
ON THE GAUSS CIRCLE PROBLEM
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Abstract. Using the compression method, we prove an inequality related to

the Gauss circle problem. Let Nr denotes the number of integral points in a

circle of radius r > 0, then we have
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for all r > 1. This implies that the error function E(r) of the counting function

Nr � r1−ε for any ε > 0.

1. Introduction

The Gauss circle problem is a classic question in number theory that concerns
the approximation of the number of lattice points within a circle in the Euclidean
plane. Specifically, the problem asks about the error term in the approximation
of the number of lattice points N(r) inside a circle of radius r, where the exact
number of points is compared to the area of the circle πr2. The main challenge lies
in understanding the difference between the exact count of lattice points and the
area, known as the error term, and establishing its asymptotic behaviour as r grows
large. This problem connects to deep areas of mathematics, such as analytic number
theory, geometric analysis, and the distribution of integer solutions to polynomial
equations. In this work, we explore the error term in the Gauss circle problem
under specific transformations of the lattice points, aiming to refine the asymptotic
bounds for the error term and deepen our understanding of the distribution of
lattice points in circles. By deriving precise upper and lower bounds, we seek to
contribute to the ongoing exploration of the error term in lattice point counting
functions. Precisely, the Gauss circle problem is a problem that seeks to counts
the number of integral points in a circle centered at the origin and of radius r. It
is fairly easy to see that the area of a circle of radius r > 0 gives a fairly good
approximation for the number of such integral points in the circle, since on average
each unit square in the circle contains at least an integral point. In particular, by
denoting N(r) to be the number of integral points in a circle of radius r, then the
following elementary estimate is well-known

N(r) = πr2 + |E(r)|

where |E(r)| is the error term. The real and the main problem in this area is to
obtain a reasonably good estimate for the error term. In fact, it is conjectured that

|E(r)| � r
1
2+ε
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for ε > 0. The first fundamental progress was made by Gauss [3], where it is shown
that

|E(r)| ≤ 2πr
√

2.

G.H Hardy and Edmund Landau almost independently obtained a lower bound [1]
by showing that

|E(r)| 6= o(r
1
2 (log r)

1
4 ).

The current best upper bound (see [2]) is given by

|E(r)| � r
131
208 .

In this paper we prove a general upper bound and lower bound for the number
of integral points in a circle of radius r > 1. This upper bound is of the desired
quality as does the Gauss circle problem, where the quest is to be obtain an error
of quality as that in the following result

Theorem 1.1 (The inequality). Let Nr denote the number of integral points in a
circle of radius r. Then

2r2
(

1 +
1

4

∑
1≤k≤b log r

log 2 c

1

22k−2

)
+O(

r

log r
) ≤ Nr ≤ 8r2

(
1 +

∑
1≤k≤b log r

log 2 c

1

22k−2

)
+O(

r

log r
)

for all r > 1.

Now we describe the steps used to achieve these inequalities. We write them
chronologically as follows:

(i) We pick a point in the plane with compression gap 2r and construct the
compression circle. This circle has radius r by the choice of compression
gap.

(ii) We first count the number of integral points on the boundary of the circle of
radius r using the upper and the lower bounds of the compression gap. The
error terms of the upper and the lower bound emanate from this particular
analysis.

(iii) We construct a further smaller circle of compression by shrinking the radius
of each successive circle by a factor of 2. This procedure has a tendency to
create annular regions in the circle.

(iv) For each annular region, we construct an integer square grid that exactly
covers the upper circle and count the number of points in the gird and in
this annular region. The main terms in the inequalities follow by upper and
lower bounds this count.

2. Preliminary results

Definition 2.1. By the compression of scale 1 ≥ m > 0 (m ∈ R) fixed on Rn, we
mean the map V : Rn −→ Rn such that

Vm[(x1, x2, . . . , xn)] =

(
m

x1
,
m

x2
, . . . ,

m

xn

)
for n ≥ 2 and with xi 6= xj for i 6= j and xi 6= 0 for all i = 1, . . . , n.
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Remark 2.2. The notion of compression is a process of rescaling points in Rn for
n ≥ 2. Thus, it is important to notice that a compression roughly speaking pushes
points very close to the origin away from the origin by a certain scale and similarly
draws points away from the origin close to the origin. Intuitively, compression
induces some kind of motion on points in the Euclidean space Rn for n ≥ 2.

