
On Born Reciprocal Relativity,

Algebraic Extensions of the Yang and

Quaplectic Algebra, and

Noncommutative Curved Phase Spaces

Carlos Castro Perelman
Ronin Institute, 127 Haddon Place, Montclair, N.J. 07043.

perelmanc@hotmail.com

December, 2022

Abstract

After a brief introduction of Born’s reciprocal relativity theory is pre-
sented, we review the construction of the deformed Quaplectic group that
is given by the semi-direct product of U(1, 3) with the deformed (non-
commutative) Weyl-Heisenberg group corresponding to noncommutative
fiber coordinates and momenta [Xa, Xb] ̸= 0; [Pa, Pb] ̸= 0. This construc-
tion leads to more general algebras given by a two-parameter family of
deformations of the Quaplectic algebra, and to further algebraic exten-
sions involving antisymmetric tensor coordinates and momenta of higher
ranks [Xa1a2···an , Xb1b2···bn ] ̸= 0; [Pa1a2···an , Pb1b2···bn ] ̸= 0. We continue
by examining algebraic extensions of the Yang algebra in extended non-
commutative phase spaces and compare them with the above extensions of
the deformed Quaplectic algebra. A solution is found for the exact analyt-
ical mapping of the non-commuting xµ, pµ operator variables (associated
to an 8D curved phase space) to the canonical Y A,ΠA operator variables
of a flat 12D phase space. We explore the geometrical implications of
this mapping which provides, in the classical limit, with the embedding
functions Y A(x, p),ΠA(x, p) of an 8D curved phase space into a flat 12D
phase space background. The latter embedding functions determine the
functional forms of the base spacetime metric gµν(x, p), the fiber metric of
the vertical space hab(x, p), and the nonlinear connection Naµ(x, p) associ-
ated with the 8D cotangent space of the 4D spacetime. Consequently, one
has found a direct link between noncommutative curved phase spaces in
lower dimensions to commutative flat phase spaces in higher dimensions.
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1 Introduction : Born Reciprocal Relativity
Theory

Most of the work devoted to Quantum Gravity has been focused on the geometry
of spacetime rather than phase space per se. The first indication that phase
space should play a role in Quantum Gravity was raised by [3]. The principle
behind Born’s reciprocal relativity theory [5], [6] was based on the idea proposed
long ago by [3] that coordinates and momenta should be unified on the same
footing. Consequently, if there is a limiting speed (temporal derivative of the
position coordinates) in Nature there should be a maximal force as well, since
force is the temporal derivative of the momentum. The principle of maximal
acceleration was advocated earlier on by [4]. A maximal speed limit (speed
of light) must be accompanied with a maximal proper force (which is also
compatible with a maximal and minimal length duality) [6].

We explored in [6] some novel consequences of Born’s reciprocal Relativity
theory in flat phase-space and generalized the theory to the curved spacetime
scenario. We provided, in particular, some specific results resulting from Born’s
reciprocal Relativity and which are not present in Special Relativity. These are
: momentum-dependent time delay in the emission and detection of photons;
relativity of chronology; energy-dependent notion of locality; superluminal be-
havior; relative rotation of photon trajectories due to the aberration of light;
invariance of areas-cells in phase-space and modified dispersion relations.

The generalized velocity and force (acceleration) boosts (rotations) transfor-
mations of the flat 8D Phase space coordinates , where Xi, T, E, P i; i = 1, 2, 3
are c -valued (classical) variables which are all boosted (rotated) into each-other,
were given by [5] based on the group U(1, 3) and which is the Born version of the
Lorentz group SO(1, 3). The U(1, 3) = SU(1, 3)× U(1) group transformations
leave invariant the symplectic 2-form Ω = − dT ∧dE+δijdX

i∧dP j ; i, j = 1, 2, 3
and also the following Born-Green line interval in the flat 8D phase-space

(dω)2 = c2(dT )2 − (dX)2 − (dY )2 − (dZ)2 +

1

b2
(
(dE)2 − c2(dPx)

2 − c2(dPy)
2 − c2(dPz)

2
)

(1.1)

The maximal proper force is set to be given by b. The rotations, velocity and
force (acceleration) boosts leaving invariant the symplectic 2-form and the line
interval in the 8D phase-space are rather elaborate, see [5] for details.

These transformations can be simplified drastically when the velocity and
force (acceleration) boosts are both parallel to the x-direction and leave the
transverse directions Y, Z, Py, Pz intact. There is now a subgroup U(1, 1) =
SU(1, 1)× U(1) ⊂ U(1, 3) which leaves invariant the following line interval

(dω)2 = c2(dT )2 − (dX)2 +
(dE)2 − c2(dP )2

b2
=

2



(dτ)2
(

1 +
(dE/dτ)2 − c2(dP/dτ)2

b2

)
= (dτ)2

(
1 − F 2

F 2
max

)
, P = Px

(1.2)
where one has factored out the proper time infinitesimal (dτ)2 = c2dT 2 − dX2

in (1.2). The proper force interval (dE/dτ)2 − c2(dP/dτ)2 = −F 2 < 0 is
“spacelike” when the proper velocity interval c2(dT/dτ)2 − (dX/dτ)2 > 0 is
timelike. The analog of the Lorentz relativistic factor in eq-(1.14) involves the
ratios of two proper forces.

One may set the maximal proper-force acting on a fundamental particle of
Planck mass to be given by Fmax = b ≡ mP c

2/LP , wheremP is the Planck mass
and LP is the postulated minimal Planck length. Invoking a minimal/maximal
length duality one can also set b = MUc

2/RH , where RH is the Hubble scale
and MU is the observable mass of the universe. Equating both expressions for
b leads to MU/mP = RH/LP ∼ 1060. The value of b may also be interpreted
as the maximal string tension.

The U(1, 1) group transformation laws of the phase-space coordinatesX,T, P,E
which leave the interval (1.2) invariant are [5]

T ′ = T coshξ + (
ξv X

c2
+

ξa P

b2
)
sinhξ

ξ
(1.3a)

E′ = E coshξ + (−ξa X + ξvP )
sinhξ

ξ
(1.3b)

X ′ = X coshξ + (ξv T − ξa E

b2
)
sinhξ

ξ
(1.4a)

P ′ = P coshξ + (
ξv E

c2
+ ξa T )

sinhξ

ξ
(1.4b)

ξv is the velocity-boost rapidity parameter; ξa is the force (acceleration) boost
rapidity parameter, and ξ is the net effective rapidity parameter of the primed-
reference frame. These parameters ξa, ξv, ξ are defined respectively in terms of
the velocity v = dX/dT and force f = dP/dT (related to acceleration) as

tanh(
ξv
c
) =

v

c
; tanh(

ξa
b
) =

F

Fmax
, ξ =

√
(
ξv
c
)2 + (

ξa
b
)2 (1.5)

The U(3, 1) generators Zab =
1
2 (L[ab] +M(ab)) are comprised of the 6 ordinary

Lorentz generators L[ab], and 10 force (acceleration) boost/rotation generators
M(ab) giving a total of 16 generators.

It is straight-forward to verify that the transformations (1.4) leave invariant
the phase space interval c2(dT )2 − (dX)2 + ((dE)2 − c2(dP )2)/b2 but do not
leave separately invariant the proper time interval (dτ)2 = c2dT 2 − dX2, nor
the interval in energy-momentum space 1

b2 [(dE)2−(dP )2]. Only the combination

(dω)2 = (dτ)2
(

1 − F 2

F 2
max

)
(1.6)
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is truly left invariant under force (acceleration) boosts (1.4). They also leave
invariant the symplectic 2-form (phase space areas) Ω = − dT ∧ dE+ dX ∧ dP .

