
"n1 × n2 × … × nk Dots Puzzle":
An Optimal General Algorithm

Valerio Bencini

Independent researcher
Como, Italy

e-mail: valerio.bencini@gmail.com

Abstract: in this paper, we show a new algorithm for the  n1 × n2 × … × nk dots puzzle (an
extension of the well-known  nine dots puzzle of Samuel Loyd), able to solve completely the
problem for the case k=2 and, at the same time, provide lower upper bounds for the other cases.
Keywords:  combinatorics,  graph  theory,  computational  science,  nine  dots  puzzle,  covering
path, minimum-link, minimum-turn, link-length, grid, point, algorithm

1 Introduction

The problem addressed in this paper is an extension of the well-known  nine dots puzzle by
Samuel Loyd (refer to [2]): the n1 × n2 × … × nk dots puzzle.

Given  a  regular  k-dimensional  grid  of  n1 ×  n2 ×  … ×  nk points  (dimensionless),  where
n1≥n2≥…≥nk≥2 and  k≥2,  the  objective  is  to  traverse  all  the  points  (at  least  once)  using  a
polygonal  chain  composed  of  the  minimum  possible  number  of  segments,  connected
sequentially to their respective endpoints. 

For the two-dimensional case, an exact solution to the problem has already been found (see
[1]), while, for other cases, algorithms have been proposed that provide an upper bound for the
solution (see [3] and [4]). In our paper, we will present a new algorithm capable of providing
both the exact solution to the two-dimensional problem and a more efficient upper bound for
the other cases.
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2 The case n1 × n2

We begin the description of our algorithm with the simplest case: the two-dimensional one.
To navigate  the  n1 ×  n2 points  of  the  grid,  we will  utilize  one  of  three  different  paths

depending  on  the  situation,  solving  the  problem  with  the  minimum  possible  number  of
segments.

2.1 Path 1 (when n1=n2=2 or n1>n2)

When n1=n2=2 or n1>n2, we utilize path 1, as shown in Figure 1.
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Figure 1. Some of the initial examples of path 1.

Path 1 begins at the upper left corner of the grid, where the number of points per row is n1

and the number of points per column is n2. The total number of segments used is the minimum
possible, equal to 2 n⋅n 2-1 (see [1]).

Observing Figure 1, it can be noted that, when n2 (the number of points in each column) is
equal to  2,  we use  3=2 2-1⋅n  segments,  whereas,  when it  is  equal  to  3,  we use  5=2 3-1⋅n ;  in
general, we use 2 additional segments for each increment of n2.

2



2.2 Path 2 (when n1=n2>2, with n n≔n 1=n2 and n is an odd number)

When n1=n2>2, with n n≔n 1=n2 and n being an odd number, we utilize path 2, shown in Figure
2.

,      ,      ,      ,

,      ,      …

Figure 2. Some of the initial examples of path 2.

The starting point is again the upper left corner of the grid.
The total number of segments used is still the minimum possible:  2 n-2⋅n  (see [1]), since, as

shown in  Figure 2, when  n=3, we use  4=2 3-2⋅n  segments, and, when  n=5, we use  8=2 5-2⋅n ,
adding 4 additional segments for each increment of n.
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2.3 Path 3 (when n1=n2>2, with n n≔n 1=n2 and n is an even number)

For the final case, when n1=n2>2, with n n≔n 1=n2 and n is an even number, we utilize path 3, as
illustrated in Figure 3.

,     ,     ,     ,

,      ,      …

Figure 3. Some of the initial examples of path 3.

Path 3 starts from the upper left point of the grid. In this case, as well, the total number of
segments used corresponds to the minimum possible: 2 n-2⋅n  (see [1]).

When n=4, we indeed use 6=2 4-2⋅n  segments, when n=6, we use 10=2 6-2⋅n , and we add 4
segments for each increase in n.
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2.4 The formula for our solutions

As we have just shown, the total number of segments used  t(n1; n2) corresponds to the exact
solution of the problem s(n1; n2).

The values of our solutions are, therefore,  n∀ n 1; n2  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

t (n1; n2)=

=s(n1; n2)={
2⋅n2−1
if n1=n2=2∨n1>n2

2⋅n−2
if n1=n2>2∧n≔n n1=n2

(1)

where:
n1≥n2
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3 The case n1 × n2 × n3

In  this  section,  we  continue  the  description  of  our  algorithm,  extending  it  to  the  three-
dimensional  case  and,  subsequently,  dedicating  most  of  the  section  to  finding  the  best
optimization to save some additional segments.

3.1 Description of the algorithm

We extend  the  paths demonstrated  in  the  two-dimensional  case  as  illustrated  in  Figure  4,
reiterating the same two-dimensional paths used for the case n1 × n2 on each n1×n2 "plane" of
the three-dimensional grid, beginning from one of the two outer "planes" and connecting each
"plane" sequentially with a segment for each "plane" subsequent to the first (the green segments
in Figure 4).

At this point, to reduce the number of used segments, we can apply a simple optimization:
case  by  case  (as  in  the  example  in  Figure  4),  we  can  decide  not  to  complete  the  two-
dimensional paths on the n1×n2 "planes", leaving a certain number of "free points" (interior) on
each individual  two-dimensional  "plane",  equal  in  number  and aligned (like the  3 on each
"plane" in the left image of Figure 4), so that we can subsequently visit them through a very
simple "final  path" (the blue and yellow segments of the right image in Figure 4), ultimately
using a number of segments that could be fewer than what we would have used if visiting the
"free points" with the two-dimensional  paths immediately (as seen in the case of  Figure 5,
where the total number of segments used t(n1; n2; n3) is greater than that in Figure 4).

Regarding the "final path",  it will alternate blue segments, through which we move to the
remaining points on the two outer "planes", with yellow segments, through which we visit n3-1
aligned "free points" at a time, "bouncing" from one outer "plane" to another.