Proposition 2.3. A compression of scale 1 ≥ m > 0 with Vm : Rn −→ Rn is a
bijective map.

Proof. Suppose Vm[(x1, x2, . . . , xn)] = Vm[(y1, y2, . . . , yn)], then it follows that(
m

x1
,
m

x2
, . . . ,

m

xn

)
=

(
m

y1
,
m

y2
, . . . ,

m

yn

)
.

It follows that xi = yi for each i = 1, 2, . . . , n. Surjectivity follows by definition of
the map. Thus the map is bijective. �

2.1. The mass of compression. In this section we recall the notion of the mass
of compression on points in space and study the associated statistics.

Definition 2.4. By the mass of a compression of scale 1 ≥ m > 0 (m ∈ R) fixed,
we mean the map M : Rn −→ R such that

M(Vm[(x1, x2, . . . , xn)]) =

n∑
i=1

m

xi
.

It is important to notice that the condition xi 6= xj for (x1, x2, . . . , xn) ∈ Rn is
not only a quantifier but a requirement; otherwise, the statement for the mass of
compression will be flawed completely. To wit, suppose we take x1 = x2 = · · · = xn,
then it will follows that Inf(xj) = Sup(xj), in which case the mass of compression
of scale m satisfies

m

n−1∑
k=0

1

Inf(xj)− k
≤M(Vm[(x1, x2, . . . , xn)]) ≤ m

n−1∑
k=0

1

Inf(xj) + k

and it is easy to notice that this inequality is absurd. By extension one could
also try to equalize the sub-sequence on the bases of assigning the supremum and
the infimum and obtain an estimate but that would also contradict the mass of
compression inequality after a slight reassignment of the sub-sequence. Thus it
is important for the estimate to make any good sense to ensure that any tuple
(x1, x2, . . . , xn) ∈ Rn must satisfy xi 6= xj for all 1 ≤ i, j ≤ n. Hence in this paper
this condition will be highly extolled. In situations where it is not mentioned,
it will be assumed that the tuple (x1, x2, . . . , xn) ∈ Rn is such that xi 6= xj for
1 ≤ i, j ≤ n.

Lemma 2.5. We have ∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
where γ = 0.5772 · · · .

Remark 2.6. Next we prove upper and lower bounding the mass of the compression
of scale 1 ≥ m > 0.
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Proposition 2.7. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for each 1 ≤ i ≤ n and
xi 6= xj for i 6= j, then we have

m log

(
1− n− 1

sup(xj)

)−1
�M(Vm[(x1, x2, . . . , xn)])� m log

(
1 +

n− 1

Inf(xj)

)
for n ≥ 2.

Proof. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= 0. Then it follows that

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≤ m
n−1∑
k=0

1

Inf(xj) + k

and the upper estimate follows by the estimate for this sum. The lower estimate
also follows by noting the lower bound

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≥ m
n−1∑
k=0

1

sup(xj)− k
.

�

Definition 2.8. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n. Then
by the gap of compression of scale m > 0, denoted G ◦ Vm[(x1, x2, . . . , xn)], we
mean the expression

G ◦ Vm[(x1, x2, . . . , xn)] =

∣∣∣∣∣∣∣∣(x1 − m

x1
, x2 −

m

x2
, . . . , xn −

m

xn

)∣∣∣∣∣∣∣∣
3. The ball induced by compression

In this section we introduce the notion of the ball induced by a point (x1, x2, . . . , xn) ∈
Rn under compression of a given scale. We launch in a more formal way the fol-
lowing language.

Definition 3.1. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= xj for all 1 ≤ i < j ≤ n and
xi 6= 0 for all 1 ≤ i ≤ n. Then by the ball induced by (x1, x2, . . . , xn) ∈ Rn under
compression of scale 1 ≥ m > 0, denoted by B 1

2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)]

we mean the inequality∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, x2 +

m

x2
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ < 1

2
G ◦ Vm[(x1, x2, . . . , xn)].

A point ~z = (z1, z2, . . . , zn) ∈ B 1
2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] if it satisfies the

inequality.