After this brief introduction of Born’s reciprocal relativity theory is pre-
sented, in section 2 we review the construction of the deformed Quaplectic
group that is given by the semi-direct product of U(1, 3) with the deformed
(noncommutative) Weyl-Heisenberg group corresponding to noncommutative
fiber coordinates and momenta [Xa, Xb] ̸= 0; [Pa, Pb] ̸= 0. This construction
leads at the end of section 2 to more general algebras given by a two-parameter
family of deformations of the Quaplectic algebra, and to local gauge theories of
gravity based on the latter deformed Quaplectic algebras.

We continue in section 3 by examining the algebraic extensions of the Yang
algebra in extended noncommutative phase spaces, and compare them with the
extensions of the deformed Quaplectic algebra involving antisymmetric tensor
coordinates and momenta of higher ranks [Xa1a2···an

, Xb1b2···bn ] ̸= 0; [Pa1a2···an
, Pb1b2···bn ] ̸=

0.
In section 4 a solution is found for the exact analytical mapping of the non-

commuting xµ, pµ operator variables (associated to an 8D curved phase space)
to the canonical Y A,ΠA operator variables of a flat 12D phase space. We explore
the geometrical implications of this mapping which provides, in the classical
limit, with the embedding functions Y A(x, p),ΠA(x, p) of an 8D curved phase
space into a flat 12D phase space background. The latter embedding functions
determine the functional forms of the base spacetime metric gµν(x, p), the fiber
metric of the vertical space hab(x, p), and the nonlinear connection Naµ(x, p)
associated with the 8D cotangent space of the 4D spacetime. We finalize with
some concluding remarks.

2 The Deformed Quaplectic Group and
Complex Gravity

To begin this section we review the construction of the deformed Quaplectic
group given by the semidirect product of U(1, 3) with the deformed (noncom-
mutative) Weyl-Heisenberg group involving noncommutative coordinates and
momenta [16]. And then we proceed to construct a two-parameter family of
deformed Quaplectic algebras parametrized by two complex coefficients α, β.
The deformed Weyl-Heisenberg algebra involves the generators

Za =
1√
2
(
Xa

λl
− i

Pa

λp
); Z†

a =
1√
2
(
Xa

λl
+ i

Pa

λp
); a = 1, 2, 3, 4. (2.1)

Notice that we must not confuse the generators Xa, Pa (associated with the
fiber coordinates of the internal space of the fiber bundle) with the ordinary
base spacetime coordinates and momenta xµ, pµ. The local gauge theory based
on the deformed Quaplectic algebra was constructed in the fiber bundle over
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the base manifold which is a 4D curved spacetime with commuting coordinates
xµ = x0, x1, x2, x3 [16]. The (deformed) Quaplectic group acts as the auto-
morphism group along the internal fiber coordinates. Therefore we must not
confuse the deformed complex gravitational theory constructed in [16] with the
noncommutative gravity work in the literature where the spacetime coordinates
xµ are not commuting.

The four fundamental length, momentum, temporal and energy scales are
respectively

λl =

√
h̄c

b
; λp =

√
h̄b

c
; λt =

√
h̄

bc
; λe =

√
h̄bc. (2.2)

where b is the maximal proper force associated with the Born’s reciprocal rel-
ativity theory. In the natural units h̄ = c = b = 1 all four scales become unity.
The gravitational coupling is given by

G =
c4

Fmax
=

c4

b
. (2.3)

and the four scales coincide then with the Planck length, momentum, time and
energy, respectively and we can verify that

Fmax = mP
c2

LP
∼ MUniverse

c2

RH
(2.4)

The generators of the U(1, 3) algebra given by Zab are Hermitian (Zab)
† =

Zab, with a, b = 1, 2, 3, 4; while the generators of the deformed Weyl-Heisenberg
algebra Za, Z

†
a are pairs of Hermitan-conjugates like L+ = Lx + iLy, L− =

Lx−iLy in the SO(3) algebra. The standard Quaplectic group [5] is given by the
semi-direct product of the U(1, 3) group and the unmodified Weyl-Heisenberg
H(1, 3) group : Q(1, 3) ≡ U(1, 3) ⊗s H(1, 3) and is defined in terms of the
generators Zab, Za, Z

†
a, I described below with a, b = 1, 2, 3, 4.

A careful analysis reveals that the generators Za, Z
†
a (comprised of Hermi-

tian and anti-Hermitian pieces) of the deformed Weyl-Heisenberg algebra can
be defined in terms of judicious linear combinations of the Hermitian U(1, 4)
algebra generators ZAB , where A,B = 1, 2, 3, 4, 5; a, b = 1, 2, 3, 4; ηAB =
diag (+,−,−,−,−). The linear combination is defined after introducing the
following complex-valued coefficients as follows

Za = (−i )1/2 ( Za5 − i Z5a ); Z†
a = ( i )1/2 ( Za5 + i Z5a ); Z55 =

I
2

(2.5)

The reason behind this particular choice of the complex coefficients appearing
in eq-(2.5) will be explained below in eq-(2.14). The Hermitian generators of
the U(1, 4) algebra are given by ZAB ≡ EB

A and ZBA ≡ EA
B ; notice that the

position of the indices is very relevant because ZAB ̸= ZBA. The commutators
are
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[Eb
a, Ed

c ] = − i δbc Ed
a + i δda Eb

c ; [Ed
c , E5

a ] = − i δda E5
c ; [Ed

c , Ea
5 ] = i δac Ed

5 .
(2.6)

and [E5
5 , Ea

5 ] = −i δ55 Ea
5 .... such that now I(= 2Z55) no longer commutes with

Za, Z
†
a. The generators Zab of the U(1, 3) algebra can be decomposed into the

Lorentz sub-algebra generators L[ab] and the ”shear”-like generators M(ab) as

Zab ≡
1

2
(M(ab) + L[ab]) ⇒ Lab ≡ L[ab] = (Zab − Zba); Mab ≡ M(ab) = (Zab + Zba),

(2.7)
the “shear”-like generators M(ab) and the Lorentz generators L[ab] are Hermi-
tian. The explicit commutation relations of the Mab, Lab generators is given
by

[Lab, Lcd] = i (ηbcLad − ηacLbd − ηbdLac + ηadLbc). (2.8a)

[Mab, Mcd] = − i (ηbcLad + ηacLbd + ηbdLac + ηadLbc). (2.8b)

[Lab, Mcd] = i (ηbcMad − ηacMbd + ηbdMac − ηadMbc). (2.8c)

Therefore, given Zab =
1
2 (Mab+Lab), Zcd = 1

2 (Mcd+Lcd) after straightforward
algebra it leads to the U(1, 3) commutators

[ Zab, Zcd ] = − i ( ηbc Zad − ηad Zcb ). (2.8d)

as expected. By extension, the U(1, 4) commutators are1

[ ZAB , ZCD ] = − i ( ηBC ZAD − ηAD ZCB ). (2.8e)

The commutators of the Lorentz boosts generators Lab with the Xc, Pc gen-
erators are

[Lab, Xc] = i ( ηbc Xa − ηac Xb ); [Lab, Pc] = i ( ηbc Pa − ηac Pb ) (2.9)

The Hermitian Mab generators are the “reciprocal” boosts/rotation transforma-
tions which exchange X for P , in addition to boosting (rotating) those variables,
and one ends up with the commutators of Mab with the Xc, Pc generators given
by

[Mab,
Xc

λl
] = − i

λp
( ηbc Pa + ηac Pb ); [Mab,

Pc

λp
] = − i

λl
( ηbc Xa + ηac Xb )

(2.10)