This path will thus consist of a fixed number of segments, equal to twice the number of "free
points" on each individual n1×n2 "plane" (as shown in Figure 4, where we have 3 "free points"
fo each n1×n2 "plane" and we use precisely 6=2 3⋅n  segments to visit them: 3 blue and 3 yellow).
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Figure 4. In the left image, we have the first part of the three-dimensional path for the case
n1=6, n2=5 and n3=4. They are visible the two-dimensional paths (path 1), traced on each

n1×n2 "planes", starting from the outermost one at the bottom, and sequentially connected by
green segments. Additionally, the "free points" that have not yet been visited can be noted. In
the right image, we see the three-dimensional grid finally resolved through the "final path",

alternating between blue segments, which allow us to traverse the remaining points on the two
outer "planes", and yellow segments, with which we visit n3-1 aligned "free points"  at a time,
"bouncing" from one outer "plane" to another. The total number of segments used to solve the

grid is t(6; 5; 4)=37.

Figure 5. Again considering the case of n1=6, n2=5 and n3=4: had we not utilized the
optimization illustrated in Figure 4, the total number of segments used would have been 39,

indicative of two additional segments.

Having completed the description of our algorithm, one of the challenges in the upcoming
subsections will be to determine the optimal number of segments for the two-dimensional path
to use on the n1×n2 "planes".

This is essential in order to minimize the total number of segments required to solve the
three-dimensional grid using our new algorithm.
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3.2 The general formula for our solutions

As we have just demonstrated, the total number of segments used in the three-dimensional case
is  generally  equal  to  one  of  the  possible  values  for  the  number  of  segments  in  the  two-
dimensional path to be used on each individual n1×n2 "plane" (which we define as l, where the
maximum  value  is,  of  course,  the  solution  to  the  two-dimensional  case,  shown  in  (1)),
multiplied by the number of n1×n2 "planes" (which is n3), plus the number of segments (green)
connecting the n1×n2 "planes" (thus, n3-1), added to the number of segments used in the "final
path", which, as mentioned earlier, is equal to twice the number of "free points" on each n1×n2

"plane" (which we define as p).
The general formula for our solutions is, then,  n∀ n 1; n2; n3  -{0; 1}  l  -{0}∈ ℕ-{0; 1} ℕ-{0; 1} ∧ l ∈ ℕ-{0} ∈ ℕ-{0; 1}ℕ-{0; 1} :

t (n1; n2 ; n3)=

=l⋅n3+n3−1+2⋅p=

=n3⋅l+n3+2⋅p−1

(2)

where:
l≤

≤t (n1 ; n2)={
2⋅n2−1
if n1=n2=2∨n1>n2

2⋅n−2
if n1=n2>2∧n≔nn1=n2

and:
n1≥n2≥n3
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3.3 Calculation of the possible values of p

Since p is the number of remaining points on each n1×n2 "plane" after tracing l segments of a
two-dimensional  path,  to  find it,  we calculate  the number of points traversed by the first  l
segments  of  each  two-dimensional  path,  simply  summing  the  points  through  which  each
segment passes sequentially, excluding the points crossed by previous segments, this  l times
and for every possible value of l.

The result will be the total number of points on the n1×n2 "planes" minus p (thus, n1 n⋅n 2-p or
n²-p, if n n≔n 1=n2), and will consequently allow us to find all possible values of p.

In Table 1, the values of the number of points through which each segment passes, excluding
the points traversed by previous segments, are shown.
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Path 1,
when n1=n2=2  n∨ n 1>n2,  n∀ n 1;

n2  -{0; 1}∈ ℕ-{0; 1}ℕ-{0; 1}

Path 2,
when n1=n2=2 m-1,  m ⋅m-1, ∀ m ∈ ∀ n ∈ ℕ-{0; 1}

-{0; 1}, with n nℕ-{0; 1} ≔n 1=n2

Path 3,
when n1=n2=2 m,  m  -⋅m-1, ∀ m ∈ ∀ n ∈ ℕ-{0; 1}ℕ-{0; 1}

{0; 1}, with n n≔n 1=n2

Start from the top left corner.
The number of points in each
row is n1, and the number of
points in each column is n2.

Begin at the top left corner
and descend diagonally to the
bottom right. The number of
points in each row or column

is n.

Start from the top left corner.
The number of points in each

row or column is n.

Segment number Number of points
on the segment,
excluding the

points from the
previous segments

Segment number Number of points
on the segment,
excluding the

points from the
previous segments

Segment number Number of points
on the segment,
excluding the

points from the
previous segments

1 n1 1 n 1 n

2 n2-1 2 n-1 2 n-1

3 n1-1 3 n-1 3 n-1

4 n2-2 4 n-1 4 n-2

5 n1-2 5 n-3 5 n-2

6 n2-3 6 n-3 6 n-2

7 n1-3 7 n-3 7 n-4

8 n2-4 8 n-3 8 n-4

9 n1-4 9 n-5 9 n-4

10 n2-5 10 n-5 10 n-4

11 n1-5 11 n-5 11 n-6

12 n2-6 12 n-5 12 n-6

13 n1-6 13 n-7 13 n-6

14 n2-7 14 n-7 14 n-6

15 n1-7 15 n-7 15 n-8

16 n2-8 16 n-7 16 n-8

17 n1-8 17 n-9 17 n-8

18 n2-9 18 n-9 18 n-8

… … … … … …

2 n⋅n 2-1 … 2 n-2⋅n … 2 n-2⋅n …

Table 1. Values of the number of points through which each segment passes, excluding the
points through which previous segments pass, for each of the three paths.

