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Abstract

We expand Deutsch’s algorithm for determining the mappings of a logical function by using four
orthogonal states. Using this, we propose a parallel computation for all of the combinations of
values in variables of a logical function by using sixteen orthogonal states. As an application of
our algorithm, we demonstrate two typical arithmetic calculations in the binary system. We study
an efficiency for operating a full adder/half adder by quantum-gated computing. The two typical
arithmetic calculations are (1 + 1) and (2 + 3). The typical arithmetic calculation (2 + 3) is faster
than that of its classical apparatus which would require 43 = 64 steps when we introduce the full
adder operation. Another typical arithmetic calculation (1 + 1) is faster than that of its classical
apparatus which would require 42 = 16 steps when we introduce only the half adder operation.
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I. INTRODUCTION

Quantum mechanics (cf. [1—7]) is an important physical theory in order to explain the quantum behaviors of the
nature. Between the articles of research for constructing theoretical quantum algorithms [8] it may be mentioned as
follows. In 1985, the Deutsch algorithm was introduced and constructed for the function property problem [9—11].
In 1993, the Bernstein—Vazirani algorithm was proposed for identifying linear functions [12, 13]. Generalization of
the Bernstein—Vazirani algorithm beyond qubit systems is reported [14]. In 1994, Simon’s algorithm [15] and Shor’s
algorithm [16] were discussed for period finding of periodic functions. In 1996, Grover [17] provided an algorithm
for unordered object finding and the motivation for exploring the computational possibilities offered by quantum
mechanics.
A simple algorithm for complete factorization of an N -partite pure quantum state is proposed by Mehendale and

Joag [18]. Fujikawa, Oh, and Umetsu discuss a classical limit of Grover’s algorithm induced by dephasing: coherence
versus entanglement [19]. Quantum dialogue protocol based on Grover’s search algorithms is presented by Yin, He,
and Fan [20]. Efficient quantum arithmetic operation circuits for quantum image processing are discussed by Li
et al. [21]. Gidney discusses halving the cost of quantum addition [22]. Li et al. discuss the circuit design and
optimization of quantum multiplier and divider [23].
Some related references may be included on the high-dimensional case. Yan and Gao discuss Perfect NOT and

conjugate transformations which are about the perfect NOT gate in d-dimensions [24]. Liu et al. discuss general
scheme for superdense coding between multiparties [25]. Deconstructing dense coding is discussed by Mermin [26].
In high dimension, some of the operations are more complicated than that in the qubit case.
A quantum algorithm for a FULL adder operation based on registers of the CPU in a quantum-gated computer

is discussed [27]. Even in quantum computers like electronic computers, “storing of programs and data” is the most
important factor for data processing. Fortunately, we have discovered [28, 29] that the technique of using XOR based
on Deutsch’s algorithm can be expandable to storing any boolean function, of course, including XOR in “quantum
memory” that automatically exists if we make use of the superposition and phase kickback concepts based upon XOR
skillfully. It is important that such boolean functions are regarded as “basics of programs” for a general purpose
computing even on quantum-gated computers.
It is quite natural that we can step out into the wider world as researchers because of having such memory in

even quantum-gated computers. By virtue of having such memory, we can draw any quantum logic circuits of ALU
(Arithmetic and Logic Unit) and the control unit, as the hardware of the CPU (Central Processing Unit) of the
quantum-gated computer. And then on such a whole hardware as a computer, we may run any program to be
designed and constructed using the logical concept of boolean functions. When we have efficient coupling between
the hardware and programs with data, we will be happy in attaining a quantum-gated computer.
Fortunately, we have discovered an algorithm for storing the logical functions in a boolean algebra. In other

words, this corresponds to discovery of memory for logic functions in quantum-gated computers by means of multiple
operations based on Exclusive OR with the two concepts, superposition and phase kickback. This theory is shown in
Ref. [28].
In short, it is shown all the boolean functions are set into the quantum computer just like the electronic computer.

This fact means that all performances in logic of computing and control of itself are available even in quantum
computers. Therefore, we could design any quantum-gated computer using the traditional design ways in logic of
existing electronic computers [28].
Based upon the above, we reviewed concretely how to store logical functions in the memory of the quantum-gated

computer, thinking of not only logic circuits but also programs in terms of logic. And naturally we demonstrated
typical arithmetic calculations in the binary system. From this trial, we are going to lead a quantum-gated computer
to be implemented commercially. This is theoretically and practically shown in Ref. [29].
In more details, we prove that the quantum computer can operate just like the electronic computer fundamentally

through the operation of addition of two n-digit numbers. Therefore, the quantum computer can solve all the four
basic operations of arithmetic, addition, subtraction, multiplication, and division. Further, it can be said that this
quantum computer naturally operates not only arithmetic but also logic in terms of boolean logic [29].
As a result, the theory proposed by Refs. [28, 29] can build a quantum-gated computer that is driven and operated

by all software (all programs) used on existing electronic computers.
Finally, we say that such quantum-gated computers are much faster than existing electronic computers by virtue

