ represents, physically, the cotangent bundle's internal-space metric tensor which is independent from the base-spacetime metric tensor $g_{\mu \nu}$. The number of total components of $g_{\mu \nu}, h^{a b}, N_{a \mu}$ is $\left.10+10+16=36=(8 \times 9) / 2\right)$.

The generalized (vacuum) gravitational field equations associated with the geometry of the $8 D$ cotangent bundle differ considerably from the the standard (vacuum) Einstein field equations in $8 D$ based on Riemannian geometry. Thus, for instance, by using a base-spacetime $g_{\mu \nu}$ metric to be independent from the internal-space metric $h_{a b}$, and a nonlinear connection $N_{\mu a}$, it might avoid the reduction of the solutions of the generalized gravitational field equations to the standard Schwarzschild (Tangherlini) solutions when radial symmetry is imposed.

For example, in [15] we studied a scalar-gravity model in curved phase spaces. After a very laborious procedure, the variation of the action S with respect to the fundamental fields

$$
\begin{equation*}
\frac{\delta \mathcal{S}}{\delta g_{\mu \nu}}=0, \quad \frac{\delta \mathcal{S}}{\delta h_{a b}}=0, \quad \frac{\delta \mathcal{S}}{\delta N_{\mu a}}=0, \quad \frac{\delta \mathcal{S}}{\delta \Phi}=0 \tag{4.16}
\end{equation*}
$$

leads to the very complicated field equations which differ considerably from the Einstein field equations. Exact nontrivial analytical solutions for the basespacetime $g_{\mu \nu}$, the internal-space metric $h_{a b}$ components, the nonlinear connection $N_{i a}$, and the scalar field Φ were found that obey the generalized gravitational field equations, in addition to satisfying the zero torsion conditions for all of the torsion components. See [15] for details.

The embedding of the $8 D$ curved phase space into the 12 -dim flat phase space is described by equating the $8 D$ line interval $d s^{2}$ in (4.15) with the $12 D$ one $d s^{2}=\eta_{A B} d Z^{A} d Z^{B}$. After doing so, given $Z^{A} \equiv\left(Y^{A}, \Pi^{A}\right)$ one learns that

$$
\begin{gather*}
g_{\mu \nu}+h^{a b} N_{a \mu} N_{b \nu}=\eta_{A B} \frac{\partial Z^{A}}{\partial x^{\mu}} \frac{\partial Z^{A}}{\partial x^{\nu}} \tag{4.17}\\
h^{a b}=\eta_{A B} \frac{\partial Z^{A}}{\partial p_{a}} \frac{\partial Z^{A}}{\partial p_{b}} \tag{4.18}\\
h^{a b} N_{b \mu}=\eta_{A B} \frac{\partial Z^{A}}{\partial p_{a}} \frac{\partial Z^{A}}{\partial x^{\mu}} \quad A, B=1,2, \cdots, 5,6 \tag{4.19}
\end{gather*}
$$

Eqs-(4.17-4.19) determine the functional form of $g_{\mu \nu}, h^{a b}, N_{a \mu}$ after one inserts the functional forms of the embedding functions $Z^{A}(x, p)=Y^{A}(x, p), \Pi^{A}(x, p)$ found in the previous section, and by making the following replacement $p^{\mu} \rightarrow p_{a}$. We explained at the end of the previous section how the $x \cdot p, p \cdot x$ terms could decouple in the classical limit, by removing the singular terms $\frac{z_{2}}{\hbar}$, and where the $\frac{z_{3}}{\hbar}$ terms become constants, leaving only the terms $z_{1}=w_{1}=\alpha^{2} x^{2}+\beta^{2} p^{2}$. Thus, after making the replacement $p^{\mu} \rightarrow p_{a}$ one has $\eta_{\mu \nu} p^{\mu} p^{\nu} \rightarrow \eta^{a b} p_{a} p_{b}$, and such that the indices will now match those appearing in eqs-(4.17-4.19).

To sum up, the (classical) embedding functions $Z^{A}(x, p)=Y^{A}(x, p), \Pi^{A}(x, p)$ obtained in the previous section in eqs- $(4.13,4.14)$ determine the functional form of $g_{\mu \nu}, h^{a b}, N_{a \mu}$ in eqs-(4.17-4.19). The key question is whether or not the solutions found for $g_{\mu \nu}, h^{a b}, N_{a \mu}$ also solve the vacuum field equations. And if not, can one find the appropriate field/matter sources which are consistent with these solutions ?. It is natural to assume that quantum matter/fields could be the source of the noncommutativity of the spacetime coordinates and momenta. After all, quantum fields live in spacetime. If this were not the case, what then is the source of this phase space noncommutativity? Is it space-time foam, dark matter, dark energy ? If one expects to have a space-time-matter unification then one has that matter curves space-time, and space-time back-reacts on matter curving momentum space, "curving matter".