10



After doing the calculations, for path 1, the values of n1 n⋅n 2-p are, thus,  n∀ n 1; n2  -{0; 1} ∈ ℕ-{0; 1} ℕ-{0; 1} ∧ l ∈ ℕ-{0}
l  -{0}∈ ℕ-{0; 1}ℕ-{0; 1} :

n1⋅n2−p={
l+1
2

⋅n1+
l−1

2
⋅n2−

l2
−1
4

if l=2⋅m−1 , ∀m∈ℕ− {0 }

l
2
⋅n1+

l
2
⋅n2−

l2

4
if l=2⋅m , ∀m ∈ℕ−{0 }

therefore:

p={
n1⋅n2−

1
2
⋅n1⋅l−

1
2
⋅n2⋅l+

1
4
⋅l2

−
1
2
⋅n1+

1
2
⋅n2−

1
4

if l=2⋅m−1 , ∀m∈ℕ− {0 }

n1⋅n2−
1
2
⋅n1⋅l−

1
2
⋅n2⋅l+

1
4
⋅l2

if l=2⋅m , ∀m ∈ℕ−{0 }

(3)

where:
l≤2⋅n2−1

and:
n1=n2=2∨n1>n2
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For path 2, we have, instead,  n∀ n 1; n2  -{0; 1}  l  -{0}∈ ℕ-{0; 1} ℕ-{0; 1} ∧ l ∈ ℕ-{0} ∈ ℕ-{0; 1}ℕ-{0; 1} :

n2
−p={

l⋅n−
l2
−1
4

if l=2⋅m−1 , ∀m∈ℕ−{0 }

l⋅n−
l2

4
if l=4⋅m+2 , ∀m∈ℕ

l⋅n−
l2
−4
4

if l=4⋅m, ∀m∈ℕ− {0 }

therefore:

p={
−n⋅l+

1
4
⋅l2

+n2
−

1
4

if l=2⋅m−1 , ∀m∈ℕ− {0 }

−n⋅l+
1
4
⋅l2

+n2

if l=4⋅m+2 , ∀m ∈ℕ

−n⋅l+
1
4
⋅l2

+n2
−1

if l=4⋅m , ∀m ∈ℕ−{0 }

(4)

where:
l≤2⋅n−2

and,  m  -{0; 1}∀ n ∈ ℕ-{0; 1} ℕ-{0; 1} :
n1=n2=2⋅m−1∧n≔nn1=n2
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For path 3, we finally have that,  n∀ n 1; n2  -{0; 1}  l  -{0}∈ ℕ-{0; 1} ℕ-{0; 1} ∧ l ∈ ℕ-{0} ∈ ℕ-{0; 1}ℕ-{0; 1} :

n2
−p={

l⋅n−
l2
−1
4

if l=2⋅m−1 , ∀m∈ℕ−{0 }

l⋅n−
l2

4
if l=2∨ l=4⋅m, ∀m∈ℕ− {0 }

l⋅n−
l2
−4
4

if l=4⋅m+2 , ∀m ∈ℕ− {0 }

therefore:

p={
−n⋅l+

1
4
⋅l2

+n2
−

1
4

if l=2⋅m−1 , ∀m∈ℕ− {0 }

−n⋅l+
1
4
⋅l2

+n2

if l=2∨l=4⋅m , ∀m∈ℕ−{0 }

−n⋅l+
1
4
⋅l2

+n2
−1

if l=4⋅m+2 , ∀m ∈ℕ−{0 }

(5)

where:
l≤2⋅n−2

and,  m  -{0; 1}∀ n ∈ ℕ-{0; 1} ℕ-{0; 1} :
n1=n2=2⋅m ∧n≔nn1=n2
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3.4 Calculation of the values of l

Having found the values of p for each path,  we can now substitute them into (2), the general
formula for our solutions.

For path 1, our solutions turn out to be, thus,  n∀ n 1; n2; n3  -{0; 1}  l  -{0}∈ ℕ-{0; 1} ℕ-{0; 1} ∧ l ∈ ℕ-{0} ∈ ℕ-{0; 1}ℕ-{0; 1} :

t (n1; n2 ; n3)={
2⋅n1⋅n2−n1⋅l−n2⋅l+n3⋅l+

1
2
⋅l2

−n1+n2+n3−
3
2

if l=2⋅m−1, ∀m∈ℕ−{0 }

2⋅n1⋅n2−n1⋅l−n2⋅l+n3⋅l+
1
2
⋅l2

+n3−1

if l=2⋅m , ∀m∈ℕ− {0 }

(6)

where:
l≤2⋅n2−1

and:
n1=n2=2∨ n1>n2

and:
n2≥n3

For path 2, we have, instead,  n∀ n 1; n2; n3  -{0; 1}  l  -{0}∈ ℕ-{0; 1} ℕ-{0; 1} ∧ l ∈ ℕ-{0} ∈ ℕ-{0; 1}ℕ-{0; 1} :

t (n1; n2 ; n3)={
2⋅n2

−2⋅n⋅l+n3⋅l+
1
2
⋅l2

+n3−
3
2

if l=2⋅m−1 , ∀m∈ℕ−{0 }

2⋅n2
−2⋅n⋅l+n3⋅l+

1
2
⋅l2

+n3−1

if l=4⋅m+2 , ∀m∈ℕ

2⋅n2
−2⋅n⋅l+n3⋅l+

1
2
⋅l2

+n3−3

if l=4⋅m , ∀m∈ℕ− {0 }

(7)

where:
l≤2⋅n−2

and,  m  -{0; 1}∀ n ∈ ℕ-{0; 1} ℕ-{0; 1} :
n1=n2=2⋅m−1∧n≔nn1=n2

and:
n2≥n3
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For path 3, we finally have,  n∀ n 1; n2; n3  -{0; 1}  l  -{0}∈ ℕ-{0; 1} ℕ-{0; 1} ∧ l ∈ ℕ-{0} ∈ ℕ-{0; 1}ℕ-{0; 1} :

t (n1; n2 ; n3)={
2⋅n2

−2⋅n⋅l+n3⋅l+
1
2
⋅l2

+n3−
3
2

if l=2⋅m−1 , ∀m∈ℕ−{0 }

2⋅n2
−2⋅n⋅l+n3⋅l+

1
2
⋅l2

+n3−1

if l=2∨ l=4⋅m , ∀ m∈ℕ− {0 }

2⋅n2
−2⋅n⋅l+n3⋅l+

1
2
⋅l2

+n3−3

if l=4⋅m+2 , ∀m∈ℕ− {0 }

(8)

where:
l≤2⋅n−2

and,  m  -{0; 1}∀ n ∈ ℕ-{0; 1} ℕ-{0; 1} :
n1=n2=2⋅m ∧n≔nn1=n2

and:
n2≥n3

Now that we have found the complete general formulas for our t(n1; n2; n3), we just need to
determine the values of l that will minimize t(n1; n2; n3), which will yield our solution.