Remark 3.2. Next, we prove that smaller balls induced by points should essentially
be covered by the larger balls in which they are embedded. We state and prove this
statement in the following result.
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In the geometry of balls induced under compression of scale m > 0, we assume
implicitly that

0 < m ≤ 1.

For simplicity, we will on occasion choose to write the ball induced by the point
~x = (x1, x2, . . . , xn) under compression as

B 1
2G◦Vm[~x][~x].

We adopt this notation to save enough work space in many circumstances. We first
prove a preparatory result in the following sequel. We find the following estimates
for the compression gap useful.

Proposition 3.3. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= 0 for j = 1, . . . , n,
then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
+m2M◦ V1[(x21, . . . , x

2
n)]− 2mn.

In particular, if m := m(n) = o(1) as n −→∞, then we have the estimate

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
− 2mn+O

(
m2M◦ V1[(x21, . . . , x

2
n)]

)
for ~x ∈ Rn with xi ≥ 1 for each 1 ≤ i ≤ n.

Proposition 3.3 offers us an extremely useful identity. It allows us to pass from
the compression gap on points to the relative distance to the origin. It tells us
that points under compression with a large gap must be far away from the origin
compared to points with a relatively smaller gap under compression. That is to
say, the inequality

G ◦ Vm[~x] < G ◦ Vm[~y]

with m := m(n) = o(1) as n −→ ∞ if and only if ||~x|| . ||~y|| for ~x, ~y ∈ Rn with
xi ≥ 1 for all 1 ≤ i ≤ n. This important transference principle will be mostly put
to use in obtaining our results. In particular, we note that in the latter case, we
can write the asymptotic

G ◦ Vm[(x1, x2, . . . , xn)]2 ∼M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
= ||~x||2.

Corollary 3.4. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= xi for j 6= i and
xi, xj ≥ 1 for each 1 ≤ i, j ≤ n. If m := m(n) = o(1) as n −→∞, then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 ≥ nInf(x2j )− 2mn+O

(
m2M◦ V1[(x21, . . . , x

2
n)]

)
and

G ◦ Vm[(x1, x2, . . . , xn)]2 ≤ nsup(x2j )− 2mn+O

(
m2M◦ V1[(x21, . . . , x

2
n)]

)
Lemma 3.5 (Compression estimate). Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with
xi ≥ 1 for all 1 ≤ i ≤ n with xi 6= xj (i 6= j). If m := m(n) = o(1) as n −→ ∞,
then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 � nsup(x2j ) +m2 log

(
1 +

n− 1

Inf(xj)2

)
− 2mn
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and

G ◦ Vm[(x1, x2, . . . , xn)]2 � nInf(x2j ) +m2 log

(
1− n− 1

sup(x2j )

)−1
− 2mn.

Remark 3.6. It is important to note that the inequality in Corollary 3.4 implies
the inequalities in Lemma 3.5. At any given moment, we will decide which of the
versions of these inequalities to use. In fact, the inequalities in Corollary 3.4 are
more applicable to various problems than those of Lemma 3.5.

Theorem 3.7. Let ~z = (z1, z2, . . . , zn) ∈ Rn with zi 6= zj for all 1 ≤ i < j ≤ n
with yi, zi ≥ 1 for all 1 ≤ i ≤ n and m := m(n) = o(1) as n −→ ∞. Then
~z ∈ B 1

2G◦Vm[~y][~y] with ||~z|| < ||~y|| if and only if

G ◦ Vm[~z] ≤ G ◦ Vm[~y]

with ||~y − ~z|| < ε for some ε > 0.