1Strictly speaking, U(1, 4) is a pseudo-unitary group. After performing the Weyl unitary
“trick” via an analytical continuation U(1, 4) → U(5) one obtains the unitary group U(5)
comprised of 5 × 5 unitary matrices obeying U† = U−1. A unitary matrix can be written
as U = eA where A is an anti-Hermitian matrix A† = −A. And any anti-Hermitian matrix
A can be written as A = ±iH, where H is Hermitian, therefore all group elements can be

written in the form U = e±iθABZAB where θAB are the corresponding parameters associated
to every generator
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The commutators in eq-(1.8d) and the definitions in eq-(2.5) lead to

[ Zab, Zc ] = (−i)3/2 (ηbc Za5 + i ηac Z5b)

[ Zab, Z†
c ] = − (i)1/2 (i ηbc Za5 + ηac Z5b) (2.11)

which are consistent with the commutators in eqs-(2.8a-2.8c) and the definitions
in eqs-(2.5,2.7). The right-hand side of eq-(2.11) can be rewritten in terms of

Za, Z
†
a, Zb, Z

†
b after the following replacements

Za5 =
1

2
[ (−i)1/2 Z†

a +(i)1/2 Za ], Zb5 =
1

2i
[ (−i)1/2 Z†

a −(i)1/2 Za ] (2.12)

After some algebra one finds

[ Zab, Zc ] = − i

2
ηbc Za +

i

2
ηac Zb − 1

2
ηbc Z†

a − 1

2
ηac Z†

b

[ Zab, Z†
c ] = − i

2
ηbc Z†

a +
i

2
ηac Z†

b +
1

2
ηbc Za +

1

2
ηac Zb . (2.13)

The particular choice of the complex coefficients appearing in eq-(2.5) leads
to the following deformed Weyl-Heisenberg algebra

[Za, Z†
b ] = − ( ηab I + Mab ); [Za, Zb] = [Z†

a, Z†
b ] = − i Lab (2.14a)

[Za, I] = 2 Z†
a; [Z†

a, I] = − 2 Za; [Zab, I] = 0. I = 2 Z55. (2.14b)

where [Xa

λl
, I] = 2iPa

λp
; [Pa

λp
, I] = 2iXa

λl
and the metric ηab = (+1,−1,−1,−1) is

used to raise and lower indices . The Planck constant is given in terms of the
length and momentum scales of eq-(2.2) as h̄ = λlλp. In h̄ = 1 units, λlλp → 1.

The deformed Quaplectic algebra is given explicitly by eqs-(2.8d, 2.11, 2.13,
2.14) and obeys the Jacobi identities by virtue of the definitions in eqs-(2.5,2.7).
After recurring directly to definitions in eq-(2.1), one finds that eq-(2.14a) ex-
plicitly reflects the deformation of the Weyl-Heisenberg algebra resulting from
the noncommutative algebra of coordinates and momenta given by

[
Xa

λl
,
Pb

λp
] = i (ηab I+Mab); [Xa, Xb] = − i(λl)

2 Lab; [Pa, Pb] = i(λp)
2 Lab;

(2.15)
One could interpret the term ηab I + Mab as a matrix-valued Planck constant
h̄ab (in units of h̄ = 1). One may also note that the generator I no longer
commutes with Za, Z

†
a, but it exchanges them, as one can see from eq-(2.14b)

resulting from the definition of I given by I ≡ 2Z55 = M55.
One of the salient features of the construction of the deformed Quaplectic

(Weyl-Heisenberg) algebra is that by varying the values of the following complex
coefficients α, β appearing in the linear combinations

Za = α Za5 + β Z5a; Z†
a = α∗ Za5 + β∗ Z5a; Z55 =

I
2

(2.16)
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it furnishes different commutation relations than the ones described by eqs-
(2.14,2.15). The latter commutators are found in the special case when α =
(−i)1/2, β = (−i)3/2 as chosen in eq-(2.5). For instance, if either α = 0 or β = 0

it will lead instead to vanishing commutators [Za, Z
†
b ] = [Za, Zb] = [Z†

a, Z
†
b ] = 0

as a result of eq-(2.8e). And, in turn, one would have had [Xa, Xb] = [Pa, Pb] =
[Xa, Pb] = 0 instead of eqs-(2.15). Therefore, the introduction of non-vanishing
complex coefficients α, β, via eq-(2.16), yield a two-parameter family of deformed
fiber coordinates and momenta algebras parametrized by α, β. In particular, one
may explicitly introduce these parameters by writing Za(α, β), Z

†
a(α

∗, β∗).
After introducing the complex-valued vierbein Ea

µ = eaµ+ ifa
µ , it leads to the

complex metric

gµν ≡ Ea
µ (Eb

ν)
∗ηab = g(µν) + i g[µν] (2.18a)

with

g(µν) = (eaµ ebν + fa
µ f b

ν) ηab, i g[µν] = − i (eaµ f b
ν − ebν fa

µ) ηab (2.18b)

The 4×4 complex metric gµν is Hermitian g†µν = gµν as a result of gνµ = (gµν)
∗.

To verify that g[µν] = −g[νµ] one just needs to relabel the indices a ↔ b in (eq-
2.18b) and recur to ηba = ηab.

The two-parameter family of U(1, 4)-valued Hermitian gauge fields is given
by

Aµ = Ωab
µ Zab +

1

L
[ Ea

µ Za(α, β) + (Ea
µ)

∗ Z†
a(α

∗, β∗ ) ] + Ωµ I . (2.19)

where L is a length scale that is introduced for dimensional reasons since the

physical units of Aµ are (length)−1. Ωab
µ Zab is given by 1

2 (Ω
(ab)
µ Mab+Ω

[ab]
µ Lab),

and Za(α, β), Z
†
a(α

∗, β∗) are displayed in eq-(2.16).
One can rewrite the two-parameter family of U(1, 4)-valued Hermitian gauge

fields (2.19) as

Aµ = Ωab
µ Zab + Ω(a5)

µ Ma5 + Ω[a5]
µ La5 + Ωµ I, Ωµ ≡ Ω55

µ . (2.20)

After some straightforward algebra one finds that the real-valued connection
components Ωa5

µ ,Ω5a
µ are given by suitable linear combinations of the eaµ, f

a
µ

components of the complex-valued vierbein as follows

Ωa5
µ = eaµ (

α+ α∗

L
) − fa

µ (
α− α∗

iL
); Ω5a

µ = eaµ (
β + β∗

L
) − fa

µ (
β − β∗

iL
)

(2.21a)
and such that

Ω(a5)
µ ≡ 1

2
(Ωa5

µ + Ω5a
µ ), Ω[a5]

µ ≡ 1

2
(Ωa5

µ − Ω5a
µ ) (2.21b)
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Because α ̸= β, one finds that Ωa5
µ ̸= Ω5a

µ , consequently, Ω
(a5)
µ ̸= 0;Ω

[a5]
µ ̸=

0. Therefore, the introduction of the two distinct complex coefficients α, β is
tantamount of choosing an infinite family of real-valued connection components
Ωa5

µ ,Ω5a
µ given by the many different linear combinations of eaµ and fa

µ . The
real valued coefficients of these linear combinations are given by the real and
imaginary parts of α and β as displayed in eq-(2.21a). One should also emphasize
that no zero torsion conditions were imposed in reaching the relations in eqs-
(2.21) between Ωa5

µ ,Ω5a
µ and eaµ, f

a
µ .