After doing the calculations, the values of l for path 1 are, thus,  n∀ n 1; n2; n3  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

l={
=2⋅n2−1
if −n1+n2+n3≤0

=n1+n2−n3

if −n1+n2+n3=2⋅m−1, ∀m∈ℕ−{0 }

={
n1+n2−n3−1∨n1+n2−n3 ∨n1+n2−n3+1
if n1=n2=2

n1+n2−n3−1∨n1+n2−n3+1
if n1>n2

if −n1+n2+n3=2⋅m , ∀m∈ℕ− {0 }

(9)

where:
n1=n2=2∨ n1>n2

and:
n2≥n3
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The values of l for path 2 are, instead,  n∀ n 1; n2; n3  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

l={
2⋅n−n3

if n3=4⋅m+2 , ∀ m∈ℕ

2⋅n−n3+1
if n3=4⋅m−1 , ∀m∈ℕ− {0 }

2⋅n−n3−2∨2⋅n−n3−1∨2⋅n−n3 ∨2⋅n−n3+1∨2⋅n−n3+2
if n3=4⋅m , ∀ m∈ℕ− {0 }

2⋅n−n3−1
if n3=4⋅m+1 , ∀ m∈ℕ−{0 }

(10)

where,  m  -{0; 1}∀ n ∈ ℕ-{0; 1} ℕ-{0; 1} :
n1=n2=2⋅m−1∧n≔nn1=n2

and:
n2≥n3

For path 3, the values of l finally are,  n∀ n 1; n2; n3  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

l={
=2⋅n−n3

if n3=4⋅m+2 , ∀m∈ℕ

=2⋅n−n3+1
if n3=4⋅m−1 , ∀m∈ℕ−{0 }

={
2⋅n−n3−1∨2⋅n−n3 ∨2⋅n−n3+1∨2⋅n−n3+2
if n=4

2⋅n−n3−2∨2⋅n−n3−1∨2⋅n−n3 ∨2⋅n−n3+1∨2⋅n−n3+2
if n>4

if n3=4⋅m , ∀m∈ℕ− {0 }

=2⋅n−n3−1
if n3=4⋅m+1 , ∀ m∈ℕ− {0 }

(11)

where,  m  -{0; 1}∀ n ∈ ℕ-{0; 1} ℕ-{0; 1} :
n1=n2=2⋅m ∧n≔nn1=n2

and:
n2≥n3
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3.5 The complete formulas for our solutions

Having found the values of  l,  we can now substitute them into the general formulas of our
solutions: equation (6) for path 1, equation (7) for path 2 and equation (8) for path 3.

For path 1, the formula for our solutions is, therefore,  n∀ n 1; n2; n3  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

t (n1; n2 ; n3)={
2⋅n2⋅n3−1
if−n1+n2+n3≤0

−
1
2
⋅n1

2
−n1+n1⋅n2+n1⋅n3−

1
2
⋅n2

2
+n2+n2⋅n3−

1
2
⋅n3

2
+n3−

3
2

if−n1+n2+n3=2⋅m−1 , ∀m ∈ℕ−{0 }

−
1
2
⋅n1

2
−n1+n1⋅n2+n1⋅n3−

1
2
⋅n2

2
+n2+n2⋅n3−

1
2
⋅n3

2
+n3−1

if−n1+n2+n3=2⋅m, ∀m ∈ℕ−{0 }

(12)

where:
n1=n2=2∨ n1>n2

and:
n2≥n3

For path 2, it is, instead,  n∀ n 1; n2; n3  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

t (n1; n2 ; n3)={
2⋅n⋅n3−

1
2
⋅n3

2
+n3−3

if n3=4⋅m+2, ∀m ∈ℕ

2⋅n⋅n3−
1
2
⋅n3

2
+n3−

5
2

if n3=4⋅m−1 , ∀ m∈ℕ− {0 }

2⋅n⋅n3−
1
2
⋅n3

2
+n3−1

if n3=4⋅m, ∀m∈ℕ−{0 }

2⋅n⋅n3−
1
2
⋅n3

2
+n3−

5
2

if n3=4⋅m+1, ∀m ∈ℕ−{0 }

(13)

where,  m  -{0; 1}∀ n ∈ ℕ-{0; 1} ℕ-{0; 1} :
n1=n2=2⋅m−1∧n≔nn1=n2

and:
n2≥n3
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For path 3, the formula for our solutions is, finally,  n∀ n 1; n2; n3  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

t (n1; n2 ; n3)={
2⋅n⋅n3−

1
2
⋅n3

2
+n3−3

if n3=4⋅m+2, ∀m ∈ℕ

2⋅n⋅n3−
1
2
⋅n3

2
+n3−

5
2

if n3=4⋅m−1 , ∀ m∈ℕ− {0 }

2⋅n⋅n3−
1
2
⋅n3

2
+n3−1

if n3=4⋅m, ∀m∈ℕ−{0 }

2⋅n⋅n3−
1
2
⋅n3

2
+n3−

5
2

if n3=4⋅m+1, ∀m ∈ℕ−{0 }

(14)

where,  m  -{0; 1}∀ n ∈ ℕ-{0; 1} ℕ-{0; 1} :
n1=n2=2⋅m ∧n≔nn1=n2

and:
n2≥n3
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4 The case n1 × n2 × n3 × n4 × … × nk

In  this  section,  we  conclude  the  description  of  our  algorithm by extending  it  to  the  four-
dimensional case and beyond.

4.1 Description of the algorithm

To extend the three-dimensional algorithm to the case of n1 × n2 × n3 × n4 × … × nk, we reiterate
our three-dimensional  path on each n1×n2×n3 "space", connecting them all, sequentially, with
one segment for each subsequent three-dimensional "space", until the last of the n4 "spaces".