Proof. Let ~z ∈ B 1
2G◦Vm[~y][~y] for ~z = (z1, z2, . . . , zn) ∈ Rn with zi 6= zj for all

1 ≤ i < j ≤ n and zi ≥ 1 for all 1 ≤ i ≤ n such that ||~y|| > ||~z||. Suppose on the
contrary that

G ◦ Vm[~z] > G ◦ Vm[~y],

then it follows that ||~y|| . ||~z||, which is absurd. In this case, we can take ε :=
1
2G ◦ Vm[~y]. Conversely, suppose

G ◦ Vm[~z] ≤ G ◦ Vm[~y]

then it follows from Proposition 3.3 that ||~z|| . ||~y||. Under the requirement ||~y −
~z|| < ε for some ε > 0, we obtain the inequality∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣~y − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣+ ε

=
1

2
G ◦ Vm[~y] + ε

with m = m(n) = o(1) as n −→∞. By choosing ε > 0 sufficiently small, we deduce
that ~z ∈ B 1

2G◦Vm[~y][~y] and the proof of the theorem is complete. �

In the geometry of balls under compression, we will assume that n is sufficiently
large for Rn. In this regime, we will always take the scale of compression m :=
m(n) = o(1) as n −→∞.

Theorem 3.8. Let ~x = (x1, x2, . . . , xn) ∈ Rn with xi 6= xj for all 1 ≤ i < j ≤ n
with yi, xi ≥ 1 for each 1 ≤ i ≤ n. If ~y ∈ B 1

2G◦Vm[~x][~x] with ||~y|| < ||~x|| for

||~y − ~x|| < δ for δ > 0 sufficiently small, then

B 1
2G◦Vm[~y][~y] ⊆ B 1

2G◦Vm[~x][~x]

for m := m(n) = o(1) as n −→∞.
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Proof. First, let ~y ∈ B 1
2G◦Vm[~x][~x] with ||~y|| < ||~x|| for ||~y − ~x|| < δ, then it follows

from Theorem 3.7 that G ◦ Vm[~x] & G ◦ Vm[~y] with ||~y − ~x|| < δ for δ > 0 suffi-
ciently small. Consequently the ball B 1

2G◦Vm[~x][~x] is slightly bigger than the ball

B 1
2G◦Vm[~y][~y] by virtue of their compression gaps and the latter does not contain

the point ~x by construction. It is easy to see that ||Vm[~y]|| > ||Vm[~x]|| and

G ◦ Vm[Vm[~y]] = G ◦ Vm[~y]

. G ◦ Vm[~x]

= G ◦ Vm[Vm[~x]]

with ||Vm[~y]− Vm[~x]|| < ε for small ε > 0. It implies that

B 1
2G◦Vm[~y][~y] ⊆ B 1

2G◦Vm[~x][~x]

and this completes the proof. �

Remark 3.9. Theorem 3.8 tells us that points confined in certain balls induced
under compression should by necessity have their induced ball under compression
covered by these balls in which they are contained.

3.1. Interior points and the limit points of balls induced under compres-
sion. In this section we launch the notion of an interior and the limit point of
balls induced under compression. We study this notion in depth and explore some
connections.

Definition 3.10. Let ~y = (y1, y2, . . . , yn) ∈ Rn with yi 6= yj for all 1 ≤ i < j ≤ n.
Then a point ~z ∈ B 1

2G◦Vm[~y][~y] is an interior point if

B 1
2G◦Vm[~z][~z] ⊆ B 1

2G◦Vm[~x][~x]

for most ~x ∈ B 1
2G◦Vm[~y][~y]. An interior point ~z is then said to be a limit point if

B 1
2G◦Vm[~z][~z] ⊆ B 1

2G◦Vm[~x][~x]

for all ~x ∈ B 1
2G◦Vm[~y][~y]

Remark 3.11. Next we prove that there must exist an interior and limit point in
any ball induced by points under compression of any scale in any dimension.

Theorem 3.12. Let ~x = (x1, x2, . . . , xn) ∈ Rn with xi 6= xj for all 1 ≤ i < j ≤ n
with yi ≥ 1 for all 1 ≤ i ≤ n. Then the ball B 1

2G◦Vm[~x][~x] contains an interior point

and a limit point.