of quantum effectiveness that quantum mechanics consists of the most important concept of an elementary particle
with the speed much higher than light’s. So, we can than could expand processing functionality of quantum-gated
computers for wider range of applications based on physics and chemistry. In addition, we might guess that the energy
consumption of quantum computers would be much smaller than that of electronic computers.
Generalization of Deutsch’s algorithm is reported [30]. Quantum algorithm for evaluating two of logical functions

simultaneously is proposed [31]. Computational complexity in high-dimensional quantum computing is also discussed
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[32].
However, in the theory presented in Refs. [28—30], all the quantum states are not completely orthogonal to each

other. Therefore, we have some error probability when we distinguish the quantum states [33, 34]. Nevertheless, we
are able to construct our theory by using orthogonal states.
In this article, we completely and simply expand Deutsch’s algorithm for determining all the mappings of a function

by using four orthogonal states. Using this, we propose a direct and simple method for a parallel computation for all
of the combinations of values in variables of a logical function by using sixteen orthogonal states. As an application
of our algorithm, we demonstrate two typical arithmetic calculations in the binary system. We study an efficiency for
operating a full adder/half adder by quantum-gated computing. The two typical arithmetic calculations are (1 + 1)
and (2+3). The typical arithmetic calculation (2+3) is faster than that of its classical apparatus which would require
43 = 64 steps when we introduce the full adder operation. Another typical arithmetic calculation (1+1) is faster than
that of its classical apparatus which would require 42 = 16 steps when we introduce only the half adder operation.

II. EXPANSION OF DEUTSCH’S ALGORITHM BASED ON ORTHOGONAL STATES

Deutsch’s algorithm determines if the given function f : Z2 → Z2 is constant or balanced. The function is called
to be constant if f(0) = f(1). The function is called to be balanced if f(0) �= f(1). We expand Deutsch’s algorithm.
Deutsch’s algorithm expanded determines all the mappings of the given function. We can determine simultaneously
the following mappings:

f(0) =?, f(1) =?. (1)

1. Basic structure of quantum computing

Quantum superposition and quantum phase factor are fundamental features of many quantum algorithms. Both of
them are necessary. They allow quantum computers to evaluate simultaneously the mappings of a function f(x) for
many different x. Suppose

f : {0, 1} → {0, 1} (2)

is a function with a one-bit domain and range. A convenient way of computing the function on a quantum computer
is of considering a two-qubit quantum computer that starts with the state |x, y�, where x and y are variables used in
mapping f . The abbreviation |x, y� stands for |x� ⊗ |y�.
It is possible to transform the state |x, y� into

|x, y ⊕ f(x)�, (3)

by applying the quantum oracle, where ⊕ indicates addition modulo 2. We denote the transformation Uf defined by
the map

Uf |x, y� = |x, y ⊕ f(x)�. (4)

2. Deutsch’s algorithm

Let us review Deutsch’s formula as follows:

Uf |0�(|0� − |1�)/
√
2 = |0�(|0⊕ f(0)� − |1⊕ f(0)�)/

√
2

=

�
(−1)f(0)|0�(|0� − |1�)/

√
2 if f(0) = 0,

(−1)f(0)|0�(|0� − |1�)/
√
2 if f(0) = 1.

(5)

Uf |1�(|0� − |1�)/
√
2 = |1�(|0⊕ f(1)� − |1⊕ f(1)�)/

√
2

=

�
(−1)f(1)|1�(|0� − |1�)/

√
2 if f(1) = 0,

(−1)f(1)|1�(|0� − |1�)/
√
2 if f(1) = 1.

(6)

This is the phase kickback formation.
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Let us introduce the Bloch sphere. We consider a quantum state lying in the x-axis and a quantum state lying in
the z-axis. Deutsch’s formula does not use a quantum state lying in y-axis. f(0) and f(1) appear in the global phase
factor, but we cannot obtain both of them at the same time.
We define the following notations:

|−�y =
|0� − i|1�√

2
, |+�y =

|0�+ i|1�√
2

, |−�x =
|0� − |1�√

2
, |+�x =

|0�+ |1�√
2

. (7)

In fact, we may define the input state as (8).

|ψ0�d =
1√
2
|0�|−�x +

1√
2
|1�|−�x = |+�x|−�x, d�ψ0|ψ0�d = 1. (8)

Applying Ufi , (i = 0, 1, 2, 3) to |ψ0�d, Ufi |ψ0�d = |ψ1�id, therefore leaves us with one of four cases:

Uf0 |ψ0�d = |ψ1�0d =
1√
2
|0�|−�x +

1√
2
|1�|−�x = |+�x|−�x iff f0(0) = 0, f0(1) = 0,

Uf1 |ψ0�d = |ψ1�1d =
1√
2
|0�|−�x −

1√
2
|1�|−�x = |−�x|−�x iff f1(0) = 0, f1(1) = 1,

Uf2 |ψ0�d = |ψ1�2d = −
1√
2
|0�|−�x +

1√
2
|1�|−�x = −|−�x|−�x iff f2(0) = 1, f2(1) = 0,

Uf3 |ψ0�d = |ψ1�3d = −
1√
2
|0�|−�x −

1√
2
|1�|−�x = −|+�x|−�x iff f3(0) = 1, f3(1) = 1. (9)

If we have (9), we do not obtain simultaneously both f(0) and f(1) by measuring the single output state.
By measuring |ψ1�id, we cannot determine simultaneously all the two mappings of fi(x) for all x. But, we can

determine if the given function is constant or balanced. This is faster than a classical apparatus, which would require
at least 2 evaluations.

