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Abstract 
 
A method is described to derive the inequality associated with the Heisenberg uncertainty principle 
which is valid for any object in orbit.  A necessary condition for this derivation, and by implication 
for all such derivations, is that the position of the orbiting object as a function of time is single valued.  
As a consequence the existence of uncertainty is at odds with the idea of non-locality.   
 
The presence of a harmonic series associated with the discrete energy levels of the atom must mean 
that there is a sampling process involved and it is this that leads to uncertainty. The position of the 
electron can only be related to the orbital period once per sample interval. Such a sampling process 
introduces ambiguity over observations of the position and velocity of the orbiting electron. In a state 
of superposition the electron does not exist everywhere, but is always following one of an infinite 
number of possible trajectories, but the precise trajectory cannot be determined since it is only 
accessible at intervals of a complete cycle. When it is observed the electron does not undergo any sort 
of physical transformation, instead such observation simply means that we are able to resolve which 
of the trajectories the electron is following 
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The Uncertainty Principle 
 
Werner Heisenberg formulated his uncertainty principle based on analysis of the dynamics of the 
hydrogen atom.  Basically he arranged the terms for momentum and position in a grid or matrix, but 
when he came to manipulating them he discovered (or rediscovered) a quirk of matrix arithmetic: that 
multiplication is not commutative; in other words [A]*[B] ≠ [B]*[A].  The difference he ascribed to 
uncertainty; the idea that it is not possible to measure both momentum and position at the same time 
to an arbitrary degree of accuracy.  There is always a tradeoff between these two measurements.   
 
Eventually Niels Bohr adopted this idea as a way to circumvent the problem he had encountered with 
the quantum leap, arguing that uncertainty was somehow intrinsic to the electron. That it does not 
exist as a particle in the classical sense, but somehow is spread around in multiple places at once and 
that it is only when it is observed that it is transformed into a particle having both position and 
velocity.  The electron is said to exist as a wave front in a state of quantum uncertainty or 
superposition, where it is deemed not to be located at a single point, but to occupy a region in space.  
When it is subject to an observing process, the state of uncertainty ‘collapses’ such that the electron 
manifests itself as a particle in a particular at a particular location.  The measurement problem is a 
question of how and whether the wave front collapse occurs 
 
To gain a complete understanding of the measurement problem it is first necessary to consider the so-
called ‘observer effect’.  When making a measurement, it is necessary that the tools being used to 
make the measurement do not affect the measurement.  The normal way to get around this problem is 
to ensure that the resolution of the measuring tool is much finer than the tolerance to which the 
measurement is being made.  Unfortunately on the scale of the electron there are no such tools 
available.  The only tools available are other electrons and photons and these are of the same order of 
magnitude as the electron being measured.  The observer effect confounds any practical attempt to 
make measurements on this scale and it is often confused with the underlying problem of uncertainty, 
which is not directly related to the observer effect.  While we cannot practically make measurements 
on this scale, we can imagine what is happening to the various particles involved as if we were able to 
do so. 
 
Shortly before Heisenberg published his findings on uncertainty, Erwin Schrödinger had developed an 
equation which described the particle in terms of a wave.  At the time there was an element of 
competition between Heisenberg and Schrödinger.  The uncertainty principle gave Heisenberg a clear 
lead, however eventually Schrödinger was able to show that his wave equation could be used to derive 
the same expression for uncertainty as that of Heisenberg – and that in fact the two methods were 
equivalent.  Schrödinger’s method involves the use of wave theory and was therefore more easily 
understood by a generation of physicists brought up on waves – and so now it is the preferred method 
for demonstrating uncertainty. 
 
The derivation of the uncertainty principle from Schrödinger’s wave equation is rather complex and 
convoluted; however there is a far simpler way to derive the equation directly from the orbital motion 
of the electron. First as an equality and then by posing the question as to what would make this 
equality into an inequality. 
 
We can describe the position of the orbiting electron in terms of two parametric equations, one in x 
and one in y. 
 