5 Concluding Remarks

After a review of Born reciprocal relativity, and its physical implications, this work was mainly devoted to the Yang and the deformed Quaplectic algebras associated with noncommutative phase spaces, and to their extensions involving antisymmetric tensor coordinates and momenta of different ranks. Our approach to construct extended Yang algebras differs from the study by [8]. We finalized with an analysis of the embedding an $8 D$ curved phase space into a $12 D$ flat phase space which provides a direct link between noncommutative curved phase spaces in lower dimensions to commutative flat phase spaces in higher dimensions. Left from our discussion was the role of Quantum groups, Hopf algebras, κ-deformed Poincare algebras, deformed special relativity [9], [10], [11], [12], [13]. This will be the subject of future investigations.

Acknowledgments

We are indebted to M. Bowers for assistance.

References

[1] H. Snyder, "Quantized space-time", Physical Review, 67 (1) (1947) 38.
S. Meljanac and S. Mignemi, "Generalizations of Snyder model to curved spaces" arXiv : 2206.04772.
[2] C. Yang, "On Quantized Spacetime", Phys. Rev. 72 (1947) 874.
S. Tanaka, "A Short Essay on Quantum Black Holes and Underlying Noncommutative Quantized Space-Time" Class. Quantum Grav. 34 (2017) 015007.
[3] M. Born, "Elementary Particles and the Principle of Reciprocity". Nature 163 (1949), p. 207
[4] E.R. Cainiello, "Is there a Maximal Acceleration", Il. Nuovo Cim., 32 (1981) 65.
H. Brandt, "Finslerian Fields in the Spacetime Tangent Bundle" Chaos, Solitons and Fractals 10 (2-3) (1999) 267.
H. Brandt, "Maximal proper acceleration relative to the vacuum" Lett. Nuovo Cimento 38 (1983) 522.
M. Toller, "The geometry of maximal acceleration" Int. J. Theor. Phys 29 (1990) 963.
[5] S. Low, " $U(3,1)$ Transformations with Invariant Symplectic and Orthogonal Metrics" , Il Nuovo Cimento B 108 (1993) 841.
S. Low, "Representations of the canonical group, (the semi-direct product of the unitary and Weyl-Heisenberg groups), acting as a dynamical group on noncommutative extended phase space", J. Phys. A : Math. Gen., 35 (2002) 5711.
[6] C. Castro, "Is Dark Matter and Black-Hole Cosmology an Effect of Born's Reciprocal Relativity Theory ?" Canadian Journal of Physics. Published on the web 29 May 2018, https://doi.org/10.1139/cjp-2018-0097.
C. Castro, "Some consequences of Born's Reciprocal Relativity in Phase Spaces" Foundations of Physics 35, no. 6 (2005) 971.
[7] C. Castro and M. Pavsic, "The Extended Relativity Theory in Cliffordspaces", Progress in Physics, vol. 1 (2005) 31.
C. Castro and M. Pavsic, "On Clifford algebras of spacetime and the Conformal Group" Int. Jour. of Theoretical Physics 42 (2003) 1693.
[8] J. Lukierski, S. Meljanac, S. Mignemi and A. Pachol, "Quantum perturbative solutions of extended Snyder and Yang models with spontaneous symmetry breaking" arXiv : 2212.02361.
[9] I. Gutierrez-Sagredo, A. Ballesteros, G. Gubitosi, and F.J. Herranz, "Quantum groups, non-commutative Lorentzian spacetimes and curved momentum spaces" "Spacetime Physics 1907-2017". C. Duston and M. Holman (Eds). Minkowski Institute Press, Montreal (2019), pp. 261-290. arXiv : 1907.07979.
A. Ballesteros, G. Gubitosi, I. Gutierrez-Sagredo, and F. J. Herranz"Curved momentum spaces from quantum (Anti-)de Sitter groups in (3+1) dimensions", Phys. Rev. D 97 (2018), 106024.
A. Ballesteros, I. Gutierrez-Sagredo, and F. J. Herranz, "The κ-(A)dS noncommutative spacetime" Physics Letters B 796 (2019) 93.
[10] G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, and L. Smolin, "The principle of relative locality", Phys. Rev. D84 (2011) 084010.
G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, and L. Smolin, "Relative locality: A deepening of the relativity principle", Gen. Rel. Grav. 43 (2011) 2547.
[11] J. Magueijo and L. Smolin, "Lorentz Invariance with an Invariant Energy Scale", Phys. Rev. Lett. 88, (2002) 190403.
[12] M. Arzano and J. Kowalski, "Quantum particles in non-commutative spacetime : an identity crisis" arXiv : 2212.03703.
[13] T. Trzesniewski, " $3 D$ gravity, point particles and deformed symmetries" arXiv : 2212.14031.
[14] C.Castro Perelman, "The Clifford-Yang Algebra, Noncommutative Clifford Phase Spaces and the Deformed Quantum Oscillator", to appear in the Int. Journal of Geometric Methods in Modern Physics, (2023).
C. Castro Perelman, "A Noncommutative Spacetime Realization of Quantum Black Holes, Regge Trajectories and Holography" J. of Geom. Phys. 173, (March 2022), 104435.
[15] C. Castro Perelman, "Born's Reciprocal Relativity Theory, Curved Phase Space, Finsler Geometry and the Cosmological Constant", Annals of Physics 416, (May 2020) 168143.
[16] C. Castro, "On Born's Deformed Reciprocal Complex Gravitational Theory and Noncommutative Gravity", Phys. Lett. B 668 (2008) 442-446.
[17] S. Vacaru, "On axiomatic formulation of gravity and matter field theories with MDRs and Finsler-Lagrange-Hamilton geometry on (co)tangent Lorentz bundles" arXiv : 1801.06444.
S. Vacaru, "Finsler-Lagrange Geometries and Standard Theories in Physics: New Methods in Einstein and String Gravity" [arXiv: hep-th/0707.1524].
S. Vacaru, P. Stavrinos, E. Gaburov, and D. Gonta, "Clifford and Riemann-Finsler Structures in Geometric Mechanics and Gravity" (Geometry Balkan Press, 693 pages).
[18] H. Rund, The Differential Geometry of Finsler Spaces (Springer-Verlag, 1959).
I. Bucataru and R. Miron, Finsler-Lagrange Geometry (Editura Academiei Romane, Bucarest, 2007).
R. Miron, D. Hrimiuc, H. Shimada and S. Sabau, The Geometry of Hamilton and Lagrange Spaces (Kluwer Academic Publishers, Dordrecht, Boston, 2001).
C. Pfeifer, The Finsler spacetime framework: backgrounds for physics beyond metric geometry (Thesis, University of Hamburg, 2013).