3. Expansion of Deutsch’s algorithm

We can expand Deutsch’s algorithm using a quantum state lying in the xy-plane. In what follows, we consider the
Bloch sphere, especially, we consider a quantum state lying in the xy-plane. From Deutsch’s formula and the mapping
Uf , we arrive the following formulas:

Uf |0�(cos
θ

2
|0�+ eiφ sin θ

2
|1�) = |0�(cos θ

2
|0⊕ f(0)�+ eiφ sin θ

2
|1⊕ f(0)�)

=

�
|0�(cos θ2 |0�+ eiφ sin θ

2 |1�) if f(0) = 0,

|0�(cos θ2 |1�+ eiφ sin θ
2 |0�) if f(0) = 1.

(10)

Uf |1�(cos
θ′

2
|0�+ eiφ′ sin θ

′

2
|1�) = |1�(cos θ

′

2
|0⊕ f(1)�+ eiφ′ sin θ

′

2
|1⊕ f(1)�)

=

�
|1�(cos θ′2 |0�+ eiφ

′

sin θ′

2 |1�) if f(1) = 0,

|1�(cos θ′2 |1�+ eiφ
′

sin θ′

2 |0�) if f(1) = 1.
(11)

This is enough to realize our main goal, but, to simplify, we suppose a quantum state lying in just the y-axis. Thus
let (θ, φ) be (π/2, π/2) and let (θ′, φ′) be (π/2, π/2) in giving

Uf |0�(|0�+ i|1�)/
√
2 =

�
(i)f(0)|0�(|0�+ i|1�)/

√
2 if f(0) = 0,

(i)f(0)|0�(|0� − i|1�)/
√
2 if f(0) = 1.

(12)

Uf |1�(|0�+ i|1�)/
√
2 =

�
(i)f(1)|1�(|0�+ i|1�)/

√
2 if f(1) = 0,

(i)f(1)|1�(|0� − i|1�)/
√
2 if f(1) = 1.

(13)

We define the input state as (14). Here we use a phase effect, which is a quantum phenomenon. We define the
input state as follows:

|ψ0� =
1√
2
|0�|+�y +

1√
2
|1�|+�y, �ψ0|ψ0� = 1. (14)
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Applying Ufi , (i = 0, 1, 2, 3) to |ψ0�, Ufi |ψ0� = |ψ1�i, therefore leaves us with one of four cases:

Uf0 |ψ0� = |ψ1�0 =
1√
2
|0�|+�y +

1√
2
|1�|+�y iff f0(0) = 0, f0(1) = 0,

Uf1 |ψ0� = |ψ1�1 =
1√
2
|0�|+�y + i

1√
2
|1�|−�y iff f1(0) = 0, f1(1) = 1,

Uf2 |ψ0� = |ψ1�2 = i
1√
2
|0�|−�y +

1√
2
|1�|+�y iff f2(0) = 1, f2(1) = 0,

Uf3 |ψ0� = |ψ1�3 = i
1√
2
|0�|−�y + i

1√
2
|1�|−�y iff f3(0) = 1, f3(1) = 1. (15)

If we have (15), we know simultaneously both f(0) and f(1) by measuring the single output state.
Thus, by measuring |ψ1�i, we may determine simultaneously all the two mappings of fi(x) for all x. This is faster

than a classical apparatus, which would require at least 2 evaluations. However, the four states are not orthogonal
in one another. Therefore, we have some error probability when we distinguish the four states [33, 34]. Nevertheless,
we are able to eliminate the error probability into zero as show below.

4. Expansion of Deutsch’s algorithm based on orthogonal states

We present the expansion of Deutsch’s algorithm based on orthogonal states. We propose the following input state:

|ψ0�d ⊗ |ψ0� = |+�x|−�x ⊗ |+�x|+�y. (16)

Applying Ufi ⊗ Ufi , (i = 0, 1, 2, 3) to |ψ0�d ⊗ |ψ0�, Ufi ⊗ Ufi |ψ0�d ⊗ |ψ0� = |ψ1�id ⊗ |ψ1�i, therefore leaves us with one
of four cases:

Uf0 ⊗ Uf0 |ψ0�d ⊗ |ψ0� = |ψ1�0d ⊗ |ψ1�0 = |+�x|−�x ⊗ (
1√
2
|0�|+�y +

1√
2
|1�|+�y)

iff f0(0) = 0, f0(1) = 0, (17)