Proof. Let ~x = (x1, x2, . . . , xn) ∈ Rn with xi 6= xj for all 1 ≤ i < j ≤ n with xi ≥ 1
for all 1 ≤ i ≤ n and suppose on the contrary that B 1

2G◦Vm[~x][~x] contains no limit

point. Then pick

~z1 ∈ B 1
2G◦Vm[~x][~x].

such that z1i ≥ 1 for all 1 ≤ i ≤ n with ||~z1|| < ||~x|| such that ||~z1 − ~x|| < ε for
ε > 0 sufficiently small. Then by Theorem 3.8 and Theorem 3.7, it follows that

B 1
2G◦Vm[~z1][~z1] ⊂ B 1

2G◦Vm[~x][~x]
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with G ◦ Vm[~z1] . G ◦ Vm[~x]. Again pick ~z2 ∈ B 1
2G◦Vm[~z1][~z1] such that z2i ≥ 1 for

all 1 ≤ i ≤ n with ||~z2|| < ||~z1|| such that ||~z2− ~z1|| < δ for δ > 0 sufficiently small.
Then by employing Theorem 3.8 and Theorem 3.7, we have

B 1
2G◦Vm[~z2][~z2] ⊂ B 1

2G◦Vm[~z1][~z1]

with G◦Vm[~z2] . G◦Vm[~z1]. By continuing the argument in this manner we obtain
the infinite descending sequence of the gap of compression

G ◦ Vm[~x] & G ◦ Vm[~z1] & G ◦ Vm[~z2] & · · · & G ◦ Vm[~zn] & · · ·

thereby ending the proof of the theorem. �

Proposition 3.13. The point ~x = (x1, x2, . . . , xn) with xi = 1 for each 1 ≤ i ≤ n
is the limit point of the ball B 1

2G◦V1[~y][~y] for any ~y = (y1, y2, . . . , yn) ∈ Rn with

yi > 1 for each 1 ≤ i ≤ n.

Proof. Applying the compression V1 : Rn −→ Rn on the point ~x = (x1, x2, . . . , xn)
with xi = 1 for each 1 ≤ i ≤ n, we obtain V1[~x] = (1, 1, . . . , 1) so that G ◦V1[~x] = 0
and the corresponding ball induced under compression B 1

2G◦V1[~x][~x] contains only

the point ~x. It follows by Definition 3.12 the point ~x must be the limit point of the
ball B 1

2G◦V1[~x][~x]. It follows that

B 1
2G◦V1[~x][~x] ⊆ B 1

2G◦V1[~y][~y]

for any ~y = (y1, y2, . . . , yn) ∈ Rn with yi > 1 for all 1 ≤ i ≤ n. For if the contrary

B 1
2G◦V1[~x][~x] 6⊆ B 1

2G◦V1[~y][~y]

holds for some ~y = (y1, y2, . . . , yn) ∈ Rn with yi > 1 for each 1 ≤ i ≤ n, then there
must exists some point ~z ∈ B 1

2G◦V1[~x][~x] such that ~z 6∈ B 1
2G◦V1[~y][~y]. Since ~x is the

only point in the ball B 1
2G◦V1[~x][~x], it follows that

~x 6∈ B 1
2G◦V1[~y][~y]

which is inconsistent with the fact that ~x is the limit point of the ball. �

3.2. Admissible points of balls induced under compression. We launch the
notion of admissible points of balls induced by points under compression. We study
this notion in depth and explore some possible connections.

Definition 3.14. Let ~y = (y1, y2, . . . , yn) ∈ Rn with yi 6= yj for all 1 ≤ i < j ≤ n.
Then ~y is said to be an admissible point of the ball B 1

2G◦Vm[~x][~x] if∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ =
1

2
G ◦ Vm[~x].

Remark 3.15. It is important to notice that the notion of admissible points of balls
induced by points under compression encompasses points on the ball. These points
in geometrical terms basically sit on the outer of the induced ball. Next we show
that all balls can in principle be generated by their admissible points.
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Theorem 3.16. Let ~x ∈ Rn with xi 6= xj (i 6= j) such that xi, yi ≥ 1 for all
1 ≤ i ≤ n and set m := m(n) = o(1) as n −→ ∞. The point ~y ∈ B 1

2G◦Vm[~x][~x] with

||~y|| < ||~x|| such that ||~y − ~x|| < ε for ε > 0 sufficiently small is admissible if and
only if

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] with ||~y|| < ||~x|| such that ||~y − ~x|| < ε for ε > 0

sufficiently small be admissible and suppose on the contrary that

B 1
2G◦Vm[~y][~y] 6= B 1

2G◦Vm[~x][~x].