[^0]: ${ }^{1}$ Strictly speaking, $U(1,4)$ is a pseudo-unitary group. After performing the Weyl unitary "trick" via an analytical continuation $U(1,4) \rightarrow U(5)$ one obtains the unitary group $U(5)$ comprised of 5×5 unitary matrices obeying $U^{\dagger}=U^{-1}$. A unitary matrix can be written as $U=e^{A}$ where A is an anti-Hermitian matrix $A^{\dagger}=-A$. And any anti-Hermitian matrix A can be written as $A= \pm i H$, where H is Hermitian, therefore all group elements can be written in the form $U=e^{ \pm i \theta^{A B}} Z_{A B}$ where $\theta^{A B}$ are the corresponding parameters associated to every generator

[^1]: ${ }^{2}$ We choose a different signature than the one in the introduction
 ${ }^{3}$ Our choice differs by a minus sign from the conventional definition

[^2]: ${ }^{4}$ A simple inspection reveals that a correspondence of the form $\frac{x^{\mu}}{L_{P}}=a_{1} J^{\mu 5}+b_{1} J^{\mu 6} ; \mathcal{L} p^{\mu}=$ $a_{2} J^{\mu 5}+b_{2} J^{\mu 6}$ will automatically lead to $b_{1}=0, a_{2}=0$; or $b_{2}=0, a_{1}=0$ resulting from the antisymmetry of the commutators $\left[x^{\mu}, x^{\nu}\right],\left[p^{\mu}, p^{\nu}\right]$

[^3]: ${ }^{5}$ Since $\lambda_{l} \lambda_{p}=1$, in units of $\hbar=1$, the powers of λ_{l}, λ_{p} decouple explicitly from eqs-(3.15)
 ${ }^{6}$ Note that one must not confuse $Z_{a b} \equiv \frac{1}{2}\left(M_{a b}+L_{a b}\right)$ with $Z_{\left[a_{1} a_{2}\right]}$ defined by eq- $(3.26 \mathrm{a})$