If necessary, we then repeat the traced four-dimensional path on each n1×n2×n3×n4 "space",
connecting  all  n5-1 "spaces"  after  the  first  with  one  segment  for  each  subsequent  four-
dimensional "space", until all remaining points are exhausted.

4.2 The formula for our solutions

As we have just described, the total number of segments used t(n1; n2; n3; n4; …; nk) is equal to
the number of segments in the three-dimensional path for each n1×n2×n3 "space", that is t(n1;
n2; n3) (which we define c), multiplied by the number of n1×n2×n3 "spaces" (equal to n4), plus
the number of segments connecting the n1×n2×n3 "spaces" (thus, n4-1).

This  product  is  further  multiplied,  if  necessary,  by the number of  n1×n2×n3×n4 "spaces"
(equal  to  n5),  plus  the  segments  connecting  the  n1×n2×n3×n4 "spaces"  (which  is  n5-1),
continuing in this manner until we exhaust all remaining points.

The formula for our solutions is, therefore,  n∀ n 1; n2; n3; n4; n5; n6; …; nk  -{0; 1}  k ∈ ℕ-{0; 1} ℕ-{0; 1} ∧ l ∈ ℕ-{0} ∈ ℕ-{0; 1}
-{0; 1; 2; 3}ℕ-{0; 1} :
t (n1; n2 ; n3; n4 ; …; nk)=

=(…(((c⋅n4+n4−1)⋅n5+n5−1)⋅n6+n6−1)⋅…)⋅nk+nk−1=

=(c+1)⋅∏
i=4

k

(ni)−1

(15)

where:
n1≥n2≥n3≥n4≥n5≥n6≥…≥nk

and:
c≔n t(n1; n2 ; n3)
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5 Conclusion

Having completed the description of our algorithm, in this final section, we will compare it with
algorithms proposed by others, demonstrating that ours offers a more efficient upper bound for
the three-dimensional case and beyond.

5.1 The solutions obtained through other algorithms

Below are the formulas for the solutions h(n1; n2; n3; …; nk), obtained through the algorithms
proposed by Ripà (see [3] and [4]) for the three-dimensional case and beyond.

For the three-dimensional case, the general formula for Ripà's solutions (see [3]) is, thus, ∀ n
n1; n2; n3  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

h(n1; n2; n3)={
=2⋅n2⋅n3−1
if n3<2⋅(n1−n2)+3

=2⋅n2⋅n3−2
if n3=2⋅(n1−n2)+3

={
4
3
⋅imax

3
+(2⋅(n1−n2)+7)⋅imax

2
+(6⋅(n1−n2)−2⋅n3+

35
3 )⋅imax+4⋅(n1−n2)+2⋅n3⋅(n2−1)+5

if n3≤2⋅(imax
2
+(n1−n2+4)⋅imax+2⋅(n1−n2)+4)

4
3
⋅imax

3
+(2⋅(n1−n2)+9)⋅imax

2
+(8⋅(n1−n2)−2⋅n3+

59
3 )⋅imax+8⋅(n1−n2)+n3⋅(2⋅n2−3)+13

if n3>2⋅(imax
2
+(n1−n2+4 )⋅imax+2⋅(n1−n2)+4 )

if n3>2⋅(n1−n2)+3

(16)

where:

imax≔n⌊ 1
2⋅(√n1

2
+n2

2
−2⋅n1⋅n2+2⋅(n1−n2+n3)+1+n2−n1−3)⌋

and:
n1≥n2≥n3

For certain special cases, the formulas for h(n1; n2; n3) are as follows.
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For the first case (see [3]), we have that the solutions of Ripà are given by,  n∀ n 1; n2; n3  -∈ ℕ-{0; 1} ℕ-{0; 1}
{0; 1; 2; 3}:

h(n1; n2; n3)={
2
3
⋅imax

3
+5⋅imax

2
−2⋅(n−

14
3 )⋅imax+2⋅n2

−2⋅n+3

if n−imax
2
−5⋅imax≤5

2
3
⋅imax

3
+6⋅imax

2
−(2⋅n−

43
3 )⋅imax+2⋅n2

−3⋅n+8

if n−imax
2
−5⋅imax>5

(17)

where:

imax≔n⌊ 1
2⋅(√4⋅n+9−5)⌋

and:
n1=n2=n3 ∧ n≔nn1=n2=n3

For the second case (see [3]), we have, instead,  n∀ n 1; n2; n3  -{0; 1; 2; 3}∈ ℕ-{0; 1} ℕ-{0; 1} :

h(n1; n2; n3)={
2
3
⋅imax

3
+5⋅imax

2
+( 28

3
−2⋅n3)⋅imax+2⋅n2⋅n3−n3+3

if n3−imax
2
−5⋅imax≤5

2
3
⋅imax

3
+6⋅imax

2
+( 43

3
−2⋅n3)⋅imax+2⋅n2⋅n3−2⋅n3+8

if n3−imax
2
−5⋅imax>5

(18)

where:

imax≔n⌊ 1
2⋅(√4⋅n3+9−5)⌋

and:
n1−1=n2≥n3

In [4], we also have that  (17) was improved by the same Ripà for almost all values of  n,
using a different algorithm, such as,  n∀ n 1; n2; n3  -{0; 1; 2; 3; 4}∈ ℕ-{0; 1} ℕ-{0; 1} :

h(n1; n2; n3)=⌊32⋅n2 ⌋+n−1 (19)

where:
n1=n2=n3 ∧ n≔nn1=n2=n3

Regarding the four-dimensional case and those that follow, we instead have that the formula
for Ripà's solutions (see [3] and [4]) is given by,  n∀ n 1; n2; n3; n4; …; nk  -{0; 1}  k  -{0;∈ ℕ-{0; 1} ℕ-{0; 1} ∧ l ∈ ℕ-{0} ∈ ℕ-{0; 1}ℕ-{0; 1}
1; 2; 3}:

h(n1; n2; n3 ; n4 ; …; nk)=(q+1)⋅∏
i= 4

k

(ni)−1 (20)

where:
n1≥n2≥n3≥n4≥…≥nk

and:
q≔nh (n1; n2 ; n3)
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By examining  (20),  one  can  observe  that  it  aligns  with  our  own formula  for  the  four-
dimensional  case  and  those  that  follow  (equation  (15)),  varying  with  h(n1;  n2;  n3),  Ripà's
solution for the three-dimensional case, rather than our t(n1; n2; n3).