Uf1 ⊗ Uf1 |ψ0�d ⊗ |ψ0� = |ψ1�1d ⊗ |ψ1�1 = |−�x|−�x ⊗ (
1√
2
|0�|+�y + i

1√
2
|1�|−�y)

iff f1(0) = 0, f1(1) = 1, (18)

Uf2 ⊗ Uf2 |ψ0�d ⊗ |ψ0� = |ψ1�2d ⊗ |ψ1�2 = −|−�x|−�x ⊗ (i
1√
2
|0�|−�y +

1√
2
|1�|+�y)

iff f2(0) = 1, f2(1) = 0, (19)

Uf3 ⊗ Uf3 |ψ0�d ⊗ |ψ0� = |ψ1�3d ⊗ |ψ1�3 = −|+�x|−�x ⊗ (i
1√
2
|0�|−�y + i

1√
2
|1�|−�y)

iff f3(0) = 1, f3(1) = 1. (20)

If we have the relations above, we know simultaneously both f(0) and f(1) by measuring the single output state.
The four states are orthogonal in one another. Therefore, we have zero error probability when we distinguish the four
states. Thus, by measuring |ψ1�id ⊗ |ψ1�i, we may determine simultaneously all the two mappings of fi(x) for all x.
This is faster than a classical apparatus, which would require at least 2 evaluations.
Our algorithm is as follows:

• Select a function fi and do not know any mappings of it, that is,

fi(0) =?, fi(1) =?. (21)

• Operate Ufi ⊗ Ufi to |ψ0�d ⊗ |ψ0� in giving |ψ1�id ⊗ |ψ1�i.

• From |ψ1�id ⊗ |ψ1�i, obtain the values of all the mappings concerning the function fi.

It is very interesting to consider the Deutsch-Jozsa algorithm expanded which uses N qubits.
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5. Relation between set-theoretic atoms and Deutsch’s algorithm expanded

A 0 1

f0 0 0 0

f1 0 1 A

f2 1 0 A′

f3 1 1 1

A boolean algebra F1

Let us discuss the relation between set-theoretic atoms [35] and Deutsch’s algorithm expanded. This A is a subset
which is constructed using the atoms f1 and f2 that are disjoint one another. For example, newly using fi as an
element of a boolean algebra F1,

f0 = 0,

f1 = A,

f2 = A′,

f3 = 1. (22)

We can introduce a boolean algebra F1 as a power set of the atoms. F1 is based on the value “1” of the one-variable
switching functions. An atom is a function including only one “1” as its mapped value, in the two combinations of
the values of A for the one-variable function.
Clearly we notice a complete matching between the boolean algebra F1 and Deutsch’s algorithm expanded. In fact

we can see that Eqs. (18) and (19) are regarded as the two atoms of the boolean algebra F1. For example, we notice
(18) OR operation with (19) is equal to (20) and all elements are derived from the two atoms.
We see that the relation between set theory based upon atoms and our result in terms of a boolean algebra. The

important point is that we obtain all the elements of F1 by means of a power set of atoms when we get the two atoms.
Thus we can say that next our aim is of getting simultaneously (18) and (19). That means we get simultaneously
(17)—(20) (all four patterns!). This is now possible as we discuss: We can construct very clearly the following quantum
state composed on two orthogonal states:

(|ψ1�1d ⊗ |ψ1�1)⊗ (|ψ1�2d ⊗ |ψ1�2). (23)

And we evaluate this quantum state of obtaining all the mappings. Especially, we have a quantum algorithm for
evaluating two of logical functions simultaneously [31] and then we have

(|ψ1�1d ⊗ |ψ1�1) + i(|ψ1�2d ⊗ |ψ1�2)√
2

. (24)

In this case, we evaluate the quantum state of obtaining all the mappings.

III. THEORETICALLY ORGANIZED ALGORITHM FOR QUANTUM COMPUTERS BASED ON

ORTHOGONAL STATES

The key of this section is to develop the algorithms of quantum computers toward the ultimate parallel processing
on them. The way to do is to find out the very true ultimate parallelism, thinking of the physical quantum phenomena.
The algorithm developed here is toward the full uses of the features of quantum computers. The algorithm implies the
ability of such computation based upon the concept of a boolean algebra. Finally we have the ultimate computation
for today’s quantum computers.
In this section, we propose herein a novel parallel computation, even though today’s algorithm methodology for

quantum computing, for all of the combinations of values in variables of a logical function. Our concern so far has
been to obtain an attribute of some function. In fact such a task is only for one task problem solving. However,
we could treat positively the plural evaluations of some logical function in parallel instead of testing the function for
finding out its attribute. In fact, these evaluations of the function are naturally included and evaluated, in parallel,
in normal quantum computing discussing a function in a boolean algebra stemmed from atoms in it. As is naturally
understandable with mathematics, quantum computing naturally meets the category of a boolean algebra. The reason
why we positively introduce a boolean algebra here is because we have multiple evaluations of a function in quantum
computing general.
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1. Quantum algorithm for determining the 22 mappings of a function based on orthogonal states