The Hermitian U(1, 4)-valued field strength is defined by

Fµν = ∂µAν − ∂νAµ + i [Aµ, Aν ] (2.22)

from which one can read-off the curvature components R
(ab)
µν ;R

[ab]
µν , and the

other components of the field strength (like torsion), in terms of the connection
components (and their derivatives) of eq-(2.19) from the following decomposition
of the field strength

Fµν = R(ab)
µν Mab + R[ab]

µν Lab +
1

L
[ F a

µν Za(α, β) + (F a
µν)

∗ Z†
a(α

∗, β∗ ) ] + Fµν I
(2.23)

By proceeding as one did in [16] one may then construct the generalized actions
for complex gravity after using the complex metric (vierbein) and its inverse
to raise and lower indices. The most simple actions can have terms linear and
quadratic in the curvature, and also quadratic terms in the torsion. For further
details we refer to [16].

Alternatively, one could instead start with the U(1, 4)-valued Hermitian
gauge field in eq-(2.20) leading to the field strength

Fµν = R(ab)
µν Mab + R[ab]

µν Lab + R(a5)
µ Ma5 + R[a5]

µ La5 + Fµν I (2.24)

and expressed in terms of Ω
(ab)
µ ,Ω

[ab]
µ , eaµ, f

a
µ ,Ω

55
µ = Ωµ and their derivatives.

Note that U(1, 4) has 25 generators, whereas the metric affine group in 4D,
given by the semi-direct product of GL(4, R) with the translation group T4, has
20 generators. Therefore, the complex gravitational theory based on U(1, 4),
and inspired from Born reciprocal relativity theory, has more degrees of freedom
than the metric affine theory of gravity in 4D. This is not surprising since one
is dealing with gravity in curved phase spaces. There is also torsion in our
construction.

A curved phase-space action associated with the geometry of the cotangent
bundle of spacetime and based on Lagrange-Finsler and Hamilton-Cartan Ge-
ometry [17], [18] can be found in [15]. To conclude this section, there are two
different approaches to construct generalized gravitational theories in curved
phase spaces : (i) via the U(1, 4) local gauge theory construction presented
here, or (ii) via Finsler geometric methods.

9



3 The Yang Algebra versus the Deformed
Quaplectic Algebra

This section is devoted to an extensive analysis of the Yang and the deformed
Quaplectic algebras associated with noncommutative phase spaces. Secondly, we
present extensions of such algebras involving antisymmetric tensor coordinates
and momenta of different ranks.

3.1 The Yang Algebra and its Extension via Generalized
Angular Momentum Operators in Higher Dimensions

Given a flat 6D spacetime with coordinates Y M = {Y 1, Y 2, Y 3, Y 4, Y 5, Y 6},
and a metric ηMN = diag(−1,+1,+1, . . . ,+1)2, the Yang algebra [2], which is
an extension of the Snyder algebra [1], can be derived in terms of the SO(5, 1)
Lorentz algebra generators described by the angular momentum/boost opera-
tors3

JMN = − (Y M ΠN − Y N ΠM ) = i Y M ∂

∂YN
− i Y N ∂

∂YM
(3.1)

where ΠM = −i(∂/∂YA) is the canonical conjugate momentum variable to Y M .
Their commutators are

[Y M , Y N ] = 0, [ΠM ,ΠN ] = 0, [Y M ,ΠN ] = i ηMN , M,N = 1, 2, 3, 4, 5, 6
(3.2)

The coordinates Y M commute. The momenta ΠM also commute, and the canon-
ical conjugate variables Y M ,ΠN obey the Weyl-Heisenberg algebra in 6D.

Adopting the units h̄ = c = 1, the correspondence among the noncommuting
4D spacetime coordinates xµ, the noncommuting momenta pµ, and the Lorentz
SO(5, 1) algebra generators leading to the Yang algebra [2] is given by

xµ ↔ LP Jµ5 = − LP (Y µ Π5 − Y 5 Πµ) (3.3a)

pµ ↔ 1

L
Jµ6 = − 1

L
(Y µ Π6 − Y 6 Πµ), µ, ν = 1, 2, 3, 4 (3.3b)

and which requires the introduction of an ultra-violet cutoff scale LP given
by the Planck scale, and an infra-red cutoff scale L that can be set equal to
the Hubble scale RH (which determines the cosmological constant). It is very
important to emphasize that despite the introduction of two length scales LP ,L

2We choose a different signature than the one in the introduction
3Our choice differs by a minus sign from the conventional definition
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the Lorentz symmetry is not lost. This is one of the most salient features of the
Snyder [1] and Yang [2] algebras.4

The other generators are given by

N ≡ J56 = −(Y 5 Π6 − Y 6 Π5), Jµν = − (Y µ Πν − Y ν Πµ), µ, ν = 1, 2, 3, 4
(3.4)

One can then verify that the Yang algebra is recovered after imposing the
correspondence in eqs-(3.3, 3.4)

[xµ, xν ] = − i L2
P Jµν , [pµ, pν ] = − i (

1

L
)2 Jµν , η55 = η66 = 1 (3.5)

[xµ, Jνρ] = i (ηµρ xν − ηµν xρ) (3.6)

[pµ, Jνρ] = i (ηµρ pν − ηµν pρ ) (3.7)

[xµ, pν ] = − i ηµν
LP

L
N , [Jµν ,N ] = 0 (3.8)

[xµ, N ] = i LPL pµ, [pµ, N ] = − i
1

LPL
xµ (3.9)

and where the [Jµν , Jρσ] commutators are the same as in the SO(3, 1) Lorentz
algebra in 4D. They are of the form

[ Jµ1µ2 , Jν1ν2 ] = − i ηµ1ν1 Jµ2ν2 + i ηµ1ν2 Jµ2ν1 +

i ηµ2ν1 Jµ1ν2 − i ηµ2ν2 Jµ1ν1 , h̄ = c = 1 (3.10)

The generators are assigned to be Hermitian so there are i factors in the right-
hand side of eq-(1.10) since the commutator of two Hermitian operators is anti-
Hermitian. The 4D spacetime metric is ηµν = diag(−1, 1, 1, 1).

Given the above correspondence (2.3), we were able to extend it further
to the higher grade polyvector-valued coordinates and momenta operators in
noncommutative Clifford phase spaces [14]. Given a Clifford algebra {γµ, γν} =
2ηµν1, a polyvector-valued coordinate is defined asX = XMΓM , and admits the
following expansion in terms of the Clifford algebra generators in D-dimensions,
1, γµ, γµ1 ∧ γµ2 , · · · , γµ1 ∧ γµ2 ∧ · · · ∧ γµD , as follows

X = X 1 + Xµ γµ + Xµ1µ2 γµ1 ∧γµ2 + Xµ1µ2µ3 γµ1 ∧γµ2 ∧γµ3 + ...... +

Xµ1µ2µ3......µD
γµ1 ∧ γµ2 ∧ γµ3 ....... ∧ γµD (3.11a)

The numerical combinatorial factors can be omitted by imposing the ordering
prescription µ1 < µ2 < µ3 · · · < µD. In order to match physical units in each

4A simple inspection reveals that a correspondence of the form xµ

LP
= a1Jµ5+b1Jµ6;Lpµ =

a2Jµ5 + b2Jµ6 will automatically lead to b1 = 0, a2 = 0; or b2 = 0, a1 = 0 resulting from the
antisymmetry of the commutators [xµ, xν ], [pµ, pν ]
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term of (2.11a) a length scale parameter must be suitably introduced in the
expansion in eq-(2.11a). In [7] we introduced the Planck scale as the expansion
parameter in (2.11a), and which was set to unity, when one adopts the units
h̄ = c = G = 1.