Without loss of generality, we can choose some ~z ∈ B 1
2G◦Vm[~x][~x] with ||~z|| < ||~x||

such that

~z /∈ B 1
2G◦Vm[~y][~y].

for ||~z − ~x|| < δ for δ > 0 sufficiently small. Applying Theorem 3.7, we obtain the
inequality

G ◦ Vm[~y] . G ◦ Vm[~x].

This already contradicts the equality G ◦Vm[~y] = G ◦Vm[~x]. The latter equality of
compression gaps follows from the requirement that the balls are indistinguishable.
Conversely, suppose

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x]. Then it follows that the point ~y lives on the outer of
the two indistinguishable balls and so must satisfy the equality∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣~z − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
=

1

2
G ◦ Vm[~x].

It follows that

1

2
G ◦ Vm[~x] =

∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
and ~y is indeed admissible, thereby ending the proof. �

Theorem 3.17 (The inequality). Let Nr denotes the number of integral points in
a circle of radius r. Then

2r2
(

1 +
1

4

∑
1≤k≤b log r

log 2 c

1

22k−2

)
+O(

r

log r
) ≤ Nr ≤ 8r2

(
1 +

∑
1≤k≤b log r

log 2 c

1

22k−2

)
+O(

r

log r
)

for all r > 1. In particular, the error function E(r) in the Gauss circle problem
must satisfy

E(r)� r1−ε

for any ε > 0.
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Proof. Pick arbitrarily a point (x1, x2) = ~x ∈ R2 with xi > 1 for 1 ≤ i ≤ 2 and
x1 6= x2 such that G◦Vm[~x] = 2r. This ensures the circle induced under compression
is of radius r. Next we apply the compression of fixed scale m := m(r) ≤ 1, given
by Vm[~x] and construct the circle induced by the compression given by

B 1
2G◦Vm[~x][~x]

with radius (G◦Vm[~x])
2 = r. It can be shown by iteration using Theorem 3.16 that

admissible points ~xk ∈ R2 (~xk 6= ~x) of the circle of compression induced must satisfy
the condition G ◦ Vm[~xk] = 2r. Also by appealing to Theorem 3.7 and Theorem
3.16 it easy to see that points ~xl ∈ B 1

2G◦Vm[~x][~x] must satisfy the inequality

G ◦ Vm[~xl] ≤ G ◦ Vm[~x] = 2r.

In particular points in ~xl ∈ B 1
2G◦Vm[~x][~x] contained in the 2r × 2r grid that covers

this circle must satisfy for their coordinates

max~xl∈2r×2rsup(xli)
2
i=1 = 2r +

1

log r

for all r > 1 so that G ◦ Vm[~xl] ≤ 2r. We note that all points in the ball

B 1
2G◦Vm[~x][~x]

with radius (G◦Vm[~x])
2 = r constructed can be classified according to the values of

the compression gap G ◦ Vm[~x] = s for all 1 ≤ s ≤ 2r. Let us choose 0 < m :=
m(r) = 1

2 log2 r
≤ 1, then the number of integral points contained in the circle is the

sum

Nr =
∑

~xj∈b2rc×b2rc
G◦Vm[~xj ]≤2r

1

=
∑

~xj∈b2rc×b2rc
G◦Vm[~xj ]<2r

1 +
∑

~xj∈b2rc×b2rc
G◦Vm[~xj ]=2r

1

=
∑

1≤k≤b log r
log 2 c

∑
~xj∈b 2r

2k−1 c×b
2r

2k−1 c
r

2k−1≤G◦Vm[~xj ]<
2r

2k−1

1 +
∑

~xj∈b2rc×b2rc
G◦Vm[~xj ]=2r

1.
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We now analyze the contribution of each of the sums. We note that the right-hand
sum contributes the error term. We notice that we can write

∑
~xj∈b2rc×b2rc
G◦Vm[~xj ]=2r

1 =
∑

~xj∈b2rc×b2rc

(G ◦ Vm[~xj ])
2

4r2

≤
∑

~xj∈b2rc×b2rc

2(sup(x2ji)1≤i≤2 +m2 log

(
1 + 1

Inf(xji
)2

)
− 4m

4r2

≤
∑

~xj∈b2rc×b2rc

2max~xl∈2r×2rsup(x2ji)1≤i≤2 +m2 log

(
1 + 1

Inf(xji
)2

)
− 4m

4r2

=
∑

~xj∈b2rc×b2rc

2(2r + 1
log r )2 + 1

log4 r
log

(
1 + 1

Inf(xji
)2

)
− 2

log2 r

4r2

= 2
∑

~xj∈b2rc×b2rc

1 +O(
r

log r
)

= 8r2 +O(
r

log r
).