� = � cos (��) Equation 1 

� = � sin (��) Equation 2 
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Figure 1 Parametric equations for the orbiting electron 

The uncertainty equation is an inequality. It says that the average value of the position of the electron 
multiplied by its average momentum must always be greater than or equal to Planck’s constant 
divided by 2. 
 

Δ�Δ� ≥
ℏ

2
 

Equation 3 

 
If we expand the terms this equation can be written as 
 

Δ�Δ�� ≥
���

2
 Equation 4 

 
 
We also note that  
 

� =
��

��
 

Equation 5 

 
And so 
 
� = −�� sin (��) Equation 6 

The derivation of the uncertainty makes use of the so called Cauchy Schwartz inequalityi.  This 
concerns the relationship between the expected values of the two variables and their product and is 
commonly written as  
 
�(�)�(�) ≥ �(��) 
 

Equation 7 

Expected value, denoted by E, is a measure of the deviation of a variable from is average value and is 
sometimes referred to as standard deviation or in engineering terms as the Root Mean Square value of 
the variable.   
 

y 

x 

R2=x2+y2 

x=R cos(ωt) 
 

y=R sin(ωt) 
  ωt 
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In general the RMS value of a periodic variable which is a function of time is given by 
 

��(�) = �
1

2�
� �(�)���

��

�

 

Equation 8 

 
The expected value of x is well understood in the world of signal processing and electrical 
engineering where it is referred to as the Root Mean Square (RMS) of the value.   
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�(�) =  
�

√2
 Equation 13 

 
The calculation for momentum follows a similar argument, except for the presence of the constant m, 
the mass of the electron and the ω term which occurs as a result of differentiating the distance to get 
the velocity and gives 
 

�(�) =
���

√2
 

 

Equation 14 

The expected value for the product term follows a similar path but is slightly more complicated since 
it is the product of two sinusoids. 
 
��� = ���� sin(��) cos(��) 
 

Equation 15 

 
We can use the trigonometric identity for the product of sin and cos to give 
 

�� = ����
1

2
sin(2��) 

 

Equation 16 

And so  
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Equation 21 

 
Recognizing that �� = � and that ℏ = ��� we can rewrite this as 
 

�(��) =
ℏ

4
 

Equation 22 

 
Substituting into the Cauchy inequality gives 
 
�(�)

√2

�(�)

√2
≥

ℏ

4
 

Equation 23 

 
The two square root terms can be combined and cancelled to give the familiar form 
 

Δ�Δ� ≥
ℏ

2
 

Equation 24 

 
The product of the RMS value for the displacement and the RMS value for the speed multiplied by the 
mass of the orbiting body is always greater than or equal to half of the orbital angular momentum.   
 
This is universally true for any orbiting body. 
 
The inequality works equally well for all of the energy levels in the Bohr model for the atom, so if R 
is the Bohr radius and V the Bohr velocity we see that the n’s on the LHS effectively cancel 
 

Δ���Δ�
�

�
≥

�ℏ

2
 

Equation 25 

 
From Equation 4 it is evident that the mass term is plays no part in the uncertainty. It is a constant.  It 
is there on both sides of the inequality in order that the RHS can be expressed in terms of Planck’s 
constant.  Cancelling the mass term gives the more fundamental form which expresses the uncertainty 
between position and velocity for an orbiting body. 
 

Δ�Δ� ≥
��

2
 Equation 26 
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From this it can be seen that the real nature of uncertainty is between the velocity and position of the 
electron and not momentum and position or in general between a periodic variable and its derivative 
with respect to time. 
 