Similarly, the polyvector-valued momentum P = PMΓM admits the follow-
ing expansion in terms of the Clifford algebra generators in D-dimensions

P = P 1 + Pµ γµ + Pµ1µ2
γµ1 ∧ γµ2 + Pµ1µ2µ3

γµ1 ∧ γµ2 ∧ γµ3 + ...... +

Pµ1µ2µ3......µD
γµ1 ∧ γµ2 ∧ γµ3 ....... ∧ γµD (3.11b)

The scalar, vectorial, antisymmetric tensorial coordinates X,Xµ,
Xµ1µ2 = −Xµ2µ1 , · · · , Xµ1µ2···µD

are the scalar, vector, bivector, trivector, · · ·
components of the polyvector-valued coordinates. TheXµ1µ2 bivector (antisym-
metric tensor of rank 2) corresponds to an oriented area element. The trivector
Xµ1µ2µ3

(antisymmetric tensor of rank 3) corresponds to an oriented volume
element, and so forth.

Similarly, the scalar, vectorial, antisymmetric tensorial coordinates P, Pµ,
Pµ1µ2 = −Pµ2µ1 , · · · , Pµ1µ2···µD

are the scalar, vector, bivector, trivector, · · ·
components of the polyvector-valued momentum coordinates. The Pµ1µ2 bivec-
tor (antisymmetric tensor of rank 2) corresponds to an oriented areal-momentum
element. The trivector Pµ1µ2µ3

(antisymmetric tensor of rank 3) corresponds to
an oriented volume-momentum element, and so forth.

We constructed in [14] the corresponding non-vanishing commutators among
the noncommutative antisymmetric tensorsXµ1µ2 , Xµ1µ2µ3 , · · ·; Pµ1µ2 , Pµ1µ2µ3 , · · ·
of different ranks. We coined such extension of the Yang algebra the Clifford-
Yang algebra since it involves polyvector-valued coordinates and momenta as-
sociated with a Clifford algebra. The noncommuting bivector coordinates obey

[Xµ1µ2 , Xν1ν2 ] ∼ iL4
P η55 Jµ1µ2|ν1ν2 , Jµ1µ2|ν1ν2 ≡ −(Y µ1µ2 Πν1ν2 − Y ν1ν2 Πµ1µ2)

(3.12a)
Y µ1µ2 is a bivector coordinate associated with the Cl(5, 1) algebra of the 6D
flat spacetime. Πµ1µ2 = −i(∂/∂Yµ1µ2) is the corresponding bivector canonical
momentum conjugate. Their commutators are

[Y µ1µ2 , Y ν1ν2 ] = 0, [Πµ1µ2 ,Πν1ν2 ] = 0, [Y µ1µ2 , P ν1ν2 ] = i ηµ1µ2|ν1ν2

(3.12b)
and where the generalized metric involving bivector indices is defined as

ηµ1µ2|ν1ν2 = ην1ν2|µ1µ2 = ηµ1ν1 ηµ2ν2 − ηµ1ν2 ηµ2ν1 (3.12c)

The noncommuting bivector momenta obey

[Pµ1µ2 , P ν1ν2 ] ∼ iL−4 η66 Jµ1µ2|ν1ν2 (3.12d)

And so forth. All the commutators have the same structural form of a general-
ized angular momentum algebra as follows

[JA(r1)|B(r2), JC(s1)|D(s2)] = −i ηA(r1)|C(s1) JB(r2)|D(s2) +i ηA(r1)|D(s2) JB(r2)|C(s1) +
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i ηB(r2)|C(s1) JA(r1)|D(s2) − i ηB(r2)|D(s2) JA(r1)|C(s1), h̄ = c = 1 (3.12e)

where the grades of the polyvector indices A(r1)B(r2), C(s1), D(s2) appearing
in the generators are r1, r2, s1, s2, respectively. The shorthand notation for
Ja1a2···ar1 |b1b2···br2 is JA(r1)|B(r2), · · ·. The generalized metric tensor ηA|C = 0
if the grade of A is not equal to the grade of C. Similarly, ηA|D = 0 if the
grade of A is not equal to the grade of D, · · ·. Also, ηµ5 = ηµ6 = 0 since the
6D metric is diagonal. The commutators (3.12e) will ensure that the Jacobi
identities are satisfied. In addition, we found the spectrum of the quantum
harmonic oscillator in noncommutative spaces in terms of the eigenvalues of the
generalized angular momentum operators in higher dimensions, and discussed
how to extend these results to higher grade polyvector-valued coordinates and
momenta. For full details we refer to [14].

3.2 Realization of the Deformed Quaplectic Algebra and
its Extensions

We have seen above how the noncommutative coordinates and momenta of the
Yang-algebra in 4D can be realized in terms of the angular momentum opera-
tors in 6D, and which in turn, are expressed in terms of the canonical-conjugate
variables Y M ,ΠN in 6D shown in eqs-(3.3,3.4), and obeying the standard com-
mutation relations displayed in eqs-(3.2). Inspired by this procedure we shall
find next a realization of the deformed Quaplectic algebra generators in terms
of the canonical coordinate and momentum variables Ya,Πb, Y5,Π5 as follows

Mab = Mba =
1

2
(Ya Πb + Πb Ya) +

1

2
(Yb Πa + Πa Yb) (3.13a)

Ma5 = M5a =
1

2
(Ya Π5 +Π5 Ya) +

1

2
(Y5 Πa +Πa Y5), M55 = (Y5 Π5 +Π5 Y5)

(3.13b)

Lab = − Lba =
1

2
(Ya Πb + Πb Ya) − 1

2
(Yb Πa + Πa Yb) (3.13c)

La5 = − L5a =
1

2
(Ya Π5 + Π5 Ya) − 1

2
(Y5 Πa + Πa Y5) (3.13d)

From eqs-(3.12,3.13) one then finds an explicit realization of the generators
ZAB = 1

2 (MAB + LAB) of the deformed Quaplectic algebra, with A,B =
1, 2, 3, 4, 5, directly in terms of the canonical coordinate and momentum vari-
ables Ya,Πb, Y5,Π5, and obeying the following commutation relations

[Ya, Yb] = 0, [Ya, Y5] = 0, [Πa, Πb] = 0 (3.14a)

[Πa, Π5] = 0, [Ya, Πb] = i ηab, [Y5, Π5] = i η55 (3.14b)

From eqs-(3.14) one learns that when a ̸= b, the generator Mab reduces to
YaΠb + YbΠa, and when a = b, Maa = YaΠa + ΠaYa. While the generator
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Lab = YaΠb−YbΠa. Similarly, Ma5 reduces to YaΠ5+Y5Πa; M55 = Y5Π5+Π5Y5,
and La5 = YaΠ5 − Y5Πa

The difference between the Yang and the deformed Quaplectic algebra is that
in the Yang algebra case one adds two additional coordinates and momenta
Y 5, Y 6,Π5,Π6 in order to construct the SO(5, 1) algebra with 15 generators.
Whereas in the deformed Quaplectic algebra case one adds one additional co-
ordinate and momentum Y 5,Π5, and the extra generators Mab,Ma5,M55 = I
in order to construct the U(1, 4) algebra with 25 generators. Furthermore, the
construction of the Yang algebra requires the two length scales LP ,L; whereas
in the (deformed) Quaplectic algebra one has the length scale λl, and the mo-
mentum scale λp.