Therefore, to compare our algorithm with those proposed by Ripà, it will not be necessary to
consider  all  the cases  present  in  the  problem, but  rather  solely the  three-dimensional  case,
which will be the focus of the next subsection.
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5.2 The  discrepancy  between  the  solutions  obtained  through  the  various
algorithms

In this subsection, we will analyze the discrepancy between the solutions obtained through our
algorithm and those proposed by Ripà for the three-dimensional case, demonstrating that ours
provides more efficient upper bounds.
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By combining (12), (13) and (14) with the initial cases of (16), we find that the discrepancy
between our algorithm and Ripà's for these particular cases is,  n∀ n 1; n2; n3  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

h(n1; n2; n3)−t (n1 ; n2; n3)={={
0
if n3≤n1−n2

={
1
2
⋅n1

2
−n1⋅n2−n1⋅n3+n1+

1
2
⋅n2

2
+n2⋅n3−n2+

1
2
⋅n3

2
−n3+

1
2

if −n1+n2+n3=2⋅m−1 , ∀m∈ℕ− {0 }

1
2
⋅n1

2
−n1⋅n2−n1⋅n3+n1+

1
2
⋅n2

2
+n2⋅n3−n2+

1
2
⋅n3

2
−n3

if −n1+n2+n3=2⋅m , ∀ m∈ℕ− {0 }

if n1−n2<n3<2⋅(n1−n2)+3

={
1
2
⋅n1

2
−n1⋅n2−n1⋅n3+n1+

1
2
⋅n2

2
+n2⋅n3−n2+

1
2
⋅n3

2
−n3−

1
2

if −n1+n2+n3=2⋅m−1 , ∀m∈ℕ− {0 }

1
2
⋅n1

2
−n1⋅n2−n1⋅n3+n1+

1
2
⋅n2

2
+n2⋅n3−n2+

1
2
⋅n3

2
−n3−1

if −n1+n2+n3=2⋅m , ∀ m∈ℕ− {0 }

if n3=2⋅(n1−n2)+3

if n1=n2=2∨n1>n2

={
2
if n3<3

2
if n3=3

if n1=n2>2∧n≔n n1=n2

(21)

where:
n1≥n2≥n3

Analyzing (21), we find that the discrepancy between the algorithm proposed by Ripà and
ours is always equal to or greater than zero, thus our algorithm is always at least as efficient as
Ripà's algorithm in the cases studied in (21).

24



Then, by combining (13) and (14) with (17) and (19), we obtain,  n∀ n 1; n2; n3  -{0; 1; 2;∈ ℕ-{0; 1} ℕ-{0; 1}
3}:

h(n1; n2; n3)−t (n1 ; n2; n3)={
=0
if n=4

={
1
if n=2⋅m−1 , ∀m∈ℕ− {0 ; 1 ; 2 }

2
if n=4⋅m+2 , ∀ m∈ℕ− {0 }

0
if n=4⋅m , ∀ m∈ℕ− {0 ; 1 }

if n>4

(22)

where:
n1=n2=n3 ∧n≔nn1=n2=n3

Finally, to analyze the discrepancy between the solutions obtained through h(n1; n2; n3) and
t(n1; n2; n3) for the remaining cases, we will focus solely on verifying that the difference h(n1;
n2; n3)-t(n1; n2; n3), in these cases, is always equal to or greater than zero.

We  won't  aim  to  quantify  it  precisely,  but,  instead,  we  will  rely  on  straightforward
observations that can be easily deduced from our formulas.

First of all, it will be helpful to eliminate the various floor functions present in the formulas
of the cases not yet studied of h(n1; n2; n3).

We first note that imax is written in the form,  x ∀ n ∈ ℕ-{0; 1}ℝ:
imax= ⌊ x ⌋ (23)

where:
x≥0

Next, let's consider that,  x ∀ n ∈ ℕ-{0; 1}ℝ:
x−1< ⌊ x ⌋≤x (24)

where:
x≥0
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Thus, using equations  (23) and  (24), we replace, as needed, the various  imax=⎿x⏌,  in the
remaining cases of (16), with x-1 or x, obtaining,  n∀ n 1; n2; n3  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

h(n1; n2; n3)>{
4
3
⋅(x−1)3

+(2⋅(n1−n2)+7)⋅( x−1)
2
+(6⋅(n1−n2)+

35
3 )⋅(x−1)−2⋅n3⋅x+4⋅(n1−n2)+2⋅n3⋅(n2−1)+5

if n3≤2⋅(imax
2
+(n1−n2+4)⋅imax+2⋅(n1−n2)+4 )

4
3
⋅(x−1)3

+(2⋅(n1−n2)+9)⋅(x−1)2
+(8⋅(n1−n2)+

59
3 )⋅(x−1)−2⋅n3⋅x+8⋅(n1−n2)+n3⋅(2⋅n2−3)+13

if n3>2⋅(imax
2
+(n1−n2+4)⋅imax+2⋅(n1−n2)+4)