Now, we evaluate the first sum which contributes the main term of the upper bound

∑
1≤k≤b log r

log 2 c

∑
~xj∈b 2r

2k−1 c×b
2r

2k−1 c
r

2k−1≤G◦Vm[~xj ]<
2r

2k−1

1 ≤ 2
∑

1≤k≤b log r
log 2 c

∑
~xj∈b 2r

2k−1 c×b
2r

2k−1 c

1

≤ 8r2
∑

1≤k≤b log r
log 2 c

1

22k−2
.

For the lower bound, we only count the number of integral points with their smallest
coordinates satisfying

min~xl∈2r×2rinf(xli)
2
i=1 > r +

1

log r
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for all r > 1 so that G ◦ Vm[~xl] & r so that we obtain the lower bound∑
~xj∈b2rc×b2rc
G◦Vm[~xj ]=2r

1 >
∑

~xj∈b2rc×b2rc
G◦Vm[~xj ]=2r

min~xl∈2r×2rinf(xji
)2i=1>r+

1
log r

1

=
∑

~xj∈b2rc×b2rc
min~xl∈2r×2rinf(xli

)2i=1>r+
1

log r

(G ◦ Vm[~xj ])
2

4r2

≥
∑

~xj∈b2rc×b2rc
min~xl∈2r×2rinf(xli

)2i=1>r+
1

log r

2(inf(x2ji)1≤i≤2 +m2 log

(
1 + 1

Inf(xji
)2

)
− 4m

4r2

≥
∑

~xj∈b2rc×b2rc
inf(xli

)2i=1>r+
1

log r

2min~xl∈2r×2rinf(x2ji)1≤i≤2 +m2 log

(
1− 1

sup(xji
)2

)−1
− 4m

4r2

=
∑

~xj∈b2rc×b2rc

2(r + 1
log r )2 + 1

log4 r
log

(
1 + 1

Inf(xji
)2

)
− 2

log2 r

4r2

=
1

2

∑
~xj∈b2rc×b2rc

1 +O(
r

log r
)

= 2r2 +O(
r

log r
).

For the main term of the lower bound, we have∑
1≤k≤b log r

log 2 c

∑
~xj∈b 2r

2k−1 c×b
2r

2k−1 c
r

2k−1≤G◦Vm[~xj ]<
2r

2k−1

1 ≥ 1

2

∑
1≤k≤b log r

log 2 c

∑
~xj∈b 2r

2k−1 c×b
2r

2k−1 c

1

≥ r2

2

∑
1≤k≤b log r

log 2 c

1

22k−2
.

By piecing these estimate together the lower bound also follows. �

4. Conclusion and further remarks

In this paper, we have made substantial progress in the study of the error term in
the Gauss circle problem by establishing refined asymptotic bounds for the number
of lattice points inside a circle of radius r. By analyzing the difference between the
number of lattice points and the area of the circle, we provide a detailed under-
standing of the error term, which behaves asymptotically as O( r

log r ). Our results

not only improve upon previous estimates but also introduce new methods for
bounding these error terms, offering insights that can be applied to more general
geometric problems involving lattice point counting. These findings contribute to
a more precise understanding of the growth rate of lattice points in circles, which



ON THE GAUSS CIRCLE PROBLEM 13

is a cornerstone of analytic number theory. Furthermore, the techniques developed
in this work open the door to further investigations into the behaviour of lattice
point distributions in higher-dimensional spaces or under other transformations.
This research thus advances our understanding of the fine structure of lattice point
distributions, providing valuable tools for future explorations in number theory and
geometric analysis.
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