The antisymmetric rank-2 tensor coordinates and momenta operators exten-
sions of the expressions in eqs-(3.12,3.13) are given by

Ma1a2|b1b2 =
1

2
(Ya1a2

Πb1b2 + Πb1b2 Ya1a2
) +

1

2
(Yb1b2 Πa1a2

+ Πa1a2
Yb1b2)

(3.15a)

La1a2|b1b2 =
1

2
(Ya1a2 Πb1b2 + Πb1b2 Ya1a2) − 1

2
(Yb1b2 Πa1a2 + Πa1a2 Yb1b2)

(3.15b)
where

Ma1a2|b1b2 = − Ma2a1|b1b2 = − Ma1a2|b2b1 = Mb1b2|a1a2
(3.16a)

La1a2|b1b2 = − La2a1|b1b2 = − La1a2|b2b1 = − Lb1b2|a1a2
(3.16b)

Given Ma1a2|b1b2 , La1a2|b1b2 the generalization of the operator Zab is

Za1a2|b1b2 ≡ 1

2
(Ma1a2|b1b2 + La1a2|b1b2) (3.16c)

The generalization of the commutators in eqs-(2.8a,2.8b,2.8c) corresponding
to the Ma1a2|b1b2 , La1a2|b1b2 generators is given by

[La1a2|b1b2 , Lc1c2|d1d2
] = i ηb1b2|c1c2 La1a2|d1d2

− i ηa1a2|c1c2 Lb1b2|d1d2
−

i ηb1b2|d1d2
La1a2|c1c2 + i ηa1a2|d1d2

Lb1b2|c1c2 (3.17)

[Mab, Mcd] = − i ηb1b2|c1c2 La1a2|d1d2
− i ηa1a2|c1c2 Lb1b2|d1d2

−

i ηb1b2|d1d2
La1a2|c1c2 − i ηa1a2|d1d2

Lb1b2|c1c2 (3.18)

[Lab, Mcd] = i ηb1b2|c1c2 Ma1a2|d1d2
− i ηa1a2|c1c2 Mb1b2|d1d2

+

i ηb1b2|d1d2
Ma1a2|c1c2 − i ηa1a2|d1d2

Mb1b2|c1c2 (3.19)

where

ηa1a2|b1b2 ≡ ηa1b1 ηa2b2 − ηa1b2 ηa2b1 (3.20)
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From eqs-(3.16c,3.17-3.20) one finds that

[ Za1a2|b1b2 , Zc1c2|d1d2
] = − i ( ηb1b2|c1c2 Za1a2|d1d2

− ηa1a2|d1d2
Zc1c2|b1b2 ).

(3.21)
This is a result of the canonical antisymmetric rank-2 tensor coordinates and mo-
menta variables Ya1a2

,Πb1b2 obeying the following commutation relations (the
generalization of eqs-(3.14))

[Ya1a2 , Yb1b2 ] = 0, [Πa1a2 , Πb1b2 ] = 0, [Ya1a2 , Πb1b2 ] = i ηa1a2|b1b2 (3.22)

The other dimensionless generators are5

Ma1a2|5 =
Ya1a2

λ2
l

Π5

λp
+

Y5

λl

Πa1a2

λ2
p

,

M5|a1a2
=

Y5

λl

Πa1a2

λ2
p

+
Ya1a2

λ2
l

Π5

λp
(3.23)

La1a2|5 =
Ya1a2

λ2
l

Π5

λp
− Y5

λl

Πa1a2

λ2
p

,

L5|a1a2
=

Y5

λl

Πa1a2

λ2
p

− Ya1a2

λ2
l

Π5

λp
(3.24)

such that

Za1a2|5 =
1

2
(Ma1a2|5 + La1a2|5), Z5|a1a2

=
1

2
(M5|a1a2

+ L5|a1a2
) (3.25)

and leading to the following generators

Z[a1a2] ≡ 1√
2
(
Xa1a2

λ2
l

− i
Pa1a2

λ2
p

) = α Za1a2|5 + β Z5|a1a2
, (3.26a)

Z†
[a1a2]

≡ 1√
2
(
Xa1a2

λ2
l

+ i
Pa1a2

λ2
p

) = α∗ Za1a2|5 + β∗ Z5|a1a2
(3.26b)

where α, β are suitable complex-valued coefficients chosen so that6

[Z[a1a2], Z†
[b1b2]

] = − ( ηa1a2|b1b2 I + Ma1a2|b1b2 ) (3.27)

[Z[a1a2], Z[b1b2]] = [Z†
[a1a2]

, Z†
[b1b2]

] = − i La1a2|b1b2 (3.28)

Finally, from eqs-(3.26,3.27,3.28) one arrives at the desired result

5Since λlλp = 1, in units of h̄ = 1, the powers of λl, λp decouple explicitly from eqs-(3.15)
6Note that one must not confuse Zab ≡ 1

2
(Mab + Lab) with Z[a1a2] defined by eq-(3.26a)
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[
Xa1a2

λ2
l

,
Pb1b2

λ2
p

] = i (ηa1a2|b1b2 I +Ma1a2|b1b2) (3.29)

[Xa1a2
, Xb1b2 ] = −i (λl)

4 La1a2|b1b2 ; [Pa1a2
, Pb1b2 ] = i (λp)

4 La1a2|b1b2 ; (3.30)

The above construction can be extended to higher rank antisymmetric ten-
sor coordinates and momenta Ya1a2,a3

,Πa1a2a3
, · · · leading to the generators

Za1a2a3|b1b2b3 ;Za1a2a3|5;Z5|a1a2a3
, · · ·, and whose commutators are the exten-

sions of the equations above. The end result is

[
Xa1a2···an

λn
l

,
Pb1b2···bn

λn
p

] = i (ηa1a2···an|b1b2···bn I +Ma1a2···an|b1b2···bn) (3.31)

[Xa1a2···an
, Xb1b2···bn ] = − i (λl)

2n La1a2···an|b1b2···bn (3.32a)

[Pa1a2···an
, Pb1b2···bn ] = i (λp)

2n La1a2···an|b1b2···bn (3.32b)

where ηa1a2···an|b1b2···bn can be written as the determinant of the n × n ma-

trix whose entries are ηaibj with i, j = 1, 2, · · · , n. The same occurs with
δa1a2···an

b1b2···bn where the entries are δai

bj
. One finds that eqs-(3.31,32) do not dif-

fer too much from those corresponding equations of the Clifford-Yang algebra
[14]. In the latter algebra, I = 2Z55 = M55 is replaced by N ≡ J56; there
are no Ma1a2···an|b1b2···bn terms, and λl, λp are replaced by LP ,L−1, respectively
where LP ,L are the lower and upper length scales.

To sum up, all the commutation relations can be obtained from

[ Za1a2···an|b1b2···bn , Zc1c2···cn|d1d2···dn
] =

−i ( ηb1b2···bn|c1c2···cn Za1a2···an|d1d2···dn
− ηa1a2···an|d1d2···dn

Zc1c2···cn|b1b2···bn ).
(3.33a)

[ Za1a2···an|5, Z5|b1b2···bn ] = −i ( η55 Za1a2···an|b1b2···bn − ηa1a2···an|b1b2···bn Z55 ), · · ·
(3.33b)

4 Curved Phase Space due to Noncommutative
Coordinates and Momenta

Noncommuting momentum operators are a reflection of the spacetime curva-
ture after invoking the QM prescription pµ ↔ −ih̄∇µ. By Born’s reciprocity,
noncommuting coordinates are a reflection of the momentum space curvature
after invoking xµ ↔ ih̄∇̃µ, where the tilde derivatives represent derivatives with
respect to the momentum variables.
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Having reviewed the basics of the Yang algebra of noncommutative phase
spaces, Born Reciprocal Relativity, the extended Yang and (deformed) Quaplec-
tic algebras, in this section we shall provide a solution for the exact analytical
mapping of the non-commuting xµ, pµ operator variables (associated to an 8D
curved phase space) into the canonical Y A,ΠA operator variables of a flat 12D
phase space. We explore the geometrical implications of this mapping which pro-
vides, in the classical limit, with the embedding functions Y A(x, p),ΠA(x, p)
of an 8D curved phase space into a flat 12D phase space background. The lat-
ter embedding functions determine the functional forms of the base spacetime
metric gµν(x, p), the fiber metric of the vertical space hab(x, p), and the non-
linear connection Naµ(x, p) associated with the 8D cotangent space of the 4D
spacetime.