(25)

where:

x≔n 1
2⋅(√n1

2
+n2

2
−2⋅n1⋅n2+2⋅(n1−n2+n3)+1+n2−n1−3)

and:

imax≔n⌊ 1
2⋅(√n1

2
+n2

2
−2⋅n1⋅n2+2⋅(n1−n2+n3)+1+n2−n1−3)⌋

and:
n3>2⋅(n1−n2)+3

and:
n1≥n2≥n3

By repeating the procedure just shown for (18), we obtain,  n∀ n 1; n2; n3  -{0; 1; 2; 3}∈ ℕ-{0; 1} ℕ-{0; 1} :

h(n1; n2; n3)>{
2
3
⋅(x−1)3

+5⋅(x−1)
2
+

28
3

⋅(x−1)−2⋅n3⋅x+2⋅n2⋅n3−n3+3

if n3−imax
2
−5⋅imax≤5

2
3
⋅(x−1)3

+6⋅(x−1)2
+

43
3

⋅(x−1)−2⋅n3⋅x+2⋅n2⋅n3−2⋅n3+8

if n3−imax
2
−5⋅imax>5

(26)

where:

x≔n 1
2⋅(√4⋅n3+9−5)

and:

imax≔n⌊ 1
2⋅(√4⋅n3+9−5)⌋

and:
n1−1=n2≥n3
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At this point, since our t(n1; n2; n3) is divided into a significant number of cases, it will be
convenient to consider that, from (12), (13) and (14), it follows that,  n∀ n 1; n2; n3  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

t (n1; n2 ; n3)≤{
−

1
2
⋅n1

2
−n1+n1⋅n2+n1⋅n3−

1
2
⋅n2

2
+n2+n2⋅n3−

1
2
⋅n3

2
+n3−1

if n1>n2

2⋅n⋅n3−
1
2
⋅n3

2
+n3−1

if n1=n2∧n≔nn1=n2

(27)

where:
−n1+n2+n3≥1

and:
n1≥n2≥n3

Therefore,  by combining  (25) and  (26) with  (27),  the  differences  between the  solutions
obtained through our algorithm and those of Ripà, for the cases not yet analyzed, are as follows.

For specific cases of (25), we obtain,  n∀ n 1; n2; n3  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

h(n1; n2; n3)−t (n1 ; n2; n3)>{
1
3
⋅d 3

+d2
−

1
3
⋅d 2

⋅r+
1
6
⋅d−

1
6
⋅d⋅r+r−

2
3
⋅r⋅n3+

1
2
⋅n3

2
−

3
2
⋅n3−1≔na1

if n3≤2⋅(imax
2
+(n1−n2+4)⋅imax+2⋅(n1−n2)+4)

1
3
⋅d 3

+d2
−

1
3
⋅d 2

⋅r+
7
6
⋅d−

1
6
⋅d⋅r−

2
3
⋅r⋅n3+

1
2
⋅n3

2
−

3
2
⋅n3≔n a2

if n3>2⋅(imax
2
+(n1−n2+4)⋅imax+2⋅(n1−n2)+4)

(28)

where:

r≔n√d2
+2⋅d+2⋅n3+1

and:
d≔nn1−n2

and:

imax≔n⌊ 1
2⋅(√n1

2
+n2

2
−2⋅n1⋅n2+2⋅(n1−n2+n3)+1+n2−n1−3)⌋

and:
n3>2⋅(n1−n2)+3

and:
n1>n2≥n3
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For the last cases of (25), we have, instead,  n∀ n 1; n2; n3  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

h(n1; n2; n3)−t (n1 ; n2; n3)>{
1
2
⋅n3

2
−

3
2
⋅n3−

2
3
⋅r⋅n3+r−1≔na3

if n3≤2⋅(imax
2
+4⋅imax+4)

1
2
⋅n3

2
−

3
2
⋅n3−

2
3
⋅r⋅n3≔n a4

if n3>2⋅(imax
2
+4⋅imax+4)

(29)

where:
r≔n√2⋅n3+1

and:

imax≔n⌊ 1
2⋅(√2⋅n3+1−3)⌋

and:
n3>2⋅(n1−n2)+3

and:
n1=n2≥n3

For the cases shown in (26), we finally obtain,  n∀ n 1; n2; n3  -{0; 1; 2; 3}∈ ℕ-{0; 1} ℕ-{0; 1} :

h(n1; n2; n3)−t (n1 ; n2; n3)>{
1
2
⋅n3

2
+

1
6
⋅r−

2
3
⋅r⋅n3+1≔n a5

if n3−imax
2
−5⋅imax≤5

1
2
⋅n3

2
−

5
6
⋅r−

2
3
⋅r⋅n3+3≔na6

if n3−imax
2
−5⋅imax>5

(30)

where:
r≔n√4⋅n3+9

and:

imax≔n⌊ 1
2⋅(√4⋅n3+9−5)⌋

and:
n1−1=n2≥n3

Since the right-hand sides of (28), (29) and (30) are strictly less than the difference between
the solutions obtained through our algorithm and those of Ripà, when both the two  ai of the
inequality are equal to or greater than zero, it follows that the exact difference h(n1; n2; n3)-t(n1;
n2; n3) must also be.

Thus, by setting the various ai equal to or greater than zero, we obtain the following.
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After doing the calculations, from (28), we have,  n∀ n 1; n2; n3  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

{
a1≥0
at least if n3≥11

a2≥0
at least if n3≥13

→ {h(n1;n2 ;n3)−t (n1 ;n2; n3)≥0
at least if n3≥13

(31)

where:

h(n1; n2; n3)−t (n1 ; n2; n3)>{
a1

if n3≤2⋅(imax
2
+(n1−n2+4)⋅imax+2⋅(n1−n2)+4)

a2

if n3>2⋅(imax
2
+(n1−n2+4)⋅imax+2⋅(n1−n2)+4)

and:

a1≔n
1
3⋅d3

+d2
−

1
3⋅d2

⋅r+
1
6⋅d−

1
6⋅d⋅r+r−

2
3⋅r⋅n3+

1
2⋅n3

2
−

3
2⋅n3−1

and:

a2≔n
1
3⋅d3

+d2
−

1
3⋅d2

⋅r+
7
6⋅d−

1
6⋅d⋅r−

2
3⋅r⋅n3+

1
2⋅n3

2
−

3
2⋅n3

and:

imax≔n⌊ 1
2⋅(√n1

2
+n2

2
−2⋅n1⋅n2+2⋅(n1−n2+n3)+1+n2−n1−3)⌋

and:
r≔n√d2

+2⋅d+2⋅n3+1

and:
d≔nn1−n2

and:
n3>2⋅(n1−n2)+3

and:
n1>n2≥n3
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From (29), we obtain, instead,  n∀ n 1; n2; n3  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