The inequality is familiar to electrical engineers where the displacement, x, corresponds to the voltage 
in an AC circuit, and the velocity, v, corresponds to the current. The inequality is used to describe the 
power factor.  The RMS value of the voltage In volts multiplied by the RMS value of the current in 
amps is always greater than or equal to the RMS value of the product of voltage and current; the 
power in watts. The ratio of these two quantities is termed the power factor and is given by  
 

����� ������ =
�

��
 

Equation 27 

 
Power factor is always less than or equal to one and is derived from the Cauchy Schwartz inequality 
in exactly the same way as with uncertainty, 
 
�(�����)�(����) ≥ �(�����) Equation 281 

Since in the case of the orbiting body velocity is derived directly from the position, it begs the 
question: where is the uncertainty in all of this?  In the electrical analogy the reduction in the power 
factor comes about because of the phase difference between the voltage and the current. In the terms 
on the LHS of the inequality, the phase is integrated out, whereas on the RHS the phase relationship is 
expressed by virtue of the multiplication of the two terms prior to the integration.  However for an 
orbiting particle there is no such phase difference, the velocity is always going to be 90 degrees out of 
phase with the position and so we might expect the inequality to become equality and the uncertainty 
to evaporate.  
 
In order to understand how such an uncertainty can come about we first need to look at the conditions 
which are necessary for this inequality to be true, in particular as they relate to the position or 
displacement variables.  The inequality does not depend on the form of the periodic function, only on 
certain criteria that must be met.  In order for the inequality to be valid it is necessary that the position 
variable is periodic, it must be single valued and piecewise continuous and differentiable2ii. The fact 
that it must be single valued is of particular interest, since it is not consistent with the idea that the 
electron can be in more places than once at any one time. Within its orbit, the electron must be 
somewhere, it can be anywhere, but it cannot be everywhere. In short, if uncertainty exists then the 
electron must be localized to a single point.  
 
The work of Schrödinger and Heisenberg was based on the idea of the electron as both a wave and a 
particle, first put forward by Louis de Broglie. One of the consequences of this idea is that there is a 
harmonic relationship between the various energy levels of the hydrogen atom. In de Broglie’s model 
this is manifest as a series of standing waves., that is to say that a whole number of de wavelengths of 
these de Broglie waves lies with the orbital circumference of the Bohr model. 
 
Wherever we see a harmonic series in nature there must always be a corresponding sampling process.  
This becomes evident if we consider the Fourier representation of a harmonic series.  Such a Fourier 
representation comprises a series of spikes equally spaced along the frequency axis.  For a real 
function these are disposed equally on both the positive and negative frequency axes.  These spikes 
are referred to as Dirac or Delta functions and such a collection of equally spaced Dirac functions is 
referred to as a Dirac comb.   
 

                                                           
1 Note that the absence of the factor ½ in this equation is because voltage and current are in phase with one 
another whereas velocity and position are 90 degrees out of phase. 
2
 Piecewise continuous means that there can be discontinuities in the velocity function but not in the position 

function as for example if the position were a triangle wave, then the velocity function would be a square wave. 
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Figure 2 Fourier transform of a single Dirac function 

 

 
Figure 3 Fourier transform of a Dirac comb 

 

 
Figure 4 Fourier transform of a higher frequency Dirac comb 

The Fourier transform of a Dirac comb in the frequency domain is a function in the time domain that 
is itself another Dirac combiii.  Such a Dirac comb in the time domain can be regarded as a sampling 
function, since if it is multiplied by any other signal it effectively takes a sample at regular intervals in 
time.  The sampling frequency corresponds to the lowest frequency in the harmonic series, which in 
the case of the atom is the frequency of the lowest energy state of the atom.  It follows that the 
sampling rate takes place once per orbit at this frequency and it is this that provides the mechanism 
which brings about uncertainty.  The distance travelled can only be related to the orbital period once 
per orbit, but the distance travelled is ambiguous.  It is impossible to know how many orbits the 
electron has completed since the last sample was taken. 
 
The requirement for the position of the electron to be single valued means that it always has a 
deterministic position, but that we cannot determine exactly what that is because of this ambiguity 
associated with the sampling process.  The situation is shown in Figure 5 where it can be seen that the 
electron can be thought of as always following one of an infinite number of possible trajectories (of 
which only the first five are shown), sometimes referred to as aliases, appropriate to its energy level, 

t -ω ω 

Time Frequency 

t -ω ω 

Time Frequency 

t -ω ω 

Frequency Time 
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but we do not know which one.  We cannot increase the sampling frequency because it is meaningless 
to try to relate the distance travelled to the time taken except over a complete orbital period. 
 