4.1 Mapping of xµ, pµ to the Y A,ΠA variables in Flat Phase
Space

The Y 5, Y 6,Π5,Π6 canonical coordinates and momenta (operators) in the flat
12-dim phase space are scalars from the point of view of the 8-dim curved
phase space parametrized by the non-canonical coordinates xµ and momenta
pµ. Therefore, Y 5, Y 6,Π5,Π6 must be functions of the Lorentz scalars

x2 = ηµνx
µxν , p2 = ηµνp

µpν , x·p = ηµνx
µpµ, p·x = ηµνp

µxν , µ, ν = 1, 2, 3, 4
(4.1)

Setting α = L−1, β = LP , due to the Born reciprocity principle, one must
have functions f(z1, z2, z3) of the arguments z1, z2, z3 given by the following
combination of Hermitian variables (operators)

z1 ≡ (α2x2 + β2p2), z2 ≡ (x ·p+p ·x), z3 ≡ i (x ·p−p ·x), α = L−1, β = LP

(4.2)
The arguments z1, z2, z3 are invariant under α ↔ β, x ↔ p, and i ↔ −i if one
wishes to implement Born’s reciprocity symmetry. Therefore, one must have
functions of the form

Y 5 = Y 5(z1, z2, z3), Y 6 = Y 6(z1, z2, z3), Π5 = Π5(z1, z2, z3), Π6 = Π6(z1, z2, z3)
(4.3)

For instance, one could have functions linear in z1, z2, z3 defined as follows

Y 5(x, p) = a1(α
2x2 + β2p2) + b1(x · p) + b∗1(p · x) + c1 (4.4a)

Y 6(x, p) = a2(α
2x2 + β2p2) + b2(x · p) + b∗2(p · x) + c2 (4.4b)

Π5(x, p) = a3(α
2x2 + β2p2) + b3(x · p) + b∗3(p · x) + c3 (4.4c)

Π6(x, p) = a4(α
2x2 + β2p2) + b4(x · p) + b∗4(p · x) + c4. (4.4d)
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where ai, bi, ci (i = 1, 2, 3, 4) are judicious numerical (dimensionful) coefficients.
The units of the coefficients in eqs-(4.4a,4.4b) are those of length, while those
in eqs-(4.4c,4.4d) are those of mass. Note that the bi coefficients in eqs-(4.4)
are complex-valued bi = γi + iδi. The reason is that the combination

bi (x·p) + b∗i (p·x) = γi (x·p+p·x) + i δi (x·p−p·x) = γi z2 + δi z3, i = 1, 2, 3, 4
(4.4e)

ensures that eq-(4.4e) is Hermitian by construction. Eq-(4.4e) is also invariant
under Born’s reciprocity x ↔ p and i ↔ −i. We shall show that eqs-(4.4)
should, in principle, provide satisfactory solutions to the embedding problem
defined below.

The [xµ, pν ] commutator is defined as

[xµ, pν ] = xµ pν − pν xµ = i γµν(x, p) (4.5)

where γµν(x, p) is a second rank tensor, not necessarily symmetric, that we
refrain from identifying it to a metric tensor. The above commutator can also
be expressed in terms of the 6D angular momenta variables displayed by eqs-
(3.3,3.4) as

[xµ, pν ] = i γµν(x, p) = − i αβ J56(x, p) ηµν =

i αβ [ Y 5(x, p) Π6(x, p) − Y 6(x, p) Π5(x, p) ] ηµν , α = L−1, β = LP (4.6)

Therefore, from eqs-(4.5,4.6) one arrives at the following relation, after contract-
ing both equations with ηµν ,

1

4i
ηµν (xµ pν − pν xµ) =

1

4i
(x · p − p · x) =

αβ ( Y 5(x, p) Π6(x, p) − Y 6(x, p) Π5(x, p)) ) = − αβ N (4.7)

Therefore, in this particular case, one finds that the tensor is symmetric γµν(x, p) =
Φ(x, p)ηµν and such that the conformal factor Φ(x, p) is Hermitian and given
by the left hand side of eq-(4.7). The r.h.s of (4.7) is Hermitian because J56

is Hermitian due to the canonical and Hermiticity nature of the 6D variables
: (Y 5Π6)† = Π6Y 5 = Y 5Π6, and (Y 6Π5)† = Π5Y 6 = Y 6Π5 resulting from the
commutators of the 6D canonical variables given by eq-(3.2).

From eqs-(3.3) one learnt that the 4D operators xµ, pµ admitted a 6D an-
gular momentum realization of the form

xµ = β Jµ5 = − β (Y µ Π5 − Y 5 Πµ), β = LP (4.8)

pµ = α Jµ6 = − α (Y µ Π6 − Y 6 Πµ), α = L−1 (4.9)

From eqs-(4.8, 4.9) one can deduce the relation

J µν = xµ pν − xν pµ = αβ J56 (Y µ Πν − Y ν Πµ) (4.10)
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where J56 ≡ N and Jµν are given by eq-(3.4) explicitly in terms of the 6D
canonical variables Y A,ΠB .

One can invert the relations in eqs-(4.8,4.9) as follows. After multiplying
eqs-(4.8 4.9) on the right by Π6,Π5, respectively, and subtracting the top equa-
tion from the bottom one, it yields

β−1 xµ Π6 − α−1 pµ Π5 = Πµ N = N Πµ (4.11a)

due to the canonical nature of the 6D variables Y A,ΠA described by the com-
mutators in eqs-(3.2) and which allows us to re-order the relevant factors due
to the commutativity.

And multiplying eqs-(4.8, 249) on the right by Y 6, Y 5, respectively, and
subtracting the top equation from the bottom one, it yields

β−1 xµ Y 6 − α−1 pµ Y 5 = Y µ N = N Y µ (4.11b)

We shall see next that the functional forms of Y 5(x, p), Y 6(x, p),Π5(x, p),
Π6(x, p) provided eqs-(4.4) lead to solutions to eq-(4.7), and which in turn, yield
automatically the solutions to eqs-(4.11a, 4.11b). And, in doing so, one has
found the solutions to the embedding problem : Y µ = Y µ(x, p); Πµ = Πµ(x, p),
with N (x, p) ≡ J56(x, p) = −(Y 5Π6 − Y 6Π5)(x, p), and where [N , Y µ] =
[N ,Πµ] = 0. The operator N appearing in the right hand side of eqs-(4.11)
can be moved to the left hand side via the inverse N−1 operator, and that can
be defined as a formal power series as follows [1− (1−N )]−1 = 1 + (1−N ) +
(1−N )2 + · · ·.

Thus, from eqs-(4.7,4.11) one can then construct the maps from the xµ, pµ

noncanonical (operator) variables in 4D to the canonical (operator) variables
Y A,ΠA in 6D. After a laborious but straightforward procedure we find the
following family of solutions

Y 5(x, p) = κ1 β z1 + κ2 β z2 + κ3 β z3 + κ4 β (4.12a)

Y 6(x, p) = κ1 β z1 + κ2 β z2 + κ3 β z3 + (κ4 + 1) β (4.12b)

Π5(x, p) = κ1 β−1 z1 + κ2 β−1 z2 +
5

4
κ3 β−1 z3 + κ4 β−1 (4.12c)

Π6(x, p) = κ1 β−1 z1 + κ2 β−1 z2 +
5

4
κ3 β−1 z3 + (κ4 + 1) β−1 (4.12d)

where κ3 = (αβ)−1 and κ1, κ2, κ4 are three arbitrary parameters. This is due to
the nonlinearity of the equations that one is solving. These solutions (4.12) have
the form Y 6 = Y 5 + β; Π5 = Π6 − β−1 such that αβ Y [5 Π6] = − z3

4 = −αβN
as required by eq-(4.7).