We propose a quantum algorithm for determining the 22 mappings of a function. Suppose newly

f : {0, 1}2 → {0, 1} (25)

is a function. We want to know simultaneously the 22 mappings f(0, 0), f(0, 1), f(1, 0), and f(1, 1). Later we see
a complete matching between our results and a boolean algebra F2. In the boolean algebra F2, the function is a
two-valuable function. For example, f(x, y) is the function where x and y are variables used in mapping f . In what
follows, the abbreviation f(xy) stands for f(x, y). We see a combination between a unitary transformation theory
and logic theory.
We define the input state as follows, using an application of Deutsch’s algorithm expanded:

|Ψ0� =(
1√
2
|00�|−�x +

1√
2
|01�|−�x)(

1√
2
|00�|+�y +

1√
2
|01�|+�y)

(
1√
2
|10�|−�x +

1√
2
|11�|−�x)(

1√
2
|10�|+�y +

1√
2
|11�|+�y). (26)

From the mapping Uf , we can define the following formulas:

Uf |00�|+�y =
�
(i)f(00)|00�|+�y if f(00) = 0,

(i)f(00)|00�|−�y if f(00) = 1.
(27)

Uf |01�|+�y =
�
(i)f(01)|01�|+�y if f(01) = 0,

(i)f(01)|01�|−�y if f(01) = 1.
(28)

Uf |10�|+�y =
�
(i)f(10)|10�|+�y if f(10) = 0,

(i)f(10)|10�|−�y if f(10) = 1.
(29)

Uf |11�|+�y =
�
(i)f(11)|11�|+�y if f(11) = 0,

(i)f(11)|11�|−�y if f(11) = 1.
(30)

Uf |00�|−�x =
�
(−1)f(00)|00�|−�x if f(00) = 0,

(−1)f(00)|00�|−�x if f(00) = 1.
(31)

Uf |01�|−�x =
�
(−1)f(01)|01�|−�x if f(01) = 0,

(−1)f(01)|01�|−�x if f(01) = 1.
(32)

Uf |10�|−�x =
�
(−1)f(10)|10�|−�x if f(10) = 0,

(−1)f(10)|10�|−�x if f(10) = 1.
(33)

Uf |11�|−�x =
�
(−1)f(11)|11�|−�x if f(11) = 0,

(−1)f(11)|11�|−�x if f(11) = 1.
(34)

Applying UfiUfiUfiUfi , (i = 0, 1, 2, ..., 22
2 − 1) to |Ψ0�, UfiUfiUfiUfi |Ψ0� = |Ψ1�i, therefore leaves us with one of

22
2

cases:

|Ψ1�0 =(
1√
2
|00�|−�x +

1√
2
|01�|−�x)(

1√
2
|00�|+�y +

1√
2
|01�|+�y)

(
1√
2
|10�|−�x +

1√
2
|11�|−�x)(

1√
2
|10�|+�y +

1√
2
|11�|+�y)

iff f0(00) = 0, f0(01) = 0, f0(10) = 0, f0(11) = 0, (35)
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|Ψ1�1 =(
1√
2
|00�|−�x +

1√
2
|01�|−�x)(

1√
2
|00�|+�y +

1√
2
|01�|+�y)

(
1√
2
|10�|−�x −

1√
2
|11�|−�x)(

1√
2
|10�|+�y + i

1√
2
|11�|−�y)

iff f1(00) = 0, f1(01) = 0, f1(10) = 0, f1(11) = 1, (36)

|Ψ1�2 =(
1√
2
|00�|−�x +

1√
2
|01�|−�x)(

1√
2
|00�|+�y +

1√
2
|01�|+�y)

(− 1√
2
|10�|−�x +

1√
2
|11�|−�x)(i

1√
2
|10�|−�y +

1√
2
|11�|+�y)

iff f2(00) = 0, f2(01) = 0, f2(10) = 1, f2(11) = 0, (37)

|Ψ1�3 =(
1√
2
|00�|−�x +

1√
2
|01�|−�x)(

1√
2
|00�|+�y +

1√
2
|01�|+�y)

(− 1√
2
|10�|−�x −

1√
2
|11�|−�x)(i

1√
2
|10�|−�y + i

1√
2
|11�|−�y)

iff f3(00) = 0, f3(01) = 0, f3(10) = 1, f3(11) = 1, (38)

|Ψ1�4 =(
1√
2
|00�|−�x −

1√
2
|01�|−�x)(

1√
2
|00�|+�y + i

1√
2
|01�|−�y)

(
1√
2
|10�|−�x +

1√
2
|11�|−�x)(

1√
2
|10�|+�y +

1√
2
|11�|+�y)

iff f4(00) = 0, f4(01) = 1, f4(10) = 0, f4(11) = 0, (39)

|Ψ1�5 =(
1√
2
|00�|−�x −

1√
2
|01�|−�x)(

1√
2
|00�|+�y + i

1√
2
|01�|−�y)