{
a3≥0
at least if n3≥8

a4≥0
at least if n3≥9

→ {h(n1; n2;n3)−t (n1 ;n2 ;n3)≥0
at least if n3≥9

(32)

where:

h(n1; n2; n3)−t (n1 ; n2; n3)>{
a3

if n3≤2⋅(imax
2
+4⋅imax +4)

a4

if n3>2⋅(imax
2
+4⋅imax+4)

and:

a3≔n
1
2⋅n3

2
−

3
2⋅n3−

2
3⋅r⋅n3+r−1

and:

a4≔n
1
2⋅n3

2
−

3
2⋅n3−

2
3⋅r⋅n3

and:

imax≔n⌊ 1
2⋅(√2⋅n3+1−3)⌋

and:
r≔n√2⋅n3+1

and:
n3>2⋅(n1−n2)+3

and:
n1=n2≥n3
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From (30), we finally obtain,  n∀ n 1; n2; n3  -{0; 1; 2; 3}∈ ℕ-{0; 1} ℕ-{0; 1} :

{
a5≥0
at least if n3≥9

a6≥0
at least if n3≥10

→ {h(n1;n2 ;n3)−t (n1 ;n2; n3)≥0
at least if n3≥10

(33)

where:

h(n1; n2; n3)−t (n1 ; n2; n3)>{
a5

if n3−imax
2
−5⋅imax≤5

a6

if n3−imax
2
−5⋅imax>5

and:

a5≔n
1
2⋅n3

2
+

1
6⋅r−

2
3⋅r⋅n3+1

and:

a6≔n
1
2⋅n3

2
−

5
6⋅r−

2
3⋅r⋅n3+3

and:

imax≔n⌊ 1
2⋅(√4⋅n3+9−5)⌋

and:
r≔n√4⋅n3+9

and:
n1−1=n2≥n3

By examining (31), (32) and (33), we can observe that the difference between the solutions
obtained through h(n1; n2; n3) and t(n1; n2; n3) is not necessarily always greater than or equal to
zero.

Therefore, in certain cases of the problem, this inequality may not hold.
In order to demonstrate that our algorithm is indeed always as efficient as or more efficient

than those proposed by Ripà, it will be necessary to calculate the exact difference h(n1; n2; n3)-
t(n1; n2; n3) for the cases where we have yet to establish that this difference is always greater
than or equal to zero.

For the cases in  (31) where we cannot be certain that the difference is non-negative, the
exact difference h(n1; n2; n3)-t(n1; n2; n3) can be calculated by combining (12) with (16).

This will be illustrated below, categorized by the value of d, which represents the difference
between n1 and n2.
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For the first possible value of d, we have,  n∀ n 1; n2; n3  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

h(n1; n2; n3)−t (n1 ; n2; n3)={={
6
if n3=6

8
if n3=7

12
if n3=8

16
if n3=9

22
if n3=10

28
if n3=11

36
if n3=12

if d=1

(34)

where:
d≔nn1−n2

and:
n1>n2≥n3
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For the second value of d, we have,  n∀ n 1; n2; n3  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

h(n1; n2; n3)−t (n1 ; n2; n3)={={
10
if n3=8

14
if n3=9

18
if n3=10

24
if n3=11

30
if n3=12

if d=2

(35)

where:
d≔nn1−n2

and:
n1>n2≥n3

For the third possible value of d, we have, instead,  n∀ n 1; n2; n3  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

h(n1; n2; n3)−t (n1 ; n2; n3)={={
16
if n3=10

20
if n3=11

26
if n3=12

if d=3

(36)

where:
d≔nn1−n2

and:
n1>n2≥n3

For the last value of d, we finally have,  n∀ n 1; n2; n3  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

h(n1; n2; n3)−t (n1 ; n2; n3)={={22
if n3=12

if d=4

(37)

where:
d≔nn1−n2

and:
n1>n2≥n3
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For the cases of  (32) for which there is no certainty that they are equal to or greater than
zero, by combining (13) and (14) with (16), we find that the exact difference is, instead,  n∀ n 1;
n2; n3  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

h(n1; n2; n3)−t (n1 ; n2; n3)={
2
if n3=4

5
if n3=5

8
if n3=6

11
if n3=7

14
if n3=8

(38)

where:
n1=n2≥n3

For the cases of  (33) for which there is no certainty that they are equal to or greater than
zero, by combining (12) with (18), we obtain that the exact difference h(n1; n2; n3)-t(n1; n2; n3)
is, finally,  n∀ n 1; n2; n3  -{0; 1; 2; 3}∈ ℕ-{0; 1} ℕ-{0; 1} :

h(n1; n2; n3)−t (n1 ; n2; n3)={
2
if n3=4

3
if n3=5

5
if n3=6

7
if n3=7

11
if n3=8

15
if n3=9

(39)

where:
n1−1=n2≥n3
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5.3 Conclusion

Having illustrated the discrepancy between the solutions obtained through our algorithm and
the other proposed ones, we can, therefore, state that,  n∀ n 1; n2; n3  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1} :

h(n1; n2; n3)−t (n1 ; n2; n3)≥0 (40)

and, consequently, that our algorithm provides upper bounds that are equal to or more efficient
than those obtained through the algorithms proposed by others for the three-dimensional case
(as well as providing the exact solution for the two-dimensional case).

Finally, by combining (15) with (20), we can extend the result to the four-dimensional case
and to subsequent cases.

In other words,  n∀ n 1; n2; n3; …; nk  -{0; 1}∈ ℕ-{0; 1} ℕ-{0; 1}   k  -{0; 1; 2}∧ l ∈ ℕ-{0} ∈ ℕ-{0; 1} ℕ-{0; 1} :
h(n1; n2; n3 ; …; nk)− t(n1; n2 ; n3 ; …; nk)≥0 (41)
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