A simple formula that allows calculating the scalar curvature of the trajectory to a point in space-time located at a fixed distance from a point mass

Fernando Salmon
Bachelor's in Physics from the Complutense University of Madrid UCM and Master's in Mathematics and Computing from the University of Cantabria UC (Spain)
fernandosalmoniza@gmail.com

Abstract

s A formula that allows calculating the scalar curvature of the trajectory of a point in space-time, in the case of a gravitational field caused by a point mass, through the values of mass and spatial distance.

Keywords

Cosmology, general relativity, curvature of space-time, energy density of the vacuum field.

1.- Introduction

Starting from a point mass " M " we study the curvature of the trajectory in space-time of a point away from the mass a distance " r "

2.- Training the formula

According to rational mechanics, the centrifugal acceleration to which a mobile is subjected that travels around a curve at a speed " v " in a trajectory with a radius of gyration R, is given by:
$a=-v^{2} / R$
According to the general theory of relativity, the gravitational field is created due to our motion in curved spacetime, just like centrifugal force when we are traveling in a car around a curve. If, as we know, space-time moves at a speed of module "c", an observer who is at rest near a mass will be subjected to a gravitational field created by that mass " M ", a field that curves space -time, and will experience, due to the speed "c" of spacetime and the curvature of space-time, a centrifugal acceleration "a" given by:
$a=c^{2} / R$
where R is the radius of curvature of the path of that point in space-time.

The force to which it is subjected is given by

$$
\begin{equation*}
\mathrm{F}=\mathrm{mc}^{2} / \mathrm{R} \tag{1}
\end{equation*}
$$

This force to which it is subjected is experienced as a gravitational force and according to Newton's theory of gravitation it is also expressed as

$$
\mathrm{F}=-\mathrm{G} \mathrm{M} \cdot \mathrm{~m} / \mathrm{r}^{2} \quad(2
$$

Where G is the universal gravitational constant.
Equating the two expressions (1), (2) we obtain
$1 / R=-G M /\left(r^{2} c^{2}\right)$
$1 / R$ turns out to be the index of the scalar curvature of the trajectory in space-time from a fixed point at a distance " r " from a point mass M.

A formula that allows us to calculate the scalar curvature of the trajectory in space-time of a point, at a spatial distance " r " from a point mass " M ", based on parameters that are easy to determine, such as mass and spatial distance.

index of the scalar curvature of the trajectory of the point P in the space-time as a function of the values of the mass M and the spatial distance r

3.- Conclusions

For an assumption of a point mass, a simple formula has been obtained that allows calculating the index of the scalar curvature of the trajectory in space-time of the point (t, r), where r is the spatial distance to the mass " M " that is causing that curvature, depending on that distance and the value of that mass.