(
1√
2
|10�|−�x −

1√
2
|11�|−�x)(

1√
2
|10�|+�y + i

1√
2
|11�|−�y)

iff f5(00) = 0, f5(01) = 1, f5(10) = 0, f5(11) = 1, (40)

|Ψ1�6 =(
1√
2
|00�|−�x −

1√
2
|01�|−�x)(

1√
2
|00�|+�y + i

1√
2
|01�|−�y)

(− 1√
2
|10�|−�x +

1√
2
|11�|−�x)(i

1√
2
|10�|−�y +

1√
2
|11�|+�y)

iff f6(00) = 0, f6(01) = 1, f6(10) = 1, f6(11) = 0, (41)

|Ψ1�7 =(
1√
2
|00�|−�x −

1√
2
|01�|−�x)(

1√
2
|00�|+�y + i

1√
2
|01�|−�y)

(− 1√
2
|10�|−�x −

1√
2
|11�|−�x)(i

1√
2
|10�|−�y + i

1√
2
|11�|−�y)

iff f7(00) = 0, f7(01) = 1, f7(10) = 1, f7(11) = 1, (42)

|Ψ1�8 =(−
1√
2
|00�|−�x +

1√
2
|01�|−�x)(i

1√
2
|00�|−�y +

1√
2
|01�|+�y)

(
1√
2
|10�|−�x +

1√
2
|11�|−�x)(

1√
2
|10�|+�y +

1√
2
|11�|+�y)

iff f8(00) = 1, f8(01) = 0, f8(10) = 0, f8(11) = 0, (43)

|Ψ1�9 =(−
1√
2
|00�|−�x +

1√
2
|01�|−�x)(i

1√
2
|00�|−�y +

1√
2
|01�|+�y)

(
1√
2
|10�|−�x −

1√
2
|11�|−�x)(

1√
2
|10�|+�y + i

1√
2
|11�|−�y)

iff f9(00) = 1, f9(01) = 0, f9(10) = 0, f9(11) = 1, (44)
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|Ψ1�10 =(−
1√
2
|00�|−�x +

1√
2
|01�|−�x)(i

1√
2
|00�|−�y +

1√
2
|01�|+�y)

(− 1√
2
|10�|−�x +

1√
2
|11�|−�x)(i

1√
2
|10�|−�y +

1√
2
|11�|+�y)

iff f10(00) = 1, f10(01) = 0, f10(10) = 1, f10(11) = 0, (45)

|Ψ1�11 =(−
1√
2
|00�|−�x +

1√
2
|01�|−�x)(i

1√
2
|00�|−�y +

1√
2
|01�|+�y)

(− 1√
2
|10�|−�x −

1√
2
|11�|−�x)(i

1√
2
|10�|−�y + i

1√
2
|11�|−�y)

iff f11(00) = 1, f11(01) = 0, f11(10) = 1, f11(11) = 1, (46)

|Ψ1�12 =(−
1√
2
|00�|−�x −

1√
2
|01�|−�x)(i

1√
2
|00�|−�y + i

1√
2
|01�|−�y)

(
1√
2
|10�|−�x +

1√
2
|11�|−�x)(

1√
2
|10�|+�y +

1√
2
|11�|+�y)

iff f12(00) = 1, f12(01) = 1, f12(10) = 0, f12(11) = 0, (47)

|Ψ1�13 =(−
1√
2
|00�|−�x −

1√
2
|01�|−�x)(i

1√
2
|00�|−�y + i

1√
2
|01�|−�y)

(
1√
2
|10�|−�x −

1√
2
|11�|−�x)(

1√
2
|10�|+�y + i

1√
2
|11�|−�y)

iff f13(00) = 1, f13(01) = 1, f13(10) = 0, f13(11) = 1, (48)

|Ψ1�14 =(−
1√
2
|00�|−�x −

1√
2
|01�|−�x)(i

1√
2
|00�|−�y + i

1√
2
|01�|−�y)

(− 1√
2
|10�|−�x +

1√
2
|11�|−�x)(i

1√
2
|10�|−�y +

1√
2
|11�|+�y)

iff f14(00) = 1, f14(01) = 1, f14(10) = 1, f14(11) = 0, (49)

|Ψ1�15 =(−
1√
2
|00�|−�x −

1√
2
|01�|−�x)(i

1√
2
|00�|−�y + i

1√
2
|01�|−�y)

(− 1√
2
|10�|−�x −

1√
2
|11�|−�x)(i

1√
2
|10�|−�y + i

1√
2
|11�|−�y)

iff f15(00) = 1, f15(01) = 1, f15(10) = 1, f15(11) = 1. (50)

Thus, by measuring |ψ1�i, we may determine simultaneously all the 22 mappings of fi(x, y) for all x and y. This is
faster than a classical apparatus, which would require at least 22 evaluations.
Later we discuss the relation between set theory [35] based upon atoms and our results in terms of a boolean

algebra. Especially the result reveals a complete matching between quantum computing and a boolean algebra. As is
naturally understandable with mathematics, quantum computing belongs to the category of a boolean algebra. We
positively mention that the fundamental structures of quantum computing and von Neumann architecture are the
same in terms of the category of a boolean algebra. However, the main different is based on parallelism for determining
all the mappings used especially in quantum computing.