 
Figure 5 Electron Trajectories 

The density of these infinite number of trajectories is such that the entire space is covered by at least 
one such trajectory and it is this that leads to the idea that the electron can be in more than one place 
at a the same time.  

This gives us a slightly different view of the state of quantum indeterminacy or superposition. 
Superposition here is when the electron is in this state of it not being known which trajectory is being 
followed. When subject to an observing process there are no structural changes to the electron; instead 
the properties of the electron, such as speed, spin etc., are affected by the observing process due to the 
observer effect but the electron itself remains unaltered. The changes that take place are to the 
properties of the electron and those of the observer, not the electron itself. Hence the measurement 
problem does not really exist. 

The observing process is inextricably linked to uncertainty, but is not the cause of it. An observing 
process does not necessarily mean that a human agent is involved. Consider the case of an isolated 
hydrogen atom in a high energy state. At some time and for whatever reason, it decays into a lower 
energy state and releases a photon.  Such an interaction can be considered an observing process.  Prior 
to the decay the state of the atom was indeterminate.  After the decay the photon is released with a 
certain amount of energy and thus the photon is aware of how much energy was released by the 
decay. A closer examination of the Rydberg formula reveals that the amount of energy associated 
with any particular transition is unique and so we can identify both the energy state prior to the 
transition and that after the transition.   If we know the energy state of the electron we also know the 
corresponding alias and so we now know which trajectory the electron was following prior to the 
transition and which it is following after the transition. In effect, the photon has discovered the energy 
level of the atom prior to and after the decay event. A consequence of the observer effect is that every 
measurement process must involve a change in the physical properties of the object being observed, it 
does not mean that the observed object itself changes, just its properties such as velocity, spin, 
polarization etc.  Uncertainty can only be resolved when an interaction takes place and that 
necessarily causes a change in the object being observed. 

n=1

n=2

n=3

n=4

2π
0

0
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Conclusions 
 
An examination of how the Cauchy Schwartz inequality can be applied to the problem of the 
uncertainty principle reveals that the position of the electron must be a single valued function of time. 
This in turn means that there is a fundamental incompatibility between the current view of uncertainty 
and non-locality. If uncertainty exists and obeys the Cauchy Schwartz inequality then the electron 
must be localized, that is as a particle at a single point in space and time. 
 
The presence of a harmonic relationship between the various energy levels of the atom means that 
there has to be a sampling process and that the sample interval is the orbital period of the base energy 
state.  Such a sampling process means that it is only possible to relate the distance travelled to the 
time taken once per orbit and that there is ambiguity over the distance travelled.  The electron is seen 
to be following one of an infinite number of possible trajectories, each of which can be thought of as a 
wave. This can be regarded as a state of superposition. It is only when the electron interacts in some 
way with another particle that it is possible to determine which of these paths is being followed and 
this is equivalent to the collapsing wave front of the current theory.  
 
Between the sampling instants the value representing the distance the electron has travelled is both 
unknown and unknowable to us.  Such uncertainty is systematic in nature as opposed to intrinsic.  
That is to say that the electron always has a definite position and a definite velocity, it is just that we 
are not able to observe both to an arbitrary degree of accuracy because the system of sampling 
prevents us from doing so.   
 
When Heisenberg first set out the uncertainty principle, he ascribed uncertainty entirely to the 
observer effect; in other words he felt that the process of making the one measurement necessarily 
affected the other and that was the complete story.  Later he was persuaded that uncertainty was 
somehow intrinsic to the electron.  That is, the electron did not exist as a discrete particle. Here we see 
that the two effects are inseparable. The state of the electron is unknown until it is involved in some 
sort of interaction.  Such an interaction necessarily involves an observation process and incurs the 
observer effect and that the state of the electron must change in some way as a result of the 
interaction.  The outcome, however, is that the state of the electron is revealed to the observer. 
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