When one takes the classical limit, upon restoring h̄ which was set to unity
in the terms γiz2 → γi

h̄ z2 of eqs-(4.4e), in order to match units, one can see that

these terms are singular in the h̄ → 0 limit. Whereas the terms δi
h̄ z3 → −4δi

are well behaved and yield constants.
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For these reasons we shall just adhere to the following prescription in finding
the classical limit of the embedding functions Y A(x, p),ΠA(x, p). We could sim-
ply drop the singular 1

h̄z2 terms in eqs-(4.12) by setting the arbitrary constant
κ2 to zero κ2 = 0; and set the 1

h̄z3 terms to constants that can be reabsorbed
into a redefinition of the κ4 parameter in the explicit solutions for Y 5, Y 6,Π5,Π6

given by eqs-(4.12). In doing so one ends up with the following expressions in
the classical limit

Y 5(z1) = κ1 β z1 + β ( κ4 − 4(αβ)−1 ) (4.13a)

Y 6(z1) = κ1 β z1 + β ( κ4 + 1 − 4(αβ)−1 ) (4.13b)

Π5(z1) = κ1 β−1 z1 + β−1 ( κ4 − 5(αβ)−1 ) (4.13c)

Π6(z1) = κ1 β−1 z1 + β−1 ( κ4 + 1 − 5(αβ)−1 ) (4.13d)

To conclude, one can finally obtain the explicit solutions for Y µ, (z1, x
µ, pµ);

Πµ(z1, x
µ, pµ), in the classical limit, and given in terms of the functions Y 5(z1),

Y 6(z1),Π
5(z1),Π

6(z1) in eqs-(4.13) (and xµ, pµ) as follows

α xµ Π6(z1) − β pµ Π5(z1) = − Πµ(z1, x
µ, pµ) (4.14a)

α xµ Y 6(z1) − β pµ Y 5(z1) = − Y µ(z1, x
µ, pµ) (4.14b)

where z1 ≡ α2x2+β2p2, α = L−1;β = LP . Next we shall study the geometrical
implications of the (classical) embedding solutions found in this section and
provided by eqs-(4.13.4.14).

4.2 Embedding a 8D curved phase space into a 12D flat
phase space

The previous section involved the use of coordinates and momenta operators.
In this section we shall deal with classical variables (c-numbers) x, p. A more
rigorous notation in the previous section would have been to assign “hats” to
operators x̂µ, p̂µ; Ŷ A, Π̂A. For the sake of simplicity we avoided it. The geometry
of the cotangent bundle of spacetime (phase space) can be best explored within
the context of Lagrange-Finsler, Hamilton-Cartan geometry [17], [18]. The line
element in the 8D curved phase space is

(ds)2 = gµν(x, p) dx
µdxν + hab(x, p) (dpa+Naµ(x, p)dx

µ) (dpb+Nbν(x, p)dx
ν)

(4.15)
where gµν(x, p), h

ab(x, p) are the base spacetime and internal space metrics,
respectively, with a, b = 1, 2, 3, 4, µ, ν = 1, 2, 3, 4, and Naµ(x, p) is the nonlinear
connection.
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One should note that the metric tensor gµν is not the vertical Hessian of
the square of a Finsler function, and hab is not the inverse of gµν . hab repre-
sents, physically, the cotangent bundle’s internal-space metric tensor which is
independent from the base-spacetime metric tensor gµν . The number of total
components of gµν , h

ab, Naµ is 10 + 10 + 16 = 36 = (8× 9)/2).
The generalized (vacuum) gravitational field equations associated with the

geometry of the 8D cotangent bundle differ considerably from the the standard
(vacuum) Einstein field equations in 8D based on Riemannian geometry. Thus,
for instance, by using a base-spacetime gµν metric to be independent from
the internal-space metric hab, and a nonlinear connection Nµa, it might avoid
the reduction of the solutions of the generalized gravitational field equations
to the standard Schwarzschild (Tangherlini) solutions when radial symmetry is
imposed.

For example, in [15] we studied a scalar-gravity model in curved phase spaces.
After a very laborious procedure, the variation of the action S with respect to
the fundamental fields

δS
δgµν

= 0,
δS
δhab

= 0,
δS

δNµa
= 0,

δS
δΦ

= 0 (4.16)

leads to the very complicated field equations which differ considerably from
the Einstein field equations. Exact nontrivial analytical solutions for the base-
spacetime gµν , the internal-space metric hab components, the nonlinear connec-
tion Nia, and the scalar field Φ were found that obey the generalized gravita-
tional field equations, in addition to satisfying the zero torsion conditions for
all of the torsion components. See [15] for details.

The embedding of the 8D curved phase space into the 12-dim flat phase
space is described by equating the 8D line interval ds2 in (4.15) with the 12D
one ds2 = ηABdZ

AdZB . After doing so, given ZA ≡ (Y A,ΠA) one learns that

gµν + hab Naµ Nbν = ηAB
∂ZA

∂xµ

∂ZA

∂xν
(4.17)

hab = ηAB
∂ZA

∂pa

∂ZA

∂pb
(4.18)

hab Nbµ = ηAB
∂ZA

∂pa

∂ZA

∂xµ
A,B = 1, 2, · · · , 5, 6 (4.19)

Eqs-(4.17-4.19) determine the functional form of gµν , h
ab, Naµ after one in-

serts the functional forms of the embedding functions ZA(x, p) = Y A(x, p),ΠA(x, p)
found in the previous section, and by making the following replacement pµ → pa.
We explained at the end of the previous section how the x · p, p · x terms could
decouple in the classical limit, by removing the singular terms z2

h̄ , and where
the z3

h̄ terms become constants, leaving only the terms z1 = w1 = α2x2 + β2p2.
Thus, after making the replacement pµ → pa one has ηµνp

µpν → ηabpapb, and
such that the indices will now match those appearing in eqs-(4.17-4.19).
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To sum up, the (classical) embedding functions ZA(x, p) = Y A(x, p),ΠA(x, p)
obtained in the previous section in eqs-(4.13,4.14) determine the functional form
of gµν , h

ab, Naµ in eqs-(4.17-4.19). The key question is whether or not the so-
lutions found for gµν , h

ab, Naµ also solve the vacuum field equations. And if
not, can one find the appropriate field/matter sources which are consistent with
these solutions ?. It is natural to assume that quantum matter/fields could be
the source of the noncommutativity of the spacetime coordinates and momenta.
After all, quantum fields live in spacetime. If this were not the case, what then
is the source of this phase space noncommutativity ? Is it space-time foam, dark
matter, dark energy ? .... If one expects to have a space-time-matter unifica-
tion then one has that matter curves space-time, and space-time back-reacts on
matter curving momentum space, “curving matter”.

5 Concluding Remarks

After a review of Born reciprocal relativity, and its physical implications, this
work was mainly devoted to the Yang and the deformed Quaplectic algebras
associated with noncommutative phase spaces, and to their extensions involv-
ing antisymmetric tensor coordinates and momenta of different ranks. Our
approach to construct extended Yang algebras differs from the study by [8].
We finalized with an analysis of the embedding an 8D curved phase space into
a 12D flat phase space which provides a direct link between noncommutative
curved phase spaces in lower dimensions to commutative flat phase spaces in
higher dimensions. Left from our discussion was the role of Quantum groups,
Hopf algebras, κ-deformed Poincare algebras, deformed special relativity [9],
[10], [11], [12], [13]. This will be the subject of future investigations.
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