2. Example using a logical function

Let us consider the case where i = 1. The logical function is as follows [35]:

f1(x, y) = A ∧B. (51)

where x and y are variables used in mapping f . x(= 0, 1) is variable for A. y(= 0, 1) is variable for B. We want to
evaluate simultaneously all the mappings:

f1(0, 0), f1(0, 1), f1(1, 0), f1(1, 1). (52)



10

In classical case we require 22 evaluations. In quantum case we require just one query.
The input state is as folows:

|Ψ0� =(
1√
2
|00�|−�x +

1√
2
|01�|−�x)(

1√
2
|00�|+�y +

1√
2
|01�|+�y)

(
1√
2
|10�|−�x +

1√
2
|11�|−�x)(

1√
2
|10�|+�y +

1√
2
|11�|+�y). (53)

Applying Uf1Uf1Uf1Uf1 to |Ψ0�, Uf1Uf1Uf1Uf1 |Ψ0� = |Ψ1�1, we have the following output state:

|Ψ1�1 =(
1√
2
|00�|−�x +

1√
2
|01�|−�x)(

1√
2
|00�|+�y +

1√
2
|01�|+�y)

(
1√
2
|10�|−�x −

1√
2
|11�|−�x)(

1√
2
|10�|+�y + i

1√
2
|11�|−�y). (54)

Therefore we evaluate simultaneously all the mappings of f1(x, y):

f1(0, 0) = 0, f1(0, 1) = 0, f1(1, 0) = 0, f1(1, 1) = 1. (55)

This is faster than a classical apparatus, which would require at least 22 evaluations. Likewise, we can evaluate the
sixteen functions in a boolean algebra F2.

3. Relation between set-theoretic atoms and the result in Section III

Let us discuss the relation between set-theoretic atoms [35] and the result in Section III. These A and B are subsets
which are constructed using the atoms f1 through f4 that are disjoint one another. For example, newly using fi as
an element of a boolean algebra F2,

A = f1 ∨ f3 = {f1, f3},
B = f1 ∨ f2 = {f1, f2}, (56)

where,

f1 = A ∧B,
f2 = A′ ∧B,
f3 = A ∧B′,
f4 = A′ ∧B′. (57)

We can introduce a boolean algebra F2 as a power set of the atoms. F2 is based on the value “1” of the two-variable
switching functions. An atom is a function including only one “1” as its mapped value, in the four combinations of
the values of A and B for the two-variable function.
Clearly we notice a complete matching between the boolean algebra F2 and our result in Section III. In fact we can

see that Eqs. (36), (37), (39), and (43) are regarded as the four atoms of the boolean algebra F2. For example, we
notice (36) OR operation with (37) is equal to (38) and all elements are derived from the four atoms.
We see that the relation between set theory based upon atoms and our result in terms of a boolean algebra. The

important point is that we obtain all the elements of F2 by means of a power set of atoms when we get the four
atoms. Thus we can say that next our aim is of getting simultaneously (36), (37), (39), and (43). That means we get
simultaneously (35)—(50) (all sixteen patterns!). This is now possible as we discuss: We can construct very clearly
the following quantum state composed on four orthogonal states:

|Ψ1�1 ⊗ |Ψ1�2 ⊗ |Ψ1�4 ⊗ |Ψ1�8. (58)

And we evaluate this quantum state of obtaining all the mappings. Especially, we have a quantum algorithm for
evaluating two of logical functions simultaneously [31] and then we have

|Ψ1�1 + i|Ψ1�2√
2

⊗ |Ψ1�4 + i|Ψ1�8√
2

. (59)

In this case, we evaluate the quantum state of obtaining all the mappings.
We positively stress that the fundamental structures of quantum computing and von Neumann architecture are the

same in terms of the category of a boolean algebra. However, the main different is based on parallelism for determining
all the mappings used especially in quantum computing. We hope our discussions conclude the very true ultimate
importance of the quantum parallelism to construct quantum computers beyond von Neumann architecture.
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IV. TOWARD PRACTICALLY MATHEMATICAL EVALUATIONS

From (36), we have

|Ψ1�1 =(
1√
2
|00�|−�x +

1√
2
|01�|−�x)(

1√
2
|00�|+�y +

1√
2
|01�|+�y)

(
1√
2
|10�|−�x −

1√
2
|11�|−�x)(

1√
2
|10�|+�y + i

1√
2
|11�|−�y)

iff f1(00) = 0, f1(01) = 0, f1(10) = 0, f1(11) = 1. (60)

Hence, we evaluate the mappings of the logical function [35]:

f1(x, y) = A ∧B. (61)

From (41), we have

|Ψ1�6 =(
1√
2
|00�|−�x −

1√
2
|01�|−�x)(

1√
2
|00�|+�y + i

1√
2
|01�|−�y)

(− 1√
2
|10�|−�x +

1√
2
|11�|−�x)(i

1√
2
|10�|−�y +

1√
2
|11�|+�y)

iff f6(00) = 0, f6(01) = 1, f6(10) = 1, f6(11) = 0. (62)

Hence, we evaluate the mappings of the logical function [35]:

f6(x, y) = Exclusive OR(A,B). (63)

From (42), we have

|Ψ1�7 =(
1√
2
|00�|−�x −

1√
2
|01�|−�x)(

1√
2
|00�|+�y + i

1√
2
|01�|−�y)

(− 1√
2
|10�|−�x −

1√
2
|11�|−�x)(i

1√
2
|10�|−�y + i

1√
2
|11�|−�y)

iff f7(00) = 0, f7(01) = 1, f7(10) = 1, f7(11) = 1. (64)

Hence, we evaluate the mappings of the logical function [35]:

f7(x, y) = A ∨B. (65)

We have studied quantum operations based upon the quantum mechanics. Firstly, we have used Deutsch’s algorithm
with the usual phase kickback formation to develop the very true overbridging between usual quantum mechanics (and
then quantum computing) and a boolean algebra. In this, we have confirmed that usual quantum operations are useful,
beyond the quantum computing only for quantum mechanics operations, for very true mathematical evaluations just
like an arithmetic operation. We demonstrate two typical arithmetic calculations in the binary system.
As an example of a simple addition 1 + 1 in the binary system, we are going to develop the process of how to

calculate this:
To solve it, fortunately we have a formula here

f6(x, y) = Exclusive OR(A,B). (66)

f1(x, y) = A ∧B. (67)

1 + 1 =??. (68)

Sum = Exclusive OR(1, 1) = 0. (69)

Carry = 1 ∧ 1 = 1. (70)

Hence we have very clearly

1 + 1 = 10 (71)

according to the algorithm for addition in the binary system. The concrete and specific calculation (1 + 1) is faster
than that of a classical apparatus which would require 42 = 16 steps when we introduce only the half adder operation.
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In more details, we must use the rule of a half adder that is composed of by using some formulae in the boolean
algebra [35]. In the half adder, the function of it is the SUM and a Carry to the next digit position. The circuit
consists of two boolean functions (69) and (70).
Further, we could mention a little bit complicated example
2 + 3 in the decimal system.
In addition of the half adder operation, we need one more operation the full adder [35]. As for the full adder, it is

by the two half adders and the “OR” operation A ∨ B (A,B ∈ {0, 1}) in the boolean algebra to take out the result
from the previous digit. The operation is left here because it is obvious mathematically. Anyhow we can obtain the
result 5 in the decimal system.
To solve it, fortunately we have a formula here

f6(x, y) = Exclusive OR(A,B). (72)

f1(x, y) = A ∧B. (73)

f7(x, y) = A ∨B. (74)

10 + 11 =???. (75)

Sum = Exclusive OR(0, 1) = 1. (76)

Carry = 0 ∧ 1 = 0. (77)

Thus we have

10 + 11 =??1. (78)

Also we see

Carry Ci = 0. (79)

Our second aim is of calculating 1 + 1 considering Carry Ci = 0 by using a full adder. The first half adder says

Exclusive OR(1, 1) = 0. (80)

Carry = 1 ∧ 1 = 1. (81)

The second half adder says

Sum = Exclusive OR(Carry Ci,Exclusive OR(1, 1)) = 0. (82)

Carry = Carry Ci ∧ Exclusive OR(1, 1) = 0. (83)

Thus we see 10 + 11 =?01. We have finally the carry Carry C0 as follows: (This is (81) ∨ (83)).

Carry C0 = 0 ∨ 1 = 1. (84)

Hence we have very clearly

10 + 11 = 101 (85)

according to the algorithm for addition in the binary system. The concrete and specific calculation (2 + 3) is faster
than that of a classical apparatus which would require 43 = 64 steps when we introduce the full adder operation.
The quantum advantage increases when two numbers we treat become very large. Toward practical quantum-gated
computers, experimental demonstrations of our argumentations are going to be interested.

V. CONCLUSIONS

In conclusion, we have expanded Deutsch’s algorithm for determining all the mappings of a function by using four
orthogonal states. Using this, we have proposed a parallel computation for all of the combinations of values in variables
of a logical function by using sixteen orthogonal states. As an application of our algorithm, we have demonstrated
two typical arithmetic calculations in the binary system. We have studied an efficiency for operating a full adder/half
adder by quantum-gated computing. The two typical arithmetic calculations have been (1 + 1) and (2 + 3). The
typical arithmetic calculation (2+ 3) has been faster than that of its classical apparatus which would require 43 = 64
steps when we introduce the full adder operation. Another typical arithmetic calculation (1+ 1) has been faster than
that of its classical apparatus which would require 42 = 16 steps when we introduce only the half adder operation